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Abstract. Certain weakened vacuum field equations which have been suggested
as alternatives to the vacuum field equations of General Relativity are investigated.
It is shown that they each possess a solution which corresponds to an isolated mass
at the origin which repels test particles. In view of the contradiction with experiment
this solution is an embarrassment to these proposed vacuum field equations.

§ 1. Introduction

Our considerations are based on a four-dimensional Biemannian

space with the line element1

ds2 = gi5 dxl dxj ,

where we assume that

g r = d e t | g f j | < 0 .

In order to fix our notation we shall briefly recall certain well known

definitions and results [1], The Christoffel symbols of the second kind

are defined by

{ * I = -1 oih ί^J± + _??**. _ hlΛ
\jkj 2y \ dxk ^ dx* dxh ) '

where the quantities gii are the elements of the inverse matrix of g{j. The

curvature tensor Bi

j

kl is introduced by means of the commutation

relations

where a semi-colon denotes partial covariant differentiation and Xi is

any contra variant vector field. According to this

Mί*ι- dχi \ikf dx* \il} ^ \ί h) \h l) \il) \kK]>

and we shall define

The Ricci tensor Bii and the curvature scalar R are defined by

* On leave of absence from the Department of Mathematics, The University,
Bristol.

1 The summation convention is used throughout this paper.
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and

respectively. Furthermore 12/fc t satisfies the Bianchi identities

from which

where
γBii, (1.2)

In the orthodox theory of General Relativity the field equations are
those proposed by EINSTEIN, viz.

{jrij — — ι c i i i 7 ^ 1 . 0 ;

where Q^ is the Einstein tensor
1

k is a constant and Ti5 is the energy-momentum tensor corresponding
to the presence of matter in the physical situation under consideration.
Gii enjoys the properties

and

and the left hand side of (1.3) may be derived from a variational principle
with a suitably defined Lagrange density. In vacuo

τu = o,
and (1.3) reduces to

Bu = 0 . (1.4)
These are taken as the Einstein equations in vacuum, and it is a solution
of (1.4) together with the so-called geodesic hypothesis which gives
agreement with experiment.

However, certain authors have proposed that the assumed vacuum
field equations (1.4) be weakened by replacing them with various alter-
native vacuum field equations which admit (1.4) as a sub-class of solu-
tions. In this note we consider five such suggestions and we show that
they all admit the special line element

ds* = 7Γ (c2 dt2 - dr2 - r2 dθ2 - r2 sin2θdφ2),

where a is a constant, as a solution. However, by assuming the geodesic
hypothesis, we show that this metric is unphysical in the sense that it
corresponds to the static situation of an isolated mass at the origin which
repels test particles. Thus the alternative vacuum field equations are too
weak and certain additional restrictions will have to be imposed on each
of them before they become acceptable from a physical viewpoint.
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§ 2. The Metric and its Curvature Properties

In this section we shall derive those curvature properties of the
special line element

ds2 = ~ (c2 dt2 - dr2 - r2 dθ2 - r2 sin2 θdφ2) , (2.1)

where a is a constant, which we shall require in the later sections.
If we put

x® — c t, x1 = r, x2 = θ, xs = φ ,

then the only non-vanishing ChristofFel symbols of the second kind are

Olj " 111

I 2 \ _
oo (2.2)

It is not difficult to calculate the components of the Ricci tensor from
(2.2) and we find that

(2.3)

(2.4)

Bt] = OίoτiΦj,

while, in this case, the scalar curvature R is zero, i.e.

R = 0 .

By its very structure the metric (2.1) is conformally flat which implies
that the Weyl conform tensor Cjιim, defined by

R (2.5)

must vanish ([2], p. 306). By taking into account (2.4), (2.5) thus
reduces to

R (R ^ ^ + ^ ) (26)

from which it follows that

(2.7)

by virtue of (2.4) and (1.2). However, from the Bianchi identities (1.1)
we find

15*



208 D. LOVELOCK:

A comparison of (2.7) and (2.8) therefore yields

or, equivalently, (2.9)

In fact the second equation in (2.9) may be strengthened considerably
since for the metric (2.1) it can be shown that

Λ ί f t ; t = 0. (2.10)

Finally it is not difficult to show that

and ( 2 n )

Properties (2.3), (2.4), (2.6), (2.9), (2.10) and (2.11) will be required in
the next section.

