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Abstract. It is shown that for an infinite lattice system, thermodynamic equi-
librium is the solution of a variational problem involving a mean entropy of states
introduced earlier [2]. As an application, a version of the Gibbs phase rule is proved.

0. Introduction

The aim of this article is to present a variational method for the
determination of the equilibrium state of an infinite system in statistical
mechanics. For technical reasons, we shall have to restrict ourselves to
lattice systems, but it is clear that the results should extend to more
general situations. As an application of the method we prove a version
of the Gibbs phase rule. The physical ideas contained in this article are
not different from those of an earlier paper [3], but there the programme
could not be pushed through. Quite a bit of technical development has
taken place since [3] which explains the ease with which the results can
now be obtained. We shall in particular rely heavily on two recent papers
[2] and [1] for notations and results, these are recalled in the first two
sections.

1. Thermodynamic Limit

We consider particles on a lattice Z? and assume that only 0 or 1
particle can occupy a site. An interaction is a sequence Φ = (Φ^)^ι of
&-body potentials, which are assumed to be symmetric in their arguments
and invariant under translations of the lattice. Given a set X — {xlt . . .,
xn} of occupied sites the potential energy is

w , , . . . , ^ ) . (i.i)

We assume that the interaction satisfies

i Φ0

IIΦI = Σ 4r Σ !Φ(fc)(0, a*, - , av i)! < +00 (1.2)
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ΦO
where Σ extends over all sequences of distinct points of Zv different
from 0. The interactions Φ form then a real Banach space & with respect
to the norm (1.2), and (1.1), (1.2) give

\UΦ(X)\ < n\\Φ\\ . (1.3)

For each region A (finite subset of Zv) we define a partition function

ZΛ(Φ)= Σ e~uφW . (1.4)
XCΛ

Let also V(Λ) denote the number of points in Λ
Theorem 1. (i) // Φ ζ 38, the following limit exists

= urn V(Λ)-ι\vgZΛ(Φ) . (1.5)
Λ— * oo

The functional P(') is convex and continuous on 3%.
(ϋ) Let D be the set of all Φ ζ έ% such that the graph of P(-) has a

unique tangent plane at Φ, i. e. there is a unique element ocφ of the dual £%*
of & such that for all γ ζ ̂

P(Φ + Ψ)^ P(Φ) - ocΦ(Ψ) . (1.6)

With this definition, D contains a countable intersection of dense open
subsets of & (in particular D is dense by BAΓBEJ.

(iii) // Φ ζ D, then

Km ZΛ(Φ)-ι V(Λ)~l Σ e~uφW UΨ(X) = ocφ(ψ) . (1.7)

Therefore αφ may be interpreted as the "infinite volume correlation function"
corresponding to the interaction Φ.

These results are due to GALLAVOTTI and MIRACLE [1].

2. States and their Entropy

The description of equilibrium states of systems in classical statistical
mechanics has been investigated in [4] and it was shown there how such
states can be identified with certain states of an adequate abelian
(7* -algebra 21. In the particular case of a lattice system with either 0 or 1
particle at each site, the problem is rather simple and we discuss it
briefly.

Let K be the product Πx^zv{0, 1}X of one copy of the set {0, 1} (with
the discrete topology) for each lattice site. With respect to the product
topology, K is compact. The set E of states on the <7*-algebra Ή (K) of
continuous complex functions on K is naturally identical to the set of
probability measures on K. The v* -topology on E is the 'Vague" topology
of measures and makes E compact. There is a bijection ω -> $ω of K
onto the subsets of Zv such that ωx = 1 o x ζ Zω. We may thus consider
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either as a function of ω ζ K or of Sω C Zv If z ζ Zv we define
the translate τx A by

τΛA(Sω) = A(Sω-x). (2.1)

We shall be interested in the convex compact set E r\ J^?1 where ^>λ-
denotes the measures on K which are invariant under the translations
of the lattice Zv [i. e. m(A) = m(τxA)]. The elements of E r\ J^1 are
natural candidates for the description of equilibrium states in statistical
mechanics of lattice systems.

