
Commun. math. Phys. 5, 215—236 (1967)

On the Equilibrium States

in Quantum Statistical Mechanics

R. HAAG

Department of Physics, University of Illinois, Urbana, Illinois*

N. M. HTJGENHOLTZ and M. W I N N I N K

Natuurkundig Laboratorium, Rijks-Universiteit, Groningen

Received February 15, 1967

Abstract. Representations of the O*-algebra Qi of observables corresponding to
thermal equilibrium of a system at given temperature T and chemical potential
μ are studied. Both for finite and for infinite systems it is shown that the representa-
tion is reducible and that there exists a conjugation in the representation space,
which maps the von Neumann algebra spanned by the representative of 21 onto its
commutant. This means that there is an equivalent anti-linear representation of £1
in the commutant. The relation of these properties with the Kubo-Martin-Schwinger
boundary condition is discussed.

I. Introduction

In statistical mechanics one studies large systems and the aim is to
derive the macroscopic, or thermodynamical properties of such systems
from the equations of motion of the individual particles. Due to their
large size, such systems have features such as phase transitions, transport
phenomena, which are absent in small systems. To exhibit such features
in their purest form one has to consider the limiting case of infinitely
large systems, i.e., systems with infinitely many degrees of freedom. The
usual formulation of classical or quantum mechanics and of statistical
mechanics does not allow the treatment of systems with infinitely many
degrees of freedom. This means that one has to consider large, but finite,
systems and take the thermodynamical limit at the end. From a logical
point of view it seems advantageous to reformulate the theory in such a
Λvay that no recourse has to be taken to finite systems. While this aim
has not been reached in a complete and satisfactory manner some
interesting partial results are known. Among these we may count the
Kubo-Martin-Schwinger boundary condition for "thermodynamic
Green's functions" [1] and [2], the properties found by ARAKI and
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WOODS [3] for the equilibrium state of a free Bose gas and the decom-
position theory of invariant states of infinite systems [4], [5], [6].

The main objective of the present paper is to show that certain
properties of the equilibrium state which were found by ARAKI and
WOODS for the free Bose gas have general validity for quantum statis-
tical systems and to exhibit the relationship of these properties to the
Kubo-Martin-Schwinger boundary condition.

The following attitude will be taken: a state of an infinite system is
characterized by the expectation values of quasilocal (macroscopically
local) observables in the state. In other words, a state is described by an
expectation functional over an algebra 21 whose elements correspond to
quasilocal physical operations on the system. This description of states
has been widely used in the treatment of infinitely extended quantum
systems (field theory, or many body problem)1.

Among all the possible states of a system, we must single out the
equilibrium states. Here we shall dodge all fundamental questions and
adopt the pragmatic definition of an equilibrium state as the limit of a
sequence of Gibbs grand canonical ensembles of increasing volume.

In section II we describe the relevant mathematical structure and
discuss some conditions for the existence of the infinite volume limit and
its insensitivity to surface effects. An easy consequence is then the
property (3.32) which is equivalent to the Kubo-Martin-Schwinger
boundary condition.

Each state (expectation functional) determines in a natural manner
a representation of the algebra 21 by operators in a Hilbert-space2. We
use the following notation. The elements of the algebra are denoted by
A, B etc. A representation of the algebra is written as i2(2t). Specifically,
R(A) is the operator representing the element A. If ω is a state then
ω(A) denotes the expectation value of A in this state. Starting from the
state the GNS-construction gives us a representation JRω(2l) in a Hilbert
space § ω and a vector Ω in ξ)ω with the property

ω(A) = (Ω,R(A)Ω) (1.1)

for all A ζ 21. It also gives us a whole family of other states

ωφ(A) = (Ψ, R(A)Ψ) (1.2)

where Ψ is any vector in ξ)w. The states ωψ which belong to the same
family may be pictured physically as states which differ essentially
only in finite regions from each other.

1 See e.g. [7] where many references may be found.
2 This standard construction will be called the GNS-construction after I. M.

GEL'FAND, M. A. NAIMARK and I. E. SEGAL who share the credit for the develop-
ment of many of the mathematical concepts used. A simple survey of the use of
these ideas in physics may be found in [7].
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We can now state those properties of an equilibrium state, demon-
strated in [3] and [8] for the free Bose- und Fermi gas, with which we
will be concerned:

i) The state is impure, i.e., the representation R is reducible.
ii) There is a symmetry between the von Neumann algebra generated

by R($l) and its commutant. Specifically, there is an antiunitary con-
jugation operator J such that

JRiΛ^-1^ S(Λ); J- 1 -/ (1.3)
and3

{8ffly = {R(&)}"; (1.4)

ϋi) If h(x) denotes the algebraic expression for the energy density
then the generator of the time translations in § ω is formally given by

/ (R(h(x)) — 8(h(x))) d*x (1.5)
and not by

/ R(h(x))d3x . (1.6)

The precise meaning of the formal expression (1.5) will become clear in
the following sections. The formal expression (1.6) can never be defined
in a meaningful way for the cases of interest in infinite systems.

The properties (i), (ii) and (in) above already hold for a Gibbs
ensemble in a finite volume. This will be discussed in Section III. Sec-
tion IV will deal with the infinite system and show the relation between
these properties and the Kubo-Martin-Schwinger condition.

