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Abstraet. Groups of *-automorphisms of C*-algebras and their invariant states
are studied. We assume the groups satisfy a certain largeness condition and then
obtain results which contain many of those known for asymptotically abelian
C*-algebras and for inner automorphisms and traces of C*-algebras. Our key result
is the construction in certain “finite”” cases, where the automorphisms are spatial,
of an invariant linear map of the C*-algebra onto the fixed point algebra carrying
with it most of the relevant information.

1. Introduction

In the works of DoPLICHER, KASTLER, RoBINSON, and RUELLE [7, 13,
15] there is developed a theory for C*-algebras acted upon by representa-
tions of the translation group R” as *-automorphisms. It is assumed that
the C*-algebra in question is asymptotically abelian, which means
roughly that the group of automorphisms obtained, is very large, or
somewhat more precisely, that if given two operators in the algebra then
large translations of one of them will commute with the other. Recently
parts of this theory have been generalized to arbitrary groups by LaAN-
FORD and RUELLE [14] in a paper which clarifies the underlying mathe-
matical structure of this theory in some respects, but which leaves other
aspects of it open. We shall therefore in the present paper develop a
theory for representations of groups as “large’ groups of automorphisms
of C*-algebras, thus obtaining a better understanding of the underlying
mathematics. It will be shown that our situation is less general than that
studied by Laxrorp and RUsLLE. However, having more structure, we
shall be able to obtain stronger results, see Theorems 3.1 and 3.7. In
particular, in section 5 we shall recover more of the results known for
C*.algebras asymptotically abelian with respect to R". Technically we
shall say a group G is represented as a large group of automorphisms of a
C*-algebra QI if there is a representation ¢ — 7, of @ as *-automorphisms
of A such that for 4 self-adjoint in 2

conv (7, (7, (4)): g € )~ Ny (A) == 0
for all G-invariant states = g 0T, of A, 7, being the canonical cyclic
representation of Qinduced by p. In addition to the asymptotically abelian
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case an example of a large group of automorphisms of a C*-algebra with
identity is the group of inner automorphisms. Hence, since for large groups
the G-invariant states form a simplex, our results generalize a theorem of
TroMA [17], in which he shows that the normalized traces of a C*-algebra
form a simplex, the extreme points of which are the factor traces.

We shall refer the reader to the two books of DixmIER [4, 5] for the
theory of von Neumann and C*-algebras, to [1, 3] for the theory of
simplexes, and to [7, 10, 13, 15] for the physical background of our work.
‘We shall use the notation w, for positive linear functionals of the form
A — (A, x) whenever z is a vector in the underlying Hilbert space (it
should be remembered that our inner products are linear in the left
variable and conjugate linear in the right). If g - 7, is a representation
of the group ¢ as *-automorphisms of the C*-algebra 2, the map
0 — p 07, is an affine isomorphism of the state space S (2) of 2. We shall
say a state g is G-invariant if p = p o T, for each g € (. More generally, if
@ is a positive linear mayp of A into another C*-algebra B we shall say @
is G-invariant if @ = @ o7, for all g ¢ G. If U is a group of unitary
operators such that the maps u: A — UA U~ are automorphisms of 2
for all U €U, we shall also say p is U-invariant if it is invariant with
respect to the group of automorphisms u. If it is clear which group we
have in mind we denote by I(2l) the G-invariant states of . If ¢ is a
topological group we shall say the representation g — 7, is norm con-
tinuous (resp. strongly continuous), if

lim sup |z, (4) — 4| = 0 (resp. lim|z,(4) — A| = 0 for all 4 <)
l4i=1

as g converges to the identity element ¢ in G. If M is a set of operators we
shall denote by M~ or M the weak closure of M, and by M’ its commu-
tant. Since it is no restriction to assume Q has an identity we shall
always assume our C*-algebras have identities denoted by I. If {4, : «: ¢ J}
is a set of operators we shall denote by conv(4,: o € J) the set of all
finite convex combinations of the 4,.

We shall not in the present paper discuss the problem of existence of
G-invariant states. It should, however, be noted that when @ is abelian
the Markov-Kakutani Theorem [8,V.10.6] yields the existence of
G-invariant states, see also [6].

The main ideas of our proof are based on those of THoMA [17] to-
gether with those behind DIxmMIER’s construction of the center trace in
finite von Neumann algebras [4, Ch. III, §§4, 5]. Two examples will
describe the ideas and some of the difficulties of our approach. The
essential point is that we want a positive linear G-invariant map @ of 2l
onto the fixed point algebra of the automorphisms carrying with it
enough structure. We shall as an illustration do it for ¢ compact.
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Example 1.1. Let 2 be a C*-algebra, (' a compact group, and g — 7,
a strongly continuous representation of G as *-automorphisms of . Let
B denote the sub-C*-algebra of 2 of those operators B such that
7,(B) = B for all g € G. Then there exists a positive linear G-invariant
map D of 2 onto B such that @ restricted to B is the identity map, and
such that the map @*:S(B) - S(A) defined by D*(9) = p o @ is an
affine isomorphism of §(B) onto I (). In particular, I (2l) is a simplex if
and only if B is abelian

In fact let @(4) = [q7,(4) dg, where dg is the normalized Haar
measure. If A € G then 7,(P(4)) = [ 7,7,(4d)dg = [ 14,(4) dg
= [1,(4)dg = D(4), so D(4) ¢ B. Clearly, @ is positive linear, ®|B
is the identity. If & € @, then since ¢ is unimodular,

Q(TIL(A)) = ngTh(A) dg = f Tgh( dg - ng dg = (A) s

so @ is G-invariant. Let p € §(B). Then @*(p) is clearly in I(?f). Since
@ is onto, @* is one-to-one. If m ¢ I(A) then w|B € S(B) since I € B.
Thus, for 4 ¢ 2,

wd)=[fowd)dg= [o(,(4)dg=o(f1,4)dg)
= (D (4) = (0|B) o B(4).