§ 3. Weakened Field Equations

We now turn to certain vacuum field equations which have been
suggested as alternatives to the vacuum field equations of the Einstein
theory of General Relativity. We shall consider five separate cases in
all, characterised by each of the following field equations:

Jiki^ Ri-ki-j = 0 , I

. . 4 1 - . m

IV

and

All of I to V are weakened field equations (i.e. weaker than the Ein-
stein equations in vacuo) in the sense that they each admit a class of
solutions for which

Bu = 0 . VI
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Consequently I to V admit the Schwarzschild metric as a solution, which
when taken together with the geodesic hypothesis, gives agreement with
the usual experimental tests for general relativity.

We shall not give the motivations which led authors to suggest I to V
but merely refer to the literature cited below. Equation I was first
suggested by KILMISTER and NEWMAN [3] and has been the subject of a
detailed investigation by THOMPSON [4] who has shown that I possesses
certain unphysical metrics as solutions. Equation II was proposed by
PπtANi [5]. The equation itself appears in SCHOTJTEN ([2], p. 313,
equation 6.8) in a completely different context. ^jlc enjoys certain
properties which one has come to expect of suitable field equations,

and II can be derived from a variational principle [6].
Equation III occurs in RTJND [7], [8], and DXJ PLESSIS [9] and is

derived from a variational principle. Although neither of these authors
suggested III as a weakened field equation in General Relativity, the
question was posed as to whether or not there exist solutions of III which
are not solutions of

Ru = μgiΐ v π

where μ is a constant. We also have

and

Equation IV was first proposed by EDDINGTON, but has since been
the subject of investigations by BUCHDAHL [10], DU PLESSIS [9] and
PECHLANER and SEXL [11] amongst others. It is also derivable from a
variational principle and

together with

Finally, using a completely different type of variational principle,
RUND [12] arrived at the third order differential equations V. RUND has
not suggested that V be interpreted as a weakened field equation, but,
for the sake of completeness, we shall discuss it at the same time. V is
actually a stronger form of I. It has also been investigated by TAKENO

(see [13], p. 79) who asserts that the only spherically symmetric solution
of V is also a solution of

Rio = μgu
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We shall state the main result of this section in the form of a
Theorem. The metric

ds2 = ~ (c2 dt2 - dr2 - r 2 ίZΘ2 - r 2 s in 2 θ d<p2) ,

ivhere a is a constant, is a solution of each of I, II , III , IV and V, but it is
not a solution of VI or

Bit = μ9u >
where μ is a constant.

We shall prove this theorem by considering I to V in turn, and using
the results of the previous section. I follows immediately from (2.9).

II is a consequence of (2.4), (2.10) and

To establish III we first calculate RjlimRml from (2.4) and (2.6), ob-
taining

From the latter and (2.10) we find

which is zero by (2.11).
IV follows from (2.4) alone, while V is a consequence of (2.10). The

proof is completed by comparing (2.3) with VI and VII.
We can therefore conclude that I to V are genuinely weaker than

VI in the sense that spaces which are interpreted as the gravitational
field in vacuo in the orthodox theory form only a proper sub-set of such
spaces for the equations I to V. Furthermore, in view of the fact that
the metric (2.1) is spherically symmetric, TAKENO'S assertion is false.

§ 4. The "Physical" Interpretation of the Metric

It is the purpose of this section to attempt to interpret the metric
(2.1) in physical terms. Firstly we note that the usual conditions ([14],
p. 104) which ensure that t has the character of time and r, θ, φ the
character of spatial coordinates are satisfied. Secondly, it is obvious that
the metric (2.1) has a singularity at r — 0. Furthermore, this singularity
is not due to an unfortunate choice of coordinates since the curvature
tensor also possesses this singularity in view of (2.3) and (2.6). Thus we
would interpret this as an isolated mass (gravitational source) at rest at
the origin for all time.

However, in order to obtain a more detailed interpretation we wish
to observe the effect of this source on any test particle introduced into
the system. As usual, we assume that the trajectories of test particles are
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geodesies (the so-called geodesic hypothesis), i.e. the equations of motion
of such particles are given by

{^} 0, (4.1)
where a dot denotes differentiation with respect to s. (We remark that
we are not forced to accept the geodesic hypothesis in the case of the
weakened field equations. However, the weakened field equations all
admit the Schwarzschild metric as a solution and it is only when this is
used in the geodesic equations that we have agreement with experiment.
Thus, to reject the geodesic hypothesis would seem to defeat the purpose
of weakening the Einstein field equations.)