Given ρ ζ E r\ £?L, for each region A we define a function fΛ of the
subsets of A by

fΛ(X) = ρ({ω£K:SωnΛ^X}) (2.2)
and an entropy

Sa(Λ)=- Σ Λi(Z)lQgAι(Z). (2.3)
XCΛ

Theorem 2. // ρ ζ E r\ &1-, the following limit exists

s(ρ)= lim V(Λ}-τ-SQ(Λ}^wtV(Λ)-ιSQ(Λ}. (2.4)
Λ-^CQ * A

The functional s ( ' ) is affine and upper semi-continuous on E r\.
This result is contained in [2], Section 5, in a slightly different form

because of a different choice of (7*-algebra. One may for instance derive
here the upper semi-continuity of s ( ) from the fact that s is the lower
bound of a family of continuous functions V(A)~1S(Λ) on

3. The Yariational Property

Given Φ ζ έ% a continuous function Aφ on K is defined by

Ό if 0 ί Sω

Aφ(ω] = - -i ^υ

y y ΦW (0 Ύ <r \ if 0 (/ i -jΓT / f >*yv ' \yι ^-ΊJ j ^jζ — ι) -1-1- " *
(3.1)

The linear mapping Φ -̂  ^4Φ is norm decreasing from $ to ^(K). Notice
that if Sω = X is finite

2; τβ^Φ(Z)= σφ(Z). (3.2)

Theorem 3 (variational property). If Φ ζ 3S, then

P(Φ)= sup [β(ρ)-ρμφ)]. (3.3)

We first prove that for each ρ ζ E r\ J^1 we have

P(Φ)>8(ρ)-ρ(AΦ). (3.4)

Let A = {ίCj, . . ., xυ}, and ̂  be the subalgebra of ^(K) consisting of
those functions of ω which depend only on ωXί, . . ., ωXv. If A ζ ΉΛ, then

= Σ fΛ(
XCΛ
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On the other hand UΛ *$ A is dense in # (K ) by the theorem of Stone -
Weierstrass. Using this and the in variance of ρ we find that, given ε > 0,
then for sufficiently large Λ

\Q(AΦ) - F(Λ)-1 Σ Σ fA(X)τxAΦ(X)\ < ε

where, by (3.2),

V(Λ}~1 Σ Σ fΛ(X)rxAφ(X) = F(Λ)-1 Σ IΛ(^} UΦ(X)
XCΛ

hence
\ρ(AΦ) - F(Λ)-1 Σ MX) VΦ(X)\ < ε . (3.5)

XCΛ
On the other hand, by (2.4),

β(ρ)^ V(Λ)-ι[- Σ f Λ ( X ) l o g f Λ ( X ) ]
XCΛ

therefore

*(ρ) - Q(AΦ) - ε <- V(Λ)-* Σ h(X) [UΦ(X) + log/^(Z)] .
XCΛ

Using Σ IΛ (X) — 1 an(i ^ne concavity of the logarithm this yields
X C Λ

X C Λ

By (1.5), this yields (3.4) when Λ-+OQ.
We show now that ρ ζ E r\ ^^ can be found such that

P(Φ)<s(ρ)-ρ(Aφ) + 2ε. (3.6)

Given an integer n > 0, let

Λn = {x ζ Zv : 0 ̂  xί < n for i = 1, . . ., v} .

For 7i large enough, (1.5) yields

|P(Φ) - F(Λ)-1 log^(Φ)| < ε . (3.7)

We introduce a function / of finite subsets of Zv by

The translates

Ai+Tlfc

of /lw, where k ζ Zv form a partition of Zv. Let yl be the union of a finite
number of such translates

4 = ̂  [4, + »**]•
If A ξ ̂ , we define

ι C Λn + nh XN C Λn 4-
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It is easy to see that this definition does not depend on the special
choice of A and, the union of the *€ A being dense in ^(K), ρ extends
uniquely to a state on ^(K), which is periodic with periodicity cell Λn.
A state ρ ξ E r\ £?L is now obtained by averaging ρ over translations :

-1 τA

then, by easy estimates

V(Λ)-ι[- Σ fA(X)^gfA(X)]
(38)

β(ρ)= lim

Using for instance (3.5) one checks also that for large n

\ρ(Aφ) - F(Λ)-1 Σ J(X) UΦ(X)\ < ε . (3.9)

From (3.8), (3.9) and (3.7) we get

β(ρ) - ρ(Aφ) + ε

which proves (3.6) and therefore the Theorem.