Thus o = @*(w|B), so @* is onto, hence an affine isomorphism of
S(B) onto I (A). Now S(B) is a simplex if and only if B is abelian. Hence
the last statement follows.

It @ is non compact the results in the above example are in general
false; there may not even exist invariant states. But even with invariant
states around the map @ with all properties in Example 1.1 may not
necessarily exist.

Example 1.2. Let 5% be a Hilbert space. Let €(5#) denote the com-
pletely continuous operators on 5. Let 2 be an abelian C*-algebra on
 such that A N €(H#) = {0}. Then A + €(5) is an irreducible C*-
algebra, and if @ is the set of unitary operators in 2 + € () then the
fixed point algebra of the automorphisms 4 - UA4 U1, U €@, is the
scalars, while I (U + €(5£)) = S(AU

In fact, since the irreducible C'*-algebra A + € () is generated by
its unitary operators, the fixed point algebra is the scalars. If g is a
state of 2 + €(s#) which annihilates € (5#) then g is a trace. Since every
state of A has such an extension to A + €(5), we have obtained the
desired identification of I (A + €(£)) and S(2l).

In our treatment of the problem we shall be able to construct a map
D, like @ in Example 1.1 of 7, () for each G-invariant state p, and then
use similar arguments in order to obtain the desired results.

The author is happy to record his gratitude to J. Gumm for intro-
ducing him to the physical background of the present paper together
1*
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with very helpful discussions and correspondence during the progress of
the work.

2. Abelian von Neumann Algebras

If « is a *-automorphism of a von Neumann algebra 2 then o maps
the center € of 2 onto itself, hence | € is a *-antomorphism of €. It is
therefore necessary to study *-automorphisms of abelian von Neumann
algebras. This will be done in the present section. We shall throughout
the section assume 2! is an abelian von Neumann algebra acting on a
Hilbert space 7, Ul a group of unitary operators on # such that
UAU-1 = QA for all U ¢ U. B shall denote the fixed points in A of the
automorphisms. Hence B = A N U is an abelian von Neumann algebra.
We shall develop a comparison theory for projections in 2 with respect
to U, and then use this to prove a variant of Dixmrier’s ,, Théoréme
d’approximation” [4, Ch. III, § 5].

Definition 2.1. Let 4 and B be self-adjoint operators in 2. We say 4
and B are U-equivalent, written A ~ B, if there exist operators 4,
(resp. B,) a€J, in A such that 4,4, =0 (resp. B, Bz =0) if = f3,

= ' 4, B= } B, and U, ¢ Usuch that B, = U,4,U;?! for all
acJ acJ
a€dJ. If 4 is a projection so is B, and the 4, and B, form orthogonal
families of subprojections of 4 and B respectively. If F and I’ are pro-
jections in A we write £ < F (or F > E)if B ~ F, = F. By the U-carrier
of £, denoted by 2z, we shall mean the least projection in B greater than
or equal to Z. Note that since I ¢ B and B is a von Neumann algebra,
this definition makes sense. If # and F are projections in 2 we say they
are U-disjoint if there exist no non zero U-equivalent subprojections E,;
and F; of £ and ¥ respectively.
Lemma 2.2, ~ is an equivalence relation.
Proof. Since I ¢ U, 4 ~ A for 4 self-adjoint in 2. Suppose 4, B and
C are self-adjoint operators in U such that A ~ B and B ~ (. Then there
exist orthogonal families {A.}.c s, {Botucs, {Bplges > and {Og}ge ;o such
that 4=24, B=2X2B,= ZB;g, C = X, and unitary operators
U,, Vg in U such that U, 4, Ut = B,, Vg B'ﬁ Vit = Cp. Since 2 is an
abelian von Neumann algebra the self-adjoint operators in 2 form a
lattice. Let DB,s= B, A B;g, for acJ, f€J. Then B, = J' B,
cJ’
B:S == %} B,g, the sums being orthogonal. Let 4,5 = U1 BaﬁﬂUa and
Cop = VgB,s V1. Then it is immediate that («, ) <= (o, f') implies
Aug Ay = 0= CopCp,s0 the families {A 5} (o, pres x - A {Cugls pye s x 7
are orthogonal. Moreover,

S A= U2 ByU, =3 U B, U, =} 4,=4,
B o o

3

o

aff o



Large Groups of Automorphisms 5

and similarly }; C,5 = C. Since U is a group, and

«f
(VsUs) Ao (VU = Vs By Vil = Cog
A ~ C. The proof is complete.

Lemina 2.3. If E is a projection in A, Uy is the maximal projection I
in A such that F = XTI, F, orthogonal projections in U, and for each o
there exist a projection E,< E in A and U, € U such that U, B, U;' = F,.

Proof. It F = X'F,issuch asum then Uy F = S Uz F,= XU, U, E, Ut
=2U U B, U ' =2XUE,U;1=F, and Uy = F, hence Uy majorizes
any maximal such F. The projections F' = X'F, as above form a partially
ordered set by inclusion, and each totally ordered subset has an upper
bound, namely the union. Let F' = X'F, be a maximal element. Then
F = UFU- for all U € U. For otherwise there exists U ¢ U such that
F, = (UFU-Y) ([—F)=+=0. Then F, is a projection in 2, and
G, = U-1F,U < Fis of the same form as I, hence so is F;, and therefore
F, + F, contradicting the maximality of F. Thus F = UFU-! {or all
Uin U, F ¢B. Now F = K, for if not the projection £ — F' E could be
adjoined to ¥, again contradicting the maximality of F. Thus F = Uy,
and they are equal.