II. Assumptions and Notation

For simplicity we consider a system with one component (only one
type of particle). Let Ψ*(x) be the creation operator of a particle at the
point x at the time t = 0 and Ψ(x) the corresponding destruction opera-
tor. These objects satisfy the canonical commutation (or anti-commuta-
tion) relations

[Ψ(x),Ψ*(y)]± = δ3(x-y); [Ψ(x), Ψ(y)]± = 0 . (2.1)

We could regard Ψ and Ψ* as abstract algebraic quantities but it is
more convenient to interpret them as operators in the standard Fock
space ξ)F. More precisely, this means that for every square integrable
function / we have operators Ψ(f), Ψ*{f) in a Hubert space $)F. These
operators are adjoints of each other and related to Ψ(x), Ψ*(x) sym-
bolically by

ψ*(j) = f ψ*(x) j(χ) d*x; ψ(f) = / ψ(χ) f*(χ) d*x , (2.2)

3 If R is an algebra of bounded operators in a Hubert space then R' denotes its
commutant, i.e. the set of all bounded operators which commute with every operator
in R. The "bicommutant" R" is equal to the weak closure of R.
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i.e. Ψ*(f) depends linearly on /. The commutation relations (2.1) read
then

[Ψ(g),Ψ*U)]± = (g,f) (2-3)

In ξ)F there is one vector Ωo (physically the zero particle state) deter-
mined by

Ψ{f)Ω0^0 for a l l / . (2.4)

The Hubert space is then generated by repeated application of the
Ψ*(f) onΩ0.

Let F be any finite volume. We define 21 (F) as the von Neumann
algebra determined by all the Ψ{f), Ψ* (/) with functions / having support
in F.

Clearly 21 (Fx) commutes with 21 (F2) if V1 r\ F 2 is empty. Also, due
to (2.3) and (2.4) we may define the subspace

(2.5)

is an irreducible representation space of 21 (F) and the space ξ>F

may be factored into

§F = $f x ?>F • (2-6)

21 (F) is a weakly closed set of bounded operators. I t is a forteriori closed
in the topology of the operator norms ||.4|[, i.e. 21 (F) is a O*-algebra. We
define now the (7*-algebra 21 as the closure in the norm topology of the
union of all 21 (F) remembering that F always denotes a bounded region:

(2.7)

Some explanation is in order concerning the motivation of these defini-
tions. We have specified a family of (7*-algebras and shall ultimately be
concerned with the representation of 21 in a Hubert space § ω (see intro-
duction). This representation must be clearly inequivalent to the one in
$)F because all state vectors in ί)F give a decreasing probability for very
large particle number whereas all states in § ω describe an actually infinite
particle number (finite mean density). However, the specification of
21 (F) as a von Neumann algebra in ξ>F means that as far as the observ-
ables in a finite volume are concerned the representations in $)F and in
£jω must be quasiequivalent in the sense of Mackey. In physical terms
this means that the particle number in a finite volume is a meaningful
quantity and that we shall never consider representations of the commu-
tation relation (2.1) in which

Nv= f Ψ*{x)Ψ(x)d?x (2.8)
V

is not definable4.

Compare [9] for a discussion of this point.



Equilibrium States 219

For the observables in an infinite volume on the other hand it is
essential to exclude the truly global quantities (such as total energy,
total particle number). Therefore we cannot take the algebra of all
bounded operators in ξ)F (which could result as the weak closure of
\j 21 (F)) as our total algebra 21 but must restrict ourselves to the quasi-
local quantities, which can be approximated in the norm topology by
operators belonging to finite regions.

The dynamics of the system is characterized by a Hamiltonian H.
This Hamiltonian is a well defined operator in $)F and the same is true
for the total particle number N. Since we will be concerned with Gibbs
ensembles, the combination

H' = H~μN (2.9)

(where μ is a given number, the chemical potential) will be of special
importance and we shall call the unitary operator

U(t) = eiΈL>t = e<<H-"Λτ)t (2.10)

for brevity the time translation operator. The following assumptions
have to be made about H':

a) For every volume F one can introduce an H'v so that

ϋv(t) = em'v® (2.11)

belongs to 21 (F). This family of "partial Hamiltonians" shall be approxi-
mately additive i.e. if a volume F is partioned into two parts F x and F 2

then
H'7-H'7l-H'y, = H'. (2.12)

shall be essentially a surface term.
More precisely we shall assume that for fixed A and fixed t the trans-

forms
Aj =UyΛ<t)Aϋy-l(t) (2.13)

form a Cauchy sequence in the norm topology if

Vn+i^ Vn a n d \J Vn = R3 (the whole space) . (2.14)

The limit n -> oo therefore exists and belongs to 21.
The same statement will continue to hold, if A is any element of

21 because A can then still be arbitrarily closely approximated by an
element from some 21 (F). It is now clear in which sense Uv(t) should
approximate U (t): For every A ζ 21 and every sequence of volumes Vn

satisfying (2.14)

At = I7(ί) A Z7-1 (0 = Urn ϋv {t) A ϋγl(t) . (2.15)
n—*oo

In other words, U (t) defines an automorphism A -> At of the algebra of
quasilocal operators and this automorphism is the limit in the norm
topology of those induced by UVn(t).
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Note that there is no uniform estimate

μ(_^»fl<eμi|
for all A ζ 21 (Fo). A counter example against this assumption is obtained
if we choose A to be the observable measuring the number of particles
in F o with velocities between v1 and v2 and consider for simplicity a state
with only one particle in the universe. If vλt is greater than the linear
dimensions of F o then the motion given by H'v and that given by H'
differ drastically since in the first case we have a reflection at the bound-
ary of F o and not in the second case. A consequence of this comment is
that for two adjoining regions F1? F 2 such that Vt \j F 2 = F 3 the
operator Uv*(t) C/Fa(^)-1 UVl(t)~1 cannot be approximated in the norm
topology by an operator from a surface layer around the interface of

b) The interparticle forces must saturate. This requires that for
every F, every positive β and a certain range of μ-values the operator

e-βH'v5 considered as an operator in £)^P should have a finite trace5.
This being the case, one can define the Gibbs state for given β, μ, V

by
ojv(A) = Trv(ρvA) (2.16)

where
ργ^iΊrγe-Wr)-1 e~^> (2.17)

and where Ύrv denotes the trace in the Hubert space $)ψ\
This is a well defined expectation functional for allJ. ζ 31 (F) because,

if A is a bounded operator and ρ has a finite trace then also ρA has a
finite trace.