By virtue of (2.2) the geodesic equations (4.1) for the metric (2.1) are

t-l.yi=O, (4.2)

r-y(r2 + cHη = 0, (4.3)

0 - sin0cos0£>2 = 0, (4.4)
and

9? + 2cotθ θφ = 0. (4.5)

It is clear from (4.4) that if initially we have

0 = π/2 ,

0 = 0,

then these equations remain true for all time. But for any particular
geodesic we can rotate the axes of reference so that these initial conditions
hold. Thus without loss of generality we may assume

θ = π/2 (4.6)

for all time. (4.5) may then be integrated to yield

φ — hs -f- b ,

where h and b are constants. Without loss of generality we may rotate
the (r, φ) plane about θ = π/2 so that φ == 0 initially, in which case

φ = hs . (4.7)

(4.2) may be integrated giving rise to

i=Jcr2, (4.8)

where k is a constant which may be taken as positive by suitable orienta-
tion of t and s. By substituting (4.6), (4.7) and (4.8) in (2.1) we find

c 2 - r ' 2 = ^ , (4.9)
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where a prime denotes differentiation with respect to t and
1

~~ a1

If at t = 0, r — r0 and r' = v then

Finally, integration of (4.9) yields

ct + ~ = [r2 - r o (l - va/c2)]V2, (4.10)

which shows that these equations of motion have solutions only if

r 2 ^ r o

2 ( l - v 2 / c 2 ) .

In order to obtain a more precise interpretation of these equations
of motion (4.7) and (4.10), we shall restrict our considerations to those
test particles which are initially (i.e. at t = s = 0) released from rest at
r0. From (4.7) and (4.10) the subsequent motion will then be given by

ct = (r2 - ro*)Va , (4.11)
which has solutions only if

r ^ r 0 .

Hence a particle released from rest at r0 has to move away from the
origin2 i.e. the isolated static mass at the origin repels test particles. Thus
it appears that in terms of a purely gravitational interpretation the
metric (2.1) is highly unphysical.

Returning to (4.11) we see that this is a hyperbola in the (r, t) plane
with asymptotes r = ± ct. But, from (2.1), r = ± ct correspond to light
rays (ds = 0) through the origin. Hence if a light ray is emitted from
the isolated mass at the same time as the particle is released from rest,
the light ray will never reach the particle in a finite time. This situation is
strongly reminiscent of that of a uniformly accelerated particle in flat
space-time ([15], p. 40), and in fact (4.9) (with h = 0) may be rewritten
in the more suggestive form

± r r' 1 =

 ι

dt [(c2 — r/2)1/2 J r o ( l— ^2/c2)1/2 '
which is exactly the equation of motion of a uniformly accelerated
particle in flat space-time, with acceleration l/ro(l — v2/*?2)1/2.

§ 5. Conclusion

We recall the theorem proved in section 3 according to which each
of the weakened vacuum field equations I to V admit (2.1) as a solution.
However, we have also seen in section 4 that this metric cannot be

2 This is a special case of a more general theorem which is stated and proved in
the Appendix.
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defended physically in the light of present experimental knowledge since
it appears to correspond to the static situation of an unsupported mass
which repels test particles. Hence the existence of this solution is an
embarrassment to each of the proposed weakened vacuum field equations
I to V. Consequently these weakened field equations are too weak and
additional restrictions will have to be imposed on each of I to V before
they become acceptable from a physical point of view.

In a subsequent paper [16] we shall discuss the interpretation of the
metric (2.1) within the framework of the orthodox theory of General
Relativity.
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Appendix

The purpose of this Appendix is to prove the following
Theorem. // the metric of space-time is

ds2 = λ(c2 dt2 - dr2 - r2 dθ2 - r2 sin2(9 dφ2) , (Al)

where λ is a positive, strictly monotonicaΐly decreasing function of r alone,
then test particles for which drjds = 0 initially will always be repelled from
the origin.

Proof. The geodesies (4.1) for (Al) reduce to

ί + y r ί = 0, (A2)

( τ T ) ^ = O ' ( A 3 )

and

I = λ(c2t2 - r2 - r2 ψ2) , (A4)
where

λλ = dλjdr ,

and, as usual, we have chosen our coordinates so that

θ = τr/2

for all time. From (A2) and (A3) we find

t = hβ, (A5)

φ = kβr2, (A6)

where h and k are constants. Substitution of (A5) and (A6) in (A4) gives
rise to

r2 = (c2h2 - F/r2 - λ)\λ2. (Al)

Since initially r = 0, r = r0 we find

c2h2 = kψl + λ0 ,
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where

Λ> = λ(r 0 )
However, (A 7) will have solutions only if

c2h* ^ P/r2 + λ ,

i.e.

W + Λ) ^ &2/r2 + A . (A8)

Since λ is monotonically decreasing and positive (A 8) implies that

r ^ r0 together with r φ O a t any later time. Thus r > 0 and r ^ r0 for

all time, which proves the theorem.
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