Lemma 2.4. Let E and F be projecitons in A. Then they are U-disjoint
if and only if UyUp = 0.

Proof. If E and I are not U-disjoint let E; and F, be non zero sub-
projections of E and F respectively such that there exists U in 2 with
F, = UE, U-'. By Lemma 2.3 B; < Uy Up, so the latter projection is non
zero. Conversely assume @ = Uy Uy + 0. By Lemma 2.3 there exist non
zero projections B, < K, Fy < F and U, Vg in U such that
Q=2UE,U;' = XVsFg V5. Choose E, and Fjs such that

G,=UB, UV FgV5l=0.
Choose non zero projections £; and F; in U, £, < E, F; < F such that
U B, U =G, =VgF, Vgl Then F, = (V51 U,) By (V51U,)~%, so E and
F are not U-disjoint.

From this point on the proof of the Comparison Theorem is a straight-
forward modification of the proof of the usual Comparison Theorem for
von Neumann algebras. For completeness we shall include a proof
based on one given by Kapisox during lectures at Columbia University,
Spring 1963. We remark that it is also easy to show that the ordering <
is a partial ordering of the projections in . As we shall not need this the
proof is omitted. The next lemma is immediate from the definition
of ~.

Lemma 2.5. If {£,} and {F,} are each families of orthogonal projections
n Aand E,~F, (vesp. B, < F,) for all «, then X B, ,~ XF, (resp. X B, <
< 2F,). If G is a projection in B and B ~ F (resp. E < F) for E and F
projections in U then GE ~ GF (resp. GE < GF).
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Lemma 2.6. Let £ and F be projections in A. Then there exists a non
zero projection @ in B such thal either GE < GF or GE > GF.

Proof. If E<F or F < K take G = I. We assume that £ < F and
I' « E. In particular £ 4= 04 F. If UzUp = 0 then G = Uy 4= 0 will
work, for 0 &= £ = Uy B > U, F = 0. We may therefore assume Uy 2lp == 0.
Let & be the set of ordered pairs ({E,}, {F,}) with first term a family of
mutually orthogonal subprojections of £ contained in 2l and {F,} same
for F, such that B, ~ F,. & is non null since ¥ and F are not U-disjoint
(Lemma 2.4). Partially order % by inclusion termwise (i.e. ({E.},{F.}y =
= ({Ng}, {Mg}y it and only if {E,}C{Ng} and {F,}C{Mg}). Let
{E.} {I,}) be amaximal element. Let Ey= X' E,, Fy=2XF, E,=E — I,
and F, = F—F,. By Lemma 2.5, By~ F,. If E; =0 then ¥ = E, ~
~F,<F, so B <F, a case which is ruled out. Thus Z; = 0, hence
Ug, = 0. Now Uy Up = 0, for if not then by Lemma 2.4, E; and F,; have
non zero equivalent subprojections which could be adjoined to {#,} and
{F,} respectively, contradicting the maximality of ({E,},{F.}). Thus
Ug Fy =0, and by Lemma 2.5 Ug F = Ug Fy ~ Uy By = Ug B. The
proof is complete.

Lemma 2.7. (The Comparison Theorem.) Let Il and F be two pro-
jections in A. Then there exist two projections G and G in B such that
G 4+ G = I and such that GE < GF and G'F < G'E

Proof. Let {G,} be a maximal orthogonal family of projections in B
such that G, H < G,F, and let {G4} be a similar such family with
GgE > GgF for all o, f. Let Gy=2X0G,, Gj= XG5 By Lemma 2.5,
GoBE < GoF and GyF < GyE. Let S=1-—G,—G;+ G0 If S0
there exists by Lemma 2.6 some non zero projection P in B, P = 8§,
such that P < PF or PE > PF. In the first case {P, G,} contradicts
the maximality of {@,}, and in the second {P, G4} that of {G;}. Thus
S=0, I=0G,+G—GG. Let G=G, G =GqG)—G,G; Then
G, @ €B,G+ G =1,and by Lemma 2.5, GE< GF, G'F < Q' E

We shall next begin the proof of an analogue of Dixmier’s « Théoréme
d’approximationy», and complete it in the next section. Our proof will be
modelled on that of DixmIiEr [4, Ch. III, § 5], but will, due to our more
complicated ordering, be more technical. If 7' is a self-adjoint operator
in 2, £ a non zero projection in [ then we put

My(T) = sup{z wxa(T) Bz, =x, ¢, and S lai2 =1} .
1nf{2 a),c Ba,=x, CH, and 3ola2=1}.

wg(T) = Mg(T)—mg(T) .

If £ = I we drop the subscripts and write M (T'), m(T), and o (T). If
& is afamily of orthogonal projectionsin Q[ we put wg (7') = supgegwg(T)-
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Lemma 2.8. Let T be a self-adjoint operator in Q. Then there exist two
orthogonal projections G and G’ in B with sum I and a self-adjoint operator
ScA, S~ T, such that

1) wg(HT +8)) = § o(T)
2) wgGT+8) = § CO(T) :

Proof. Let n(T) = %— (M (T) + m(T)). There exist spectral projec-
tions B and F of 7' such that Mz (T) < n(T'), mp(T) = n (7). By Lem-
ma 2.7 there exist two orthogonal projections ¢ and G’ in B with sum
I such that EG < F@ and FG' < EQ'. Thus there exist orthogonal
projections £, in QA such that GE = X' E,, and there exist U, in 2l such
that the projections U, E,U; ! are all orthogonal, and &, =2 U E, U, 1 <
< F(. Similarly there exist orthogonal projections ¥4 in 2[ such that
2Fg = @'F, and W ¢ U such that the projections WgFy Wﬁ— L are ortho-
gonal, and Gy =2 WgF;Wgl< EG'. Let F, = U,E, U1, so G = X'F,.
Let Ty = TF,, s0 TGy = 2T, Let By = WgFs W5, so Gl 2Ej. Let
Tp=TE;soTG = 2T LetTy=TE, Ty = TFs. Thus TGE = 2T,
TG'F = XTs T can thus be written as an orthogonal sum as follows:

T=TEG+ TG + T(FG—G)+ TFG + TG, + T(EG — &)

=20, + 2T, + T(FG—G) + ZTp+ XTp+ T(EG —Gy) .
Let
S§S=20,T,U;' + XU T, U, + T(FG—G) +

+ SW T Wit + ZWHA T W, + T(EG — G .