c) The next problem concerns the limit V -> oo. Let Vn again be a
set of regions of increasing size as used in (2.14) and let A ζ 2t(F0). It is
expected that under normal circumstances the numerical sequence
ωVn(A) converges:

lim ωv (A) = ω(A) . (2.18)
n—>oo n

This will be assumed to hold for any set of regions satisfying (2.14) as
long as A belongs to the algebra of a bounded region. Then (2.18) uniquely
defines a state over the whole algebra because for A ζ \j 2l(F)

ω(A*A) > 0; \ω(A)\ rg \\A\\ . (2.19)

These properties are evident because they hold for every ωyn.
They allow the extension of the definition of ω (A) from the operators

of bounded regions to those of 21.

5 The conditions on the potential which are imposed by this requirement have
been extensively studied by D. RUELLE [10]. Recently F. J. DYSOK [11] proved
that the Coulomb forces between equal numbers of positively and negatively
charged particles saturate.
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The later sections of this paper will be based on assumptions a), b)
and c). Of these the first two appear quite satisfactory as basic assump-
tions since they are related rather directly to important properties of the
interparticle forces, namely the sufficiently fast decrease of these forces
for large distances and the saturation. The property c) is on rather
different footing. We know that it must fail for special values of β, μ
(phase transition points). Hence a study of its relation to simpler proper-
ties of the system is of great interest. No such discussion will be attempted
here, however.

III. Some Properties of the Gibbs States

In this section we shall be concerned only with a fixed, finite volume
V and the Gibbs state defined by (2.16), (2.17). We shall omit therefore,
in this section indices V and write 21 instead of 21 (F), ω instead of ωv

etc.
As described in the introduction we can use the expectation func-

tional ω to construct a Hubert space £jω in which we have a cyclic
representation of 21 by operators R(A) and a cyclic vector Ω correspond-
ing to the state ω. We shall now give an explicit description of this
representation. Since the density matrix ρ is a positive operator with
finite trace, the operator

*o = ί?^ (3-1)

is well defined. I t has the properties6

1. κQ is a Hubert-Schmidt operator.
2. For all A ζ 21

Aκ0 = 0 implies A = 0 (3.2 a)

κ0A = 0 implies ,4 = 0 . (3.2 b)

Proof of property 2. ρ" 1 = (Tre~^H') eβH' is an unbounded positive
operator with a dense domain in $)F. The same holds for κ^1. Consequently
κ0 has a dense range in ξ>F. This is the same statement as (3.2a). (3.2b)
follows then by Hermitian conjugation.

Consequence:

A ζ 21 and ω(Λ*A) = 0 imply A = 0. (3.3)

Here ω is defined by (2.16) which can be written as

oj(A) = Ύτ(κQAκQ). (3.4)

Let & C 21 be the algebra of Hubert-Schmidt operators. This algebra has
a number of well known properties:

a) ® is a 2-sided ideal of 21, i.e.

6 The Hilbert-Schmidt class consists of those operators whose absolute square
have a finite trace.
16 Commun. math. Phys., Vol. 5
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b) & may be considered as a linear space equipped with a scalar
product

(κ,κ') = Tr(κ*κ/) . (3.5)

One may introduce a norm | | |κ | | | derived from this scalar product by

Ml* = («, ») (3-6)
and finds that $ is closed in the topology defined by this norm. Thus one
can regard 5?, equipped with this norm as either a Banach algebra or as
a Hilbert space. The relations

(κ1κ2, κ3) = (κ2, κfκ3) (κ, «') = («'*, **) (3.7)

make 5? into a Hilbert algebra7.
We shall now use the symbol § instead of & to denote the Hilbert

space whose vectors are the Hilbert-Schmidt operators of § F , the scalar
product being defined by (3.5). Consider the following two representations
of 21 by operators in § :

1. We represent A ζ 21 by the operator R(A) in § defined by

R(A)κ = Aκ. (3.8)

2. We represent A ζ 21 by the operator S(A) in § defined by

8(A)κ = κA*. (3.9)

If || i2 (.4)|| and ||$(^4)|] denote the operator norms in ί) one easily
checks that

\B{A)\ = \\S(A)\\ = μ| | (3.10)
because 8

Also
R(A1)R(A2) = R(A1Az);

= (R(A))*

+ λ28(A2);

S(A*) = (8(A))* .

Hence R is an ordinary ^-representation, 8 is a conjugate (antilinear)*-
representation of 21. We have

{i*(3l)}" = {S(2l)}'. (3.12)

Here the prime indicates the commutant, the double prime the
commutant of the commutant (which, by a famous theorem of von Neu-
mann coincides with the weak closure).

7 See e.g. [12].
8 The last identity in (3.11) follows because we can choose κ as the projection

operator on a state in $)F which is an almost eigenvector of A* A to the highest
spectral value.
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Proof. Since
R(A) 8(B)κ = AκB* = S(B) R(A)κ .

We have

or, taking the weak closures on both sides

{Rφ)}"C{8 (%)}'. (3.13)

On the other hand, since the subalgebra & C 21 is a Hubert algebra one
has the well-known theorem [12]

{R(®)}" = {S(®)}' • (3.14)

Obviously R (<Ά) ̂  R (®) S(Qί)^S(®) and hence {#(21)}' C {#($)}'•
Therefore (3.13), (3.14) together imply

{R(®)}" = {5(91)}" = {S(mϊ = {S(9i)Y (3-15)
which proves the theorem.