4. The Gibbs Phase Rule

Given a one- component thermodynamic system, we take the Gibbs
phase rule to mean that "almost all" points of the (μ, β) diagramme
correspond to a single phase , μ being the chemical potential and β the inverse
temperature. It is however conceivable that for special choices of the
interaction this statement becomes incorrect. One is thus led to for-
mulate the following ( 'Gibbs phase rule": for "almost all" interactions
and (μ, β) a system at equilibrium consists of only one phase. We deal
with classical systems and μ may be considered as a "one-body potential"
while β is a multiplicative factor for all potentials. We may thus omit
μ, β in the formulation of the Gibbs phase rule (absorbing μ in the
interaction and putting β = 1). We say that a system consists of only
one phase when it is described by a state ρ which is an extremal point of
E r\ ££ L (see [3], [4]), i. e. an ergodic measure on K. The Gibbs phase
rule means thus that ergodicity is generic for the states of infinite systems
in classical statistical mechanics. To obtain a theorem it remains only to
precise the set of interactions considered and the notion of "almost all"
interactions in this set.

Theorem 4 (Gibbs phase rule) . (i) // Φ belongs to the set D of Theorem 1 ,
the junction ρ -^ s (p) — ρ ( Aφ) reaches its maximum P(Φ) at exactly one
point ρφζE r\
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(ϋ) // Φ £ D and ocφ is the functional defined in Theorem 1 then,
for all Ψ,

ρΦ(AΨ) = <*φ(Ψ) (4.1)

and QΦ may be interpreted as the "equilibrium state" corresponding to the
interaction Φ.

(iϋ) // Φ ζ D, the equilibrium state ρφ is an extremal point E r\
(— ergodic measure on K — pure thermodynamic phase) .

For any Φ ζ 3$, the functional ρ -̂  s (ρ) — ρ (Aφ) is aίfine upper semi-
continuous on E r\ ££^~ and reaches thus its maximum P(Φ] on a non-
empty set Δφ which is convex and compact and contains therefore at
least one extremal point of E r\ 3?L. If ρ ζ ΔΦ, we have for all Ψζ&

P(Φ + Ψ)^s(ρ)-ρ(AΦ+Ψ) = s(ρ)-ρ(AΦ)-ρ(AΨ) = P(Φ)-ρ(AΨ). (4.2)

Since Ψ-^ A Ψ is linear and continuous, (4.2) shows that Ψ-^ P (Φ) — ρ(AΨ)
is a tangent plane to the graph of P( ) at Φ. Let & be the Banaeh sub-
space of *%(K) generated by differences A — τx A with A ξ Ή(K), x ξ Zv,
and Q:<g(K)~* <€(K)\5e be the quotient mapping. We notice that &L

(invariant measures on K) is isomorphic as Banaeh space to the dual of
<#(K)I&, and that {Q AΨ:Ψζ 38} is dense in <&(&)!& (use the fact that
UΛ ^Λ is dense in ^(K)}. Therefore if an element of 3?L vanishes on
all AΨ it vanishes identically, in particular two distinct elements of ΔΦ

yield different tangent planes to the graph of P ( ' ) . By theorem 1, if
Φ ζ D, ΔΦ is thus reduced to one point ρφ which is extremal in E r\ J*?-1

and QΦ(Aψ) = ocφ(ψ) for all Ψζ &.

Remark. The variational formulation of equilibrium given in this
paper is grand canonical. In [3] a microcanonical approach was used:
"equilibrium is realized by the state which, for a given density and
energy density (with respect to a given interaction), has maximum
entropy". As usual the microcanonical point of view is physically more
intuitive, the grand canonical point of view is technically easier to handle.

We want also to point out that the reader can reintroduce the
temperature and chemical potential explicitly (see [1]), he will find in
particular that for a dense set of interactions in &, the set of (μ, β) points
for which there is more than one phase is of Lebesgue-measure zero.
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