Then all summands in sums for S and 7' are orthogonal, so § ~ 7. Note
that

T720,E=TF,U,E=TUE, U;'UE=TU,E, .
Therefore

mpe(EUT,U,)
= 1nf{2 g, 2 U AT, U,): GExy=a, ¢ H, X|x,)2 =1}

= mf{Z,' (TULE 2, UyE ) : GEx, = x, € #, X|x,|*> =1} .

= mf{_,gT anEa‘”g(T) c0Bx, =, ¢ H, Xl|w,|> =1} .

Now,
2 U By, 1‘2-22 | By ? = Z ] = 1,
o
since
2E,= EG,
and

Elz, = x,.
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Since also
U. B,z <F, < @,
we have
mu(EUTITLUL) = me,(T) = mp(T) = n(T) .

Consequently,
TGd=TEG+ TG0+ TEFGC—G) =
=m(T)EG+n(T) G +n(T)(FG@— &)
SG =20, T, U;Y)G + (XUAT,U)EG+ T(FG—G) =
=m(T)G+n(TYEG+n(T) FG—G) .
Adding these two inequalities we obtain,
LT+ 8)G=Lm(T)+ n(T) (G, + EG) + n(T) (FG—G) =

=5m(T) +n(D) (O, + BG + FG— )= (M(T)—3 (1) .
Thus
me(3 (T + 8)G) = M(T)—3 o(T).
Since clearly,
Me(T + 8) = M(T),
(1) follows.
In order to show (2), a computation like the one above shows
Mpe(XWgtTEWs) < n(T). Thus
TG = M(TYFG +n(T)GL+n(T) EGF — Gy)
SG < M(T)G{ +n(TYFG + n(T)(EG —Gy) .

Now continue as above to show (2).

Lemma 2.9. Let T be a self-adjoint operator in U, F a finite family of
orthogonal projections in B with sum I. Then there exists a finite family
&' of orthogonal projections in B with sum I and S ~ T in A such that

oz G (T +8) =3w(T).

Proof. If the lemma is true for a finite family of von Neumann
algebras, it also follows for their product. The proof is therefore reduced
to the case when {§ consists of the projection I, hence the lemma is a
consequence of Lemma 2.8, with ' consisting of two operators.

With 7' self-adjoint in QI let

g =conv(S:S€cAS~1T).
Inductively we let for n = 2,
L,=conv(S:8c¢AS~8,8¢€L,,).

Then £,> &,_;. We put €7 equal to the norm closure ofnL:J1 L,

Lemma 2.10. Let T be self-adjoint in A, and let ¢ > 0 be given. Then
there exist a positive integer n, S € £,, and an operator B in B such that
|S— B| < e.
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Proof. For each integer p > 0 there exist a family & = {£,, ..., E,}
of orthogonal projections in B such that X'E; = I, an integer n, and
8 ¢ £, such that

wgz(8) < @rw(T).
This follows from Lemma 2.9 by iterations of p. If we choose the real
numbers o; properly, we have

nS—é BB < @Y o(T).

Let B = Xa;B;. Then B €9, and if p is sufficiently large |S — B|| < e.

3. Automorphisms of C*-algebras

The main results of the paper appear in this section. We first study
large groups of spatial automorphisms, in which case our treatment will
be related to DixmIEr’s study of the center trace in finite von Neumann
algebras [4, Ch. ITI, §§ 4, 5], and should also be compared with Example
1.1. Then this theorem is applied to representations of groups as *-auto-
morphisms of C*-algebras.

Theorem 3.1. Let A be a C*-algebra acting on a Hilbert space S#. Let
U be a group of unitary operators on H such that UAU-1 = AU for all
U ¢ U. Let € denote the center of A, let B = € N W, and let (A, U) denote
the von Neumann algebra generated by A and U. Assume there exists a
normal U-invariant state w which is faithful on B, and that for each self-
adjoint operator A in A

conv(UAU: U cU)-nA +=0.
Then there exists a unique normal U-invariant positive linear map D of
A~ onto B such that

1) ®(4B)= D(4)B and D(I) = I whenever A ¢ A~, B ¢ B.

2) If o is a normal U-invariant state of A then p = (p|B) o D.

If moreover we assume w is of the form w, with x & wnit vector in S
cyclic under A such that Uz = z for all U in U then the following properties
hold:

3) QLU =2B.

4) If P denotes the projection onto the set of vectors y in S such that
Uy =y for all U in 2, then P is an abelian projection in (A, U) with
central carrier I, hence P (A, W) P = B P.

5) If o is a U-invariant positive linear functional of A such that
0 = Aw, on U for some 1 > 0, then there exists a unique positive operator
B, in B such that o = w,(B,.) The mapping o — B, is an order-iso-
morphism between such functionals and B+.