Theorem 2. The vector κ0 is cyclic for both representations and

ω(A) = (κ0, R(A)κ0) = («0,S(4)x0) . (3.16)
The representations R and S are transformed into each other by an anti-
unitary conjugation operator J:

JR(A)J-1 = 8(A); J = J-1; Jκo = κo. (3.17)

Proof. The cyclicity of κ0 for the representation R is related to (3.3)
in the following way: Suppose there is a κ ζ_ § such that (κ, R(A)κ0) = 0
for all J. £21. Since κ can also be regarded as an element of 21 we can
choose A = κκ0. Then we would get Trκ*κκ0

2 == ω{κ*κ) = 0 and hence
by (3.3) κ = 0.

The first part of eq. (3.16) results directly from the defining equa-
tions (3.4), (3.5), (3.8). This means that the representation R is the one
resulting from the GNS-construction with the state ω .

The operator / is defined by

Jκ = κ* (3.18)
J is anti-unitary, since

(Jκx, Jκ2) = («!*, κ2*) = Tr^^ 2* = (κ2, κ-j) .

Because J% = 1 the operator J is a conjugation. The remaining state-
ments in theorem 2 are now immediate consequences.

Next we consider the automorphism group on the algebra which is
induced by the time translations:

A->At= UiήAU-^t). (3.19)

We want to implement these automorphism in the representation R
by unitary operators U(t) £ £(£)). In other words, the unitary operators
U should satisfy

U(t) R{A) ίM(*) = R(At) . (3.20)
16*



224 R. HAAG, N. M. HTJGENHOLTZ and M.

It is clear that (3.20) alone does not define the U (t) uniquely. The general
solution of (3.20) is

U V(t) (3.21)

where V is an arbitrary unitary operator from {i2(2l)}'. The expectation
functional ω is invariant under time translation i.e.

ω(At) = ω(A). (3.22)

Therefore it appears natural to choose Ό (t) in such a way that the vector
κo ί § which represents the state ω is invariant under Ό(t):

= κo. (3.23)

This fixes the choice of V in (3.22) uniquely and we get (due to the fact
that U (t) and κQ commute)

U{t) = R(ϋ{t))'8(ϋ(t)) (3.24)

which corresponds to the (somewhat symbolic) expression for the
generator:

H' = R{H') — 8{H') . (3.25)

In the case of the finite system the requirement (3.23), while very
natural, may still appear to be somewhat arbitrary. For the infinite
system, where U(t) is no longer an element of Qi the fact that the auto-
morphism is unitarily implementable at all depends crucially on the
in variance of the state ω (eq. (3.22)). From this one derives that a
unitary operator U (t) with the properties (3.20), (3.23) can be constructed
and is uniquely defined by these properties in the space § ω . On the other
hand the quantity R(ϋ(t)) is undefined and undefinable in that case.

One other way to understand (3.25) is to note that the vector κ0

representing the Gibbs state is not an eigenstate of the energy operator
R {H') because the energy in a Gibbs ensemble is not sharply defined. In
an infinite system the fluctuation of the energy is infinite and therefore
R{H') cannot be defined at all any more. The equilibrium state is, how-
ever, an eigenstate of Hr.

We add two remarks. The first remark concerns the connection
between our results and those obtained by ARAKI and WOODS for the
ideal Bose gas. They find a representation of Qi in the commutant and
not, as we find, a conjugate representation. They also find a unitary
operator U(t), which implements the automorphisms of time transla-
tions. However, in their case, the representatives of 01 in the commutant
run backward under the transformation U(t). It is clear that there is a
simple connection between the two descriptions: a time reversal of the
commutant which transforms a representation into a conjugate repre-
sentation.
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The second point concerns the cyclic vector. Our proof that κ0 is
cyclic for R (21) and for S (21) is based on the property of κ0 that A κ0 = 0
implies A = 0 for all A ζ 21.

This property holds for a large class of Hilbert-Schmidt operators, in
particular for those corresponding to all possible equilibrium states. This
means that as long as V is finite our representation contains among
others the equilibrium states for all β and μ.

To close this section we shall write down the KMS-boundary con-
dition in a form which is suitable for our objective in section IV, namely
the discussion of the thermodynamic limit F-^oo. If z = t + iγ is a
complex number and A ζ 21 then

Az = eiH'zAe-iH'z (3.26)

will, in general, not be a bounded operator. But

will be bounded and of trace class for 0 Ĵ γ ^ β because, with these
restrictions on γ, all the factors in the above product are bounded and
either the second factor or the last (or both) are of trace class.

Similarly, e~@H'Az will be of trace class for — β ?g γ 5ί 0. Therefore,
for any A, B ζ 21 the function

FAB(*) = T r ^ ^ e - ^ ' (3.27)

is well defined in the strip 0 ^ γ ^ /?. In fact, it is differentiable, hence
analytic, in the open strip 0 < γ < β and continuous at the boundaries.
This statement follows from the fact that H'e~xH' is a bounded operator
for any α > 0.

Similarly, the function

GAB(z) = Tre-l>B'AtJB (3.28)

is analytic in the strip — β < γ < 0 and continuous at the boundaries.
We have, for γ = 0

FAB{t) = ω(BAt); OΛB(t) = ω(AtB) (3.29)

and, from the in variance of the trace under cyclic permutations one gets
the KMS-boundary condition

FΛB(t + ίβ) = GAB(t). (3.30)

For the passage to the thermodynamic limit it is convenient to use
the functions F and G only for real times. Therefore, we reexpress the
above mentioned properties in the following way: Let f(ε) be a class
Si test function in the sense of LAURENT SCHWARTZ (infinitely differen-
tiable and with compact support). Define, with z — t + i γ

/(*) = f f { ε ) e i z ε d ε .
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Then f(z) is analytic in the entire z-plane and tnf(t + iγ) is a bounded
function of t for any fixed γ and positive n. Therefore, multiplying (3.30)
with f(t) and integrating we can shift the integration path on the left
hand side within the analyticity domain of FAB and obtain

/ f(t — iβ) ω{BAt) dt = / f(t) ω{AtB) dt. (3.31)

The validity of this relation for any / £ 2 and any pair A, B £ 21 is
equivalent to the KMS-boundary condition. This can be seen in the
following way. If F(ε), G(ε) denote the Fourier transforms of F(t)
= ω(BAt) and G(t) = ω(AtB) then (3.31) states that

F{ε) = e^0{ε) (3.32)

where F and G are considered as distributions over Q). On the other hand,
we know from their definitions that F(t), G(t) are bounded, continuous
functions of t and hence ί1, 0 are distributions over £P. Since 3) is a
totalizing subset of £f, the relation (3.32) holds for the tempered distri-
butions F, 0. This implies the analyticity of the functions F(z), G(z) in
the open strips described above. Since F{t), G{t) are bounded, continuous
functions, they are, by (3.32) the boundary values of F(t + iγ) for
γ = 0 resp. for γ = β.

Thus the analyticity statements for F(z), G(z) with KMS-boundary
condition (3.30) are equivalent with (3.31).

IV. The Infinite System

In section III extensive use was made of the fact that the Gibbs
states ω F have the normal form (2.16), (2.17). The states of infinite
systems are in general not normal i. e., they cannot be described by a
density matrix in $)F. However, under the assumptions of section II
one finds that (3.31) and hence the KMS-boundary condition remain
valid in the thermodynamic limit. From this relation one can deduce the
other general properties of the equilibrium state and the corresponding
GNS-representation of 2ί which were derived for the Gibbs states of a
finite system in section II.

To show the validity of (3.31) in the thermodynamic limit we only
have to prove that

lim / ωv{BAl) f(t) dt = / ω(BAt) f(t) dt
F->oo

for class £f test functions f(t). Here ωv is the Gibbs state for volume
V and AJ = Uv(t) A Uy1^). Since the expectation values in the inte-
grands are uniformly bounded functions of t this is equivalent to

lim ωv{BAf) - ω(BAt) (4.1)
F^oo
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for each fixed t. To show this we need assumption a) of section II in the
form (A being fixed)

_ Avx\\ < ε>(γi9 t) for e v e r y γ

with
lim ε'(Vvt) = 0 ,

and we need assumption c) of section II in the form

\ωv(C)-ω(C)\<ε"(V,C)
with

limε"(F, 0) =
V—>oc

Choosing some volume V1cV we can write

— ω(BAt)\ < 2ε'(Vl9t) \\B\\ + ε"{

for any choice of Vx C F. Thus we can choose first Fx so large that the
term involving ε' is smaller than any given positive ε and then we can
choose, keeping V1 fixed, a sufficiently large F so that ε" is smaller than ε.
This proves (4.1) and therefore the validity of the KMS-boundary con-
dition for the infinite system.

In this section we shall need another condition, which can be shown
to be equivalent to the KMS-boundary condition. Let $1C 21 be the subset
of all A ζ 21, of which the Fourier-transform A (ε) of At has compact
support9. One proves easily that 21 is a *-algebra. 21 is not empty since
all operators of the form Af — f dt Atf{t) for f(ε) ζ@ and A £ 21 belong
to 3.

For any A £§ί we define the mapping A->Aix by the formula
Aix = f dε Λ(ε) exp(a ε), where x is a real number. A simple calculation
shows that this mapping is an automorphism. Since (Aix)* = (A*)_ix

this automorphism is not a *-automorphism. We note that this auto-
morphism commutes with gauge transformations and time translations.
The in variance oί ω(A) for time translations implies that ω(Aix) = ω(A)
for all A ζ §L

Let J. in (3.31) belong to 2ί. In the lefthand side one can again shift
the integration path and obtain

f f(t-iβ) ω(BAt) dt = J f(t) ω(BΛt+iβ) dt.

9 Strictly speaking, the Fourier transform A(ε) is a distribution and not a
function of ε. Using the theory of Fourier transforms and convolutions of distribu-
tions, one derives the results quoted, here in a rigorous way.
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We then get the equation

fdtf(t)[ω(BAt+iβ)-ω(AtB)] = O

for all f(ε) ζ@ and A ζ§i. Since the expression between brackets is
continuous in t the equation holds for any / ζ SP, so that one gets
ω(BAt+iβ) — ω(AtB) = 0 for all t. In particular one has

ω{BAiβ) = ω(AB) for .4 ζ §ί, £ ζ 21.

If also B ζ 2ί one can write

ωμ J B) = ω ( 5 _ i i ί , J l ^ ) . (4.2)

Since the mapping J. -> ̂ 4l^ will occur frequently in the following pages

we shall use the shorthand notation Ab for Al^. We then have the

condition
, (4.3)

for all A and B ζ 21. That condition I is not only a consequence of but also
equivalent to the KMS-boundary condition can be proved without
difficulty. Condition (4.3) is basic in the following derivations.