Proof. Notice that by weak continuity, UA-U-!= -, and
UCU-' = € for all U ¢ U. Furthermore, A "W CYB, for if BEAN W
then conv(UBU-1: U ¢ U) = {B}, so by hypothesis B€ AN A’ CE.
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By [4, Théoréme 1, p. 117] there exist a locally compact Hausdorff
space Z, a positive measure vy on Z, and an isomorphism of the normed
#-algebra L°(Z, v) onto B, and we identify B and L;°(Z, ») by this iso-
morphism. Then the positive part B+ of B is imbedded in the set B+ of
positive measurable functions, finite or not, on Z. As is shown on [4,
p- 262] » extends uniquely to a faithful normal trace on B+. Now follow
[4, Prop. 3, p. 264]. Let S € 2+. The map T — o (S T), T € B, is a normal
trace on B. By [4, Lemme 1, p. 262] there exists a unique element
@(S) ¢ B+ such that

O(ST) = o(BE)T) ()
for all 7 in B+. Let S, S, €A+, UCU, T, T, € B+. Then
(@IS +8)T)=o((S+8)T)=wST) + o(S,T)
= o((@(8) + W) T),
w(@ST)T) = (ST, T)=w(@S)T,T),
o(@USUYT)=o(USUT)=(USTU-Y)=w(ST)

=w(@8T).
By uniqueness of @(S) such that (*) holds, @ is linear U-invariant, and
D(ST,) = D(S)T,. Moreover, by (*¥) @([) = I. The argument in [4,
Lemme 1, p. 262] shows @ (S) is the unique operator in & such that ()
holds and that @ can be extended by linearity to a positive linear
U-invariant map of norm 1 of U~ into B such that @|B is the identity
map. @ is normal. In fact, let {S,} be a monotone increasing generalized

sequence in I+ with least upper bound § in +. Then, since @ is positive
and of norm 1, {®(S,)} is a monotone, increasing generalized sequence
in B+ with a least upper bound . Since (S,7) = w(P(S,)T) for
TcB, oS8T)=limw((S,7T)=limo(DP(S)T)=w@T), so Q@ = D(S)

by uniqueness. @ is normal.

Now @ : A~ — B. In fact, since B=C€NW and UCU-! = € for all
U in U the results of section 2 are applicable to €, B and U. Let 4 be a
self-adjoint operator in . Let R, = conv(U4 U-1: U ¢ U). By hypo-
thesis R N €+ 0. Say B Ry N €. Then for each positive integer j§
there exist by Lemma 2.10 operators S,¢€ &p, B, €3 such that
|S;— Byl < 2-7. Now @ is normal, hence weakly continuous on the
bounded sets RF and £z. Since also @ is U-invariant @ (R7) =P (Lp)
= {D(4)}. Thus D (§,) = D(B) = @ (4) for all j, and ®(B;) = B,. Thus

|B(4) — B = [ D15, — B))| = |8— By <27

In particular, {B;} is a Cauchy sequence converging uniformly to @ (4).
Thus @(4) € B, @:A— B, and by continuity @ : A~ - B as asserted.
Furthermore,

[D(4)— 8| = |@(A)— By + [ B;—S,|| <279 + 277 = 279+,
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so S;—- @A) uniformly; in particular @ (4)€ LN B. Let now
My = conv(Lp :B€ R N €)~. Then by the weak continuity of @ on
bounded sets, @ (M) = {P(4)}, and D (4) € My N B. Let D; be an-
other map with the same properties as @. Then by the arguments above
applied to @;, D, (4) € M, N B. However, it T'¢ M4 N B, then T =D (T)
=Q(4),50 My NV = {P(4)}, and @, = @, P is unique. This completes
(1) and assertions of @ preceding (1).

In order to prove (2) let p be a normal U-invariant state of 2. Then
by the arguments above, {p(4)} = o (M) for each self-adjoint operator
A in A. Thus p(4) = o (M4 N V) = (P (4)) = (0]|B) 0o P(4), and (2) is
proved.

Assume now o = w, with x a unit vector in J# cyclic under 2 and
such that Uz = 2 for all U in . Then z is a separating vector for 2I’, so
in particular for €, and hence for B. Thus w,, is faithful on B. By de-
finition BA N W = (A, U)'. Let B’ be a positive operator in the von
Neumann algebra A’ N W'. Then wp, is a normal U-invariant positive
linear functional on 2. In fact, if U ¢ 2 and A ¢ QU then

0pe(UTAU) = (AU B 2, UB'x) = (AB'z, B'z) = wyy,(4) .

Now wg, = | B'|?w, on 2. By the Radon-Nikodym Theorem, see e.g.
[4, Théoréme 3, p. 89], there exists a unique positive operator B in B
such that wgp, = wp, on B. But wp, is U-invariant, so by (2) wg,(4)
= wpp(D(4) = wp(P(A4)) = wp,(4)for all 4in Q. ThusforS, T'inQ,

(B'?Sx, Tx) = (T*SB'x, B'x) = (T*S Bx, Bz) = (B*Sx, Tx) .

Since @ is cyclic under A, B’2 = B2 Since B’ and B are both positive,
B'=B¢B,and A" N W =B, (3) is proved.