As in the case of the finite system we shall impose the following
further condition on ω:

II. ω{A*A) = 0 implies A = 0 for all A £ 21.

This condition is stronger than one would like to require on purely
physical grounds. Since the sub algebra 21 v for any bounded region V
describes a finite system, one would expect the following weaker con-
dition to hold:

ω{A*A) = 0 implies A = 0 for all A ζ 2lF for some F .

However, as we shall see at the end of this section, condition II is a
direct consequence of condition I, if one assumes that the algebra 21 is
simple10.

We use standard procedures to construct the representation of 2ί
defined by ω(A). As representation space we take the linear space 21. To
avoid confusion, the element 1 (the unit), Av A2, etc., when considered
as vectors, will be denoted by Ω, Ψ^v ΨA2>

 e ^ c We introduce the scalar
product

(ΨA,ΨB) = ω(A*B), (4.4)

10 A *-algebra 2ί is simple if it contains no two-sided *-ideals different from {0}.
For a proof that the C*-algebra of the canonical commutation relations is simple
see [13].
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which defines a norm in the prehilbert space. Its closure is the Bΰlbert-
space ξ). Due to condition II, different algebra elements give different
vectors.

Another space $)' can be constructed starting from the same linear
space 21 with vectors this time denoted by Ωf, Ψj.^ Ψj.z>

 e ^ c > by means
of the different scalar product

. (4.5)

Theorem 3. The subspace 21 is dense in ξ> and in § ' .

Proof. We shall prove the statement for § . The proof for £)' is similar.
We shall prove that all Af = f dtf(t)At with f(ε) ζ Q) is a dense set in £j.

Suppose (χ, ΨAf) = 0 for all A,. Now (χ, ΨAf) = / dtf(t) (χ, ψΛt).
Since (χ, ΨAt) is a continuous function of t the integral

fdtf(t)(χ,ΨΛl) = O

for all / ζ SP and hence (χ, ΨAt) = 0 for all t. Putting ί = Owe obtain the
equation (χ, ΨA) = 0 for all A £ 21; but 21 is dense, so that χ = 0. This
proves that the set ΨΛf is dense in § . A fortiori 21 is dense in § . For later
use we state a somewhat modified version of this theorem.

Theorem 3 A. The set {ΨA + ψΛb} for all A ζ 2ί is dense in ί>.

Proof. We simply repeat the proof of theorem 3 with the only modi-
fication that everywhere f(t) is replaced by f(t) is replaced by f(t) +
+ f(t + i β). As one can see easily, the set of all f(t) + f{t + i β) with
f(ε) ζ S is the same as the set of all f(t) with f(ε) ζ 9).

We shall use theorem 3 and condition I on ω(A) to define an iso-
metry between § and £)!

The mapping

Ψ'A = ^ ϊ ^ j for all A ζ 2ί (4.6)

maps a dense subspace of § onto a dense subspace of § ' . $ is an isometric
operator since (ΨA,Ψ'B) = ω(BA*) = ω(Ab* Bb) = (ψAb,ΨBb). There-
fore, domain and range of S can be extended to the whole space. We
define ΦA ζ § for all A ζ 21 by

and conclude from (4.6) that

ΦA = ΨΛ> (4-8)

for all A ζ 21. We also notice that

(4.9)
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We shall now construct two anti-unitarily equivalent cyclic represen-
tations of 21 in the representation space ξ>.

I. We map A ζ 2ί onto the operator R(A), denned by

R{A)ΨB=ΨAB. (4.10)

This is the well-known GNS-representation.

II. We map A £ 21 onto the operator 8{A), defined by

8(A)ΦS=ΦBA*.

This mapping is a cyclic antilinear *-representation of 21; in particular

\\S(A)\\ ^ \\A\\i8(A)S(B) = 8(A B),S{A)* = S(A*) and S{λA) = λS(A).

In both representations the positive form ω(A) is reproduced as an
expectation value:

ω{A) = (Ω, R{A)Ω) = (Ω, 8{A)Ω) .

The connection between both representations can again be expressed
by means of a conjugation operator. We define the operator J by the
equation JΨj, — ΦA* ̂ o r a n < A ζ 91. J has the following simple properties:

1. J is anti-linear.

2. J is norm-conserving and thus anti-unitary.

Proof. \\JΨA\* = {ΦA; ΦA<) = ω(A*A) = \\ψAf.

We can, therefore, extend the domain of / to ξ>.

3. J 2 = 1, and hence J is a conjugation.

Proof. Lot A ζSt; J*ΨA = JΦA, = JΨu,)b = JΨu_b)t = ΦΛ_b= ΨA;
hence J 2 = 1 on a dense set.

4. JR{A)J = 8(A).

Proof. JE{A)JΦB = JR(A)ΨB* = J ^ B = ΦBA* = flίμ)ΦΛ.

It is important to notice at this point that for the existence of these
two representations condition I of ω(A) is not necessary. We only used
the fact that there is an isometry between the two Hubert spaces ζ) and
$)', and such an isometry always exists. The existence of the special
isometry (4.6) which leads to (4.8) is a result of condition I. It is in
particular the relation (4.8) valid for a dense set in ξ) which is responsible
for the following theorem:

Theorem 4.



Equilibrium States 231

This theorem is the analogue of theorem 1 of the last section. There the
proof was based on properties of Hubert algebras. Although we do not
have a Hubert algebra in the present case11, the proof of theorem 4 is
very analogous to that for Hubert algebras12. We divide the proof in a
number of lemmas.

With each algebra element A there correspond two bounded opera-
tors R(A) and S(A). Since A is also a vector in §, it is natural to extend
this correspondence to the whole Hubert space, and to associate with
every vector χ ζ £j operators E(χ) and 8(χ) which are defined as follows:

R(χ)ΦB=S(B*)χ and S(χ)ΨB = R(B)χ . (4.11)

These operators are in general not bounded. As special cases we mention
the operators B(ΦΛ) and S(ΨΛ) with the properties

B(ΦA)ΦB^ΦAB and S(ΨA)ΨB=ΨBA. (4.12)

These operators are again in general unbounded. That the set of opera-
tors R(χ) and S(χ) contain B(A) and 8(A) as special cases follows from
the following lemmas.

Lemma 1. R(ΨΛ) = RA and 8(ΦA) = 8(A*) for all A ζ§t

Proof. We prove the first statement; the second one goes similarly.
Let A and B ζ S. Then R(ΨΛ) ΨB = R{ΨA) ΦB b = 8(B_b*) ΨA

= S(B_b*)ΦΛ_b = ΦA_bB_b = ΨAB = R(A)ΨB. Hence R(ΨA) = 12(4

Lemma 2. i ^ ( ^ ) - 12 (^) and S(ΦA) = S(A*) for all A ζ 31.

Proo/. Let ££§ί ; then R{ΨA)ΨB = R{ΨA)ΦB b = S{B_b*) ΨA

= 8{ΦBJΨA = 8{ΨB)ΨA = ΨAB = B(4)!PB. Hence" 12(^) = i?μ).

Lemma 3. 12(31) C{/S(3l)}' and £(21) c{^(^)}r

Proo/. From (4.11) we deduce that £(,4) R(χ)ΦB = ̂ (-4) >S(5*) χ
and jβ(^) ^ ( ^ ) Φ 5 = R{χ)ΦBA* = 8{AB*)χ = 8{A) 8(B*)χ. Hence
[>S(^)>i?(^)]ΦjB = 0 and thus [ £ ( 4 JR(#)] = 0. Using lemma 2 we
conclude that [S(A), R (B)] = 0 for all J. and B ζ 31, which proves the
lemma.

Definition. M is the set of all bounded R(χ) and JV is the set of all
bounded 8(χ).

Lemma 4. M = {/Sf(3l)}' and ̂  = {12(31)}'.

11 Another and more concise proof of theorem 4 can be given by showing that
the subalgebra SI is a quasi Hubert algebra [12]. This has been pointed out to us
by Γ). KASTLER.

1 2 See e.g. [12].
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Proof. We know that M C {#(21)}'. Let 0 ζ {£(21)}'. OΦB = OS{B*)Ω
= S(B*)OΩ = R(OΩ)ΦB, where the last equality follows from (4.11).
Hence O = R(OΩ) and thus OζM. We conclude that {S(<Ά)}'cM,
which proves the lemma.

Lemma 5. [R(χ)9 S(χ')] = 0 for all bounded R{χ) and 8(χ').

Proof13. We prove this lemma in the following steps:

i. Let χ* = R(χ)*Ω; then (χ,ΦΛ) = (R(χ)Ω,8(A*)Ω) = (8(A)Ω,

ϋ. Since the set ΨA + ΦA for all A ζ 21 is dense in §, there exists a
sequence {An} such that χ + J χ* = lim (3 7

4 n 4- ΦAJ \ w e shall prove

that χ = l i m ¥ ^ and J ^ * = l i m ^ . Let A ξ §(; | |S^ + Φ J 2

n—>oo n->oo

= «^il 2+«^ll 3+(^,^) + (^>^) Now (ψΛ,ΦA) =
^ 0 and also (Φ4> y 4 ) Ϊ5 0. Hence | | ^ | p ̂  \\ΨA +1 6

for all A £ 21. It follows that the sequence ΨAn and the sequence ΦAn

converge separately. Let χx — lim ΨA and χ2 — lim ΦA . Clearly

Xi+ %2= X + JX*

(X - Xi. ΦΛ) = (%, Φ î) ~ (Xi, ΦA) = (Jχ*> ΨA) - lim (ΨAn, ΦΛ) ,
n>oo

(
n—>oo

where we used i. The in variance of ω(A) for the transformation A -+ Ab

gives (ΨA, ΦB) = (ΦA, ΨB) for all A and B ζ 2ί. We have, therefore,
( Z - Zi, ̂ ) = (JZ*» ^ ) - U m ( ^ ΨA) = (J«* - Z23 ^ ) for all
4̂ ζ2ί. Since χ—χ^χz — Jχ*, we get (J^* — χ2, ΦA + ΨA) = 0 for

all 4̂ ζ 21, and hence χ2 = J #* and χ1= χ or ^ = lim ΪP^ and

J χ* = lim φ ^ applying J to both sides of the last equation we get

iii. (ΦΛ, B(χ) 8{χ )ΦB) = (B(χ)* S(A*)Ω, 8{χ')ΦB)

= (χ , a {A) 8{χ')ΦB) = lim (!?,,„., 8 (A) 8(χ')ΦB)
n->oo

= lim (R(An)*Ω, 8(A) 8(χ')ΦB) = Urn (8(A)*Ω, S(χ') S(B*) R{An)Ω)
n>oo n > o o

Consequently (ΦA, [B(χ), S(χ')]ΦB) = 0 for all .4, -BζSt, and thus

1 3 The proof given in a first draft of this work was not quite correct. In the
proof presented here we made use of unpublished notes by D. KASTLER.



Equilibrium States 233

The proof of theorem 4 follows now immediately. Combining the
lemmas 4 and 5 we find that {S (a)}' C {B (01)}". On the other hand, from
lemma 3, {B(21)}" C{#(21)}' hence {£(21)}" = {£(21)}'.

As in section 3 we construct the unitary operator which implements
the automorphism of time-translation. We define the operator U(t)u

by the equation Ό (t) ΨA = ΨAt for all A £ 21. # (ί) has the following
properties:

1. U(t) is unitary.

2. ί7(ί) commutes with / .