Let P denote the projection onto the subspace of vectors y such that
Uy=yiforall Uinl. Then Px =z so P == 0. If y € o then UPy = Py
forall Uin U, so UP=P = (UP)*= PU*, and UP=P= PU. If
BcB is self-adjoint then UBP=BUP=DBP, so for y¢cH#,
PBPy= BPy, and BP=PBP= (PBP)*=PB. Thus P¢c®
= (2, U), by (3) and the Double Commutant Theorem. Let 4 € Q. Then
PAP=PUAU-1P by the above for all U in U. Let S€ M 4. Then a
trivial argument shows PAP = PSP. Hence PAP=PP4)P

n
= @(A) P € B P. Operators of the form X [T A;U;, the sum being finite
i=1
with 4, ¢, U; ¢ U, are weakly dense in (2(, U). Therefore, in order to
n
show P (U, U) P = B P it suffices to show P JJA;U; P € BP for each

j=1
positive integer n. If n =1, P4,U, P = P4, P ¢ B P by the preceding
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argument. Assume it true for n — 1. Then

n n—2
PHAJU]PZ p (H AJ'Uf) An—lUvz—lAnUnP

j=1 j=1
n—2

=P ( ]]A,-U,.) (Ap_1Up 14, UL ) IPCBP
j=1

by the induction assumption. Hence P (2, U)P =B P. Since z is a
separating vector for B, and Px =z, P is separating for B. Since B
equals the center of (A, U) the central carrier of P in (™A, U) equals 7, (4)
is proved.

Let o be a U-invariant positive linear functional of 2 such that
0 = Aw, for some positive real number 1. Then there exists by [4,
Lemme 1, p. 50] y € o such that ¢ = w,, hence p is normal. As was
pointed out in the proof of (3) there exists a unique positive operator
B, in B such that p(4) = w,(B,4) for all 4 in A. Thus the mapping
0 — B, is positive, and by uniqueness linear. If B ¢ B and the functional
A — wy,(BA) is positive on 2 then, since it is U-invariant and majorized
by a multiple of w,, there exists a positive operator B’ in B such that
Wy (A B) = wy(AB’) for all 4 ¢ . The argument used in proving (3)
shows B = B’, hence B = 0, and the mapping ¢ -» B, is an order-iso-
morphism, i.e. if p; and g, are U-invariant positive linear tunctionals of
majorized by multiples of w, then B, ., = B, + B,, and g; = g, on 2
if and only if B, = B,,. The proof is complete.

In section 2 we promised to prove a variant of Dixmrer’s « Théoreme
d’approximation» when 2l is abelian. This can now be done if ¢ is assumed
to be “finite”.

Corollary 3.2. Let  be an abelian von Neumann algebra, 2 a group of
unitary operators such that UQU-1 = QU for all U in U. Let B = A N W
and assume there exists a normal U-invariant state which s faithful on .
Let A be a self-adjoint operator in A, and let £, be defined as in section 2.
Then &4 N B consists of exactly one operator.

Proof. With @ the mapping of 2 onto B constructed in the above
theorem we showed £4 NV = {P(4)} if 4 belonged to the center.

We shall now apply Theorem 3.1 to representations of groups as
*-automorphisms of C*-algebras. If g is a state of a C*-algebra 2{ then o
has a unique decomposition p = Wg, O a8 & composition of a vector
state and a cyclic representation. We shall mainly be concerned with
large groups.

Definition 3.3. Let ¥ be a C*-algebra and ¢ a group. Let ¢ — 7, be a
representation of G as *-automorphisms of 2. We say G is represented by
7 as a large group of automorphisms of QU if for all G-invariant states g and
all self-adjoint 4 in 9

conv(ng(rg (A):g€G) Na, ) =0.
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Once and for all we introduce some notation.

Notation 3.4. Let 2l be a C*-algebra, G a group, and g — 7, a repre-
sentation of G as *-automorphisms of Q. I(2) denotes the G-invariant
states of 2, i.e. the convex compact set of states p of 2 such that
pot,=opforallgc G. If p € I (), o = w, o m,, Where 7, is a represen-
tation of 2l on a Hilbert space 57, and #, is a unit vector in J#, cyclic
under 7, (). There is a unitary representation g — U,(g) of G on J7,,
strongly continuous if @ is a topological group and g — 7, is strongly
continuous, such that U,(g9)z, = z,and 7, (7, (4)) = U,(9) 7, (4) U,(g)~*
for all g € G and 4 in A, see [16]. We denote by U (g) the group of the
unitary operators U, (g), by € (o) the center of 7,(2)~, and by B(p) the
von Neumann algebra €(g) N 2U(p)’. We shall denote by P, the pro-
jection onto the set of vectors y in o, for which U,(g9)y =y for all
g € G. Then P,x, = x, so P, & 0. We denote by R,(4) the set

conv (77,(,(4)) : g € G)
for each sclf-adjoint 4 in Q. Thus
R, (4) = conv (U,(g) 7,(4) U,(9)~t:9€ Q).

In this notation 7 represents ¢ as a large group of automorphisms if and
only it K (4)" N7, ()" &+ @ for all p€ I(2A). Thus Theorem 3.1 is
applicable to 7, () and U(p). We denote by &, the map P constructed
in Theorem 3.1 of 7, (?A)~ onto BV (p).

It should be remarked that if G is represented as a large group of
automorphisms of A then by Theorem 3.1 (4), P, 7, () P, is an abelian
family of operators for each p € I(?(). This means that 2 is G-abelian
in the sense of LaxrorD and RUELLE [14]. They show [14, Theorem 2.3]
that QA is G-abelian if and only if for all self-adjoint 4, B in 2, and all
o€ IR

inf|o (14, BY)| =0,

as 4’ runs over conv(z,(4): g € @), where [, ] denotes the commutator.
We shall now characterize large groups in a similar fashion, thus pointing
out how our structure is stricter than theirs. If p is a state of U and
S € A we denote by pg the positive linear functional 4 — o (8*48) of A.

Theorem 3.5. Let 2 be a C*-algebra, G a group, and g — T, a representa-
tion of G as *-automorphisms of A. Then T represents G as a large group of
automorphisms of A if and only if for each o ¢ I(A), and each finite family
{4, By, ..., B} of self-adjoint operators in 2

inflos([4’, B;])| =0, j=1,...,n,

for all 8 in A, where A’ ranges through conv(z,(4):g € Q).
Proof. It I (A) = O the theorem is trivial, so assume p € I (). Assume
@G is large. Choose a net {m,(d,)} in K,(4) such that =,(4,) converges
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weakly to an operator D € R,(4)~ N 7, (A)". Then
[”Q(A“)’ﬂQ(BJ')]_)[D3nQ(Bj)]=O> j:17"'>n7

weakly, whenever B, . . ., B, is a finite set of self-adjoint operators in 2l.
Therefore, for given ¢ > 0 and S in U there exists « such that

los([4 s, B;1)| = |([70,(As), 71, (B;)] 7, (S) 2y, 7, (S) 2,)] < € .

Thus inf|eg([A4’, B;])| = 0 for all S in 2. Conversely assume this con-
dition holds. Then, since z, is cyclic,

inflow,([7,(4"), 7, (B;)])] =0 forall y¢cst.
Thus
inflo([7,(4"), 7 (BH)N| =0, j=1,...,n,

for all weakly continuous states w. Let #" = #,® - - - ® 5, the sum
taken n times. Let B (") denote the bounded operators on #”. The
map y: 7, (A)~ - B (") by

n
S—23 @ [S, 7, (B))]
i=1
is weakly continuous. Now inf|w(y(4"))] = 0 for all weakly continuous
states @ of B(H#™), as 4" runs through K,(4). Since &,(4)~ is weakly
compact, x(R,(4)") is weakly compact, hence there exists D ¢ R,(4)~
such that (D) = 0, i.e. [D, 7,(B,)]=0,j=1,...,n
Let A(B,...,B,) =8 A n{m(B):j=1,...,n}). By the
above A (B, ..., B,) = 0. Clearly, if C,, . . ., C,, is another finite family
of self-adjoint operators in U

A(B,, ..., B) AW, ..., C) =ABy, ..., By Ch .., C) =0

Hence the sets A(B,, . . ., B,) have the finite intersection property. As
they are all weakly closed subsets of the weakly compact set R,(4)~
they have a non empty intersection. Thus R,(4)~ N7, (A) == 0, and ¢
is represented as a large group of automorphisms of . The proof is
complete.

If @ is represented by 7 as a large group of automorphisms of 2 it
follows from the remarks preceding Theorem 3.5 and [14, Corollary 3.2]
that I () is a simplex. We shall include another proof of this more in the
spirit of our treatment.

Theorem 3.6. Let A be a C*-algebra. Let G be a group represented asa
large group of *-automorphisms of A. If I(A) == @ then it is a simplex.

Proof. Let L(QA) denote the cone in A* of positive linear G-invariant
functionals. Let gy, o, € L(?). Let o = g, + 0,, and assume p([) = 1.
Since g; = p, 0; = w; om, with w; U(p)-invariant and 0 = w; = Wg
By Theorem 3.1 (5) there exist unique positive operators B;, j =1, 2,
in B(p) such that w;(w,(4)) = wzQ(Bj 7, (4)) for all 4 in Q. Now B (p)
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is an abelian von Neumann algebra, hence its self-adjoint part is a
lattice. Let B= B; A B,. Let w = wzQ(B'). Since the map ¢ — B, in
Theorem 3.1 (5) is an order-isomorphism  is the greatest positive linear
U (p)-invariant functional smaller than or equal to w;, j =1, 2. Hence
o om, = 0y N\ gy in L(A), so the latter is a lattice; J(A) = L(A) N S(A)
is a simplex.

Since I () is a simplex each G-invariant state can in a unique way be
written as an average over the extreme boundary of I(). Hence a
knowledge of the extremal invariant states is very important.

Theorem 3.7. Let A be a C*-algebra. Let G be a group represented as a
large group of automorphisms of A. Use the notation in 3.4. Let p € I ().
Then the following five conditions are equivalent.

1) o is extreme in I ().

2) 7, (A) U Ulp) is an irreducible set of operators.

3) Blp) is the scalars.

4) P, is one-dimensional.

5) wxg(@e(A)B) = wa(A) wxe(B) for all 4, B € 7, ().

Proof. By Theorem 3.1 (3) 2) < 3). Hence by Theorem 3.1 (4)
2) < 4). By Theorem 3.1 (5) 1) < 3). Finally 3) < 5), for if 5) holds
then by continuity of @, it holds for 4, B ¢ ,(2)~. Hence (ozg|%(g) is
a homomorphism. Since #, is a separating vector for B(p), 3) holds. Con-
versely, if 3) holds then @, (4) = Wg (4)1, hence

wzg(qjg (4)B) = Wg, (4) C')zQ(B) ;
and 5) holds.

The equivalence 1) < 2) < 4) is also a consequence of [14, Pro-
position 4.1] and Theorem 3.1 (4). Notice that 5) is a generalized cluster-
ing property. In a number of cases B(9) = €(p), in which case condi-
tion 3) above means s, is a factor representation. We note the following
situation where this equality prevails.

Lemma 3.8, Let A be a C*-algebra. Let G be a connected topological
group. Let g—7, be a norm continuous representation of G as a large group
of automorphisms of . Let g be a G-invariant state and use notation in 3.4.
Then B (o) = €(p).

Proof. If g is in @ then for all 4 in A,

f U, (g) 7,(4) Ue(g)_l_”o(A)“ = ”759(70(‘4) —4)|
= |7, (4)— 4] .

Hence the representation g — U,(g) - U,(9)~! is a norm continuous
representation of G as *-automorphisms of 7, (). By [12, Corollary 8]
there exist unitary operators U, in 7, (21)~ such that U,(g) =, (4) U,(9)~!
=U,m,(4)U;1 for all 4 in A If S€€(p) then U,(g) SU,()*
=U,8U; = Sforallgc @, soS¢cU) NnE=B(p), and B(p) = €(p).

IA
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The nice simplexes are those with closed extreme boundary, hence
those for which the extreme points form closed sets. For completeness
it is desirable to know when the extremal G-invariant states form a
closed subset of I(2l). As the theorem to follow is of general nature, we
do not assunie G large. The reader should only keep in mind Theorem 3.6.

Theorem 3.9. Let A be a C*-algebra. Let G be a group and g -1, a
representation of G as *-automorphisms of A. Assume I (1) is not empty.
Then I(A) is a simplex with closed extreme boundary if and only if there
exist an abelian C*-algebra B and a positive linear G-invariant map O
of 2 onto a norm dense subset of B such that @ (I) = I and such that the
map D* 19— p o D maps S(B) onto I(A). In this case B is unique up to
an isomorphism.

Proof. It B and @ are as described then @* is an affine isomorphism
of §(B) onto I (). Since S (B) is a simplex with closed extreme boundary,
so is I (). Conversely, assume I (2f) is such a simplex. Let Z denote its
extreme points. Then Z is a compact Hausdorif space. Let B = C(2).
Define a map @: 2 - B by @ (4) (2) = 2(4), 2 € Z. Then @ is positive,
linear, @(I) =1, and if g€ G then @(Tg (A4)) (2) = z(z,(4)) = 2(4)
=P (4) (z), so D is G-invariant. In particular, if o€ S(B) then

*(0) € I(2). )

If 4 is self-adjoint in U let 4 be the w*-continuous real atfine function
on §(Q) defined by A4 (g) = o(4). An application of the Hahn-Banach
Theorem shows that the set ot restrictions A|I(2f) is norm dense in
Aff(I(A)) — the w*-continuous real affine functions on I(2). Since Z
is closed, the map b — b|Z is an order-isomorphism of Aff(Z(Ql)) onto
Cr(Z) — the real continuous functions on Z, see e.g. [1, Satz 4.4.4].
Thus @ (1) is norm dense in B = C(Z). If z € Z let e, be the evaluation at
z of functions in C(Z). The pure states of B are the states of this form.
Let o € 1(2A). Then there exists a unique measure g on I () with support
in Z such that

0= deﬂ fCD’ ) dp(z)
——@*(fezdlu 2)) = D*(g)
where § = fe du(z) € 8(B). Thus @* maps S(B) onto [(A). Let B,

be another O* algebra, and @, a positive linear G-invariant map of
onto a dense subset of B, such that @, (I) = I, and OF(S(By)) = I (A
Then @*-! o @F is an affine isomorphism of S(B,) onto S (V). Thus B,
is *-isomorphic to B, see e.g. [11, Corollary 4.7].

4. Traces of C*-algebras

Traoma [17, p.116] has shown that the normalized traces of a
C*.algebra 2 form a simplex and that the extremal traces are exactly
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the factor traces, the latter being defined as those traces ¢ for which
7, (A)~ is a factor. We shall show this by showing that the inner auto-
morphisms of U is a large group of automorphisms. If 2[ is a C*-algebra
we denote by 21 () the group of unitary operators in 2.

Theorem 4.1. Let A be a C*-algebra. Then U () is represented as a
large group of automorphisms of A via the representation U — U - U~ In
particular, if there exists a normalized trace of U, then the normalized traces
form a simplex the extreme points of which are the factor traces.

Proof. Assume g = Wy, O, is a normalized trace. Let U ¢ U (),

and let U, denote the unitary operator on 5, such that
7o (U) 7, (A) 0, (U) ' = o (UAUY) = Upm, (A) Ut ()

for all 4 €2, and such that U,, = x,. Let U (p) denote the set of the
U,. If B is a C*-algebra denote by (B, 2) the set of unitary operators
in B whose distance from I is less than 2. Then by [9, Theorem 2,
Lemma 5] and their proofs,

U (7, (A)7) U@, (A)—, 2)~ = U7, (A), 2)~ Tz, (U(A))~ .
Hence by [4, Théoréme 1, p. 272] and (**)
conv(m,(UAUY): UecUQA)~ N, (A) +=0,

and U(A) is large. If S € €(g) then S = 7,(U) Sz, (U)~* = U,SU;?
for all U in U(A). Thus S € B (p), and B (9) = €(p). By Theorem 3.7 g is
extremal if and only if it is a factor trace.

5. Asymptotically Abelian Algebras

It is clear from Theorem 3.5 that the results on large groups of auto-
morphisms obtained in section 3, make it possible to obtain considerable
generalizations of the known theory for C*-algebras asymptotically
abelian with respect to the translation group R”, as obtained in [7, 13, 15].
We shall in this section discuss one generalization.

Definition 5.1. Let 2 be a C*-algebra. Let ¢ be a group. We say U
is asymptotically abelian with respect to G if there exists a representation
g—1, of G as *-automorphisms of 2 such that for each self-adjoint
operator 4 in 2 there is a sequence {g,(4)},=1,s,... of elements in @
such that

li}}l I [zg,(y(4), Bl =0

for all B in L.
In the usual definition one assumes lim |[7,(4), B]| = 0 whenever
g—

g — oo in R, and that the representation g — 7, is strongly continuous.
When G = R™ our definition has the advantage that it also includes
sitnations in which one only requires g to diverge to oo in some pre-
scribed set. If 2l is asymptotically abelian with respect to G then Theo-
2 Commun. math. Phys., Vol. 5
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rem 3.5 shows 7 represents ¢ as a large group of automorphisms of 2. We
summarize the results in Theorems 3.1, 3.6, and 3.7 as follows.

Theorem 5.2. Let A be a C*-algebra which is asymptotically abelian
with respect to the group G. Let g — v, be the corresponding representation
of G. Use the notation introduced in 3.4. Suppose