Proof. Let ̂  ζ § ; tf(f)Φ^ = ffp)^ = ΨAhΛ = ¥ \ 6 = Φ^. Since
ί?(ί) is bounded we have for all A ζ 21: U(t)ΦΛ = Φ^. Now U(t)JΨΛ

= #W<^* = Φ ^ , = J ^ = JU(t)ΨΛ; hence [&(ί), J ] = 0.

3. fr(ί) 5 μ ) ̂ W"1 = B(At) and

= R(At)ΨB.

4. U{t)Ω = Ω.

Like in the finite case, ??(£) transforms both representations in the
correct way. It is clear that U(t) belongs neither to {.β(2l)}" nor to
{^(21)}". The same holds for the infinitesimal generator Hr, the hamil-
tonian.

In a similar way one can define a unitary operator U(oc) for gauge
transformations, and an unbounded self-adjoint generator N.

We also consider the operator T, defined by TΨA = ΦΛ, with the
following properties:

1. T and T~1 are unbounded self-adjoint positive definite operators.

2. For^lζS TB^T-1 = B(Ab) and T8(A) T-1 = S(A_b).

Proof. The second statement is proved as follows. Let A and B ζ 51;

φB_b = TR{A)ΨB_b =

— ^AbB = B (Ab) ΨB

hence TR{A)T-^ = R(Ab).

To prove the first statement we shall show first that T is symmetric:

(ΨΛ, TΨB) = (ΨA, JΨB,) = (ΨB., JΨA) = (ΨB., ΦΛ.)

= (R(B*)Ω, S(A)Ω) = (8{A*)Ω, R(B)Ω) = (ΦA, ΨB) = (TΨA, ΨB) .

14 As in section 3 the notation Ut is reserved for the unitary operator for time-
translation in Fook space.
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In the second step we made use of property 3 of J. Since T is symmetric
the extension T** is symmetric and closed. We can therefore assume
that T is closed. To prove that T is self-adjoint we can make use of the
Cayley transformation, K = (T + i) (T — i)-1, and prove that K is
unitary, and hence T = T*. We shall omit the proof, since property 1
follows immediately from the following equation:

(4.13)

To prove (4.13) we define the self-adjoint operator R = exp j jrβίϊ'

and we shall prove that T = R. The unbounded self-adjoint operator H'
has the spectral decomposition H' = f εdE(ε) and hence

E= f e~2βεdE(ε) . (4.14)

Since exj){iH't}ΨΛ = ΨΛt, and thus

f ex${iεt) dE(ε)ΨΛ = f exp{—iεt)Ψj{e)dε ,

the measure dE(ε)ΨΛ = ΨA(-ε)^ε n a s compact support, for all A ζ 2ί.
Therefore, the operator (4.14) can be applied to ΨA for A £21 and we

find BΨΛ = f exp (~γβε)dE(ε)ΨΛ = ΨΛ = ΦΛ .

Let D be the dense set of all ΨΛ, A ζ 2t, and let TD and RD be the
restrictions of T and i? on the domain D. Then we found

TD = RD. (4.15)

Since T and 7? are symmetrical operators, the same holds for TD = RD.
Clearly T%* = R^* is a closed symmetric extension.

As we have seen for A ζ 21 the measure dE{ε)ΨA vanishes for
ε > ε0. Consider now

I l ^ - W = / ^ P ( - nβε) (ΨΆ, dE{ε)ΨA) <L exp ( - nβε0) \\ΨA\\2 •

Hence the power series 2J ^(w!)" 1 \\RnΨA\\ n a s a finite radius of con-
n

vergence, so that ΨA, A ζ 21, is an analytic vector of R, as defined by
NELSON [14]. The operator R%* = T%* is a closed symmetric operator
with a dense set of analytic vectors. As a consequence of a theorem due
to NELSON 1 5, this operator is self-adjoint. Now T and R are both closed
symmetric extensions of T%* = R%* and hence T = R.

1 5 Reference [14] lemma 5.1.
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We shall end this section by reconsidering condition II on ω{A). Let
us therefore see what one would obtain without making use of this
property. It turns out that almost all results, obtained in this section, in
particular theorem 4, remain valid. There are however the following
modifications:

1. Let J be the left ideal of all A ζ 21 for which ω(A*A) = 0. Then
Ψc is the null vector for G £ J, and ΨA = ΨB if A — B ζ J.

2. R(C) = 0 for C ζ J. This follows from lemma 2 and definition (4.11).
Consequently the representation is not faithful, and the kernel J is a
two-sided *-ideal of 21. For a simple algebra J consists of the zero element
alone.

Conclusion

We have seen that the symmetry between the representative of the
algebra and its commutant, as found first by ARAKI and WOODS for the
free Bose gas, is a general feature of states in thermal equilibrium at a
given T and μ. At the present time the physical significance is still
unclear.

It is interesting to note that the symmetry is not restricted to equi-
librium states. To make this clear we point out that in section 3 we
assumed the existence of an automorphism A-> At for which ω(A) is
invariant. It then follows that there exists a unitary operator U(t)
= exj)(iθt) on $), which implements this automorphism. This does not
mean, however, that the system actually moves according to this auto-
morphism. It only means that it is possible to choose the dynamics, i.e.
the interparticle forces and the external forces, such that with these
forces the system in the state ω {A) would be in equilibrium. If the forces
happen to be different, the automorphism A -» At is not a time trans-
lation, H is not the Hamiltonian of the system and the state ω(A) is not
stationary, but the symmetry between the representative of the algebra
and its commutant still exists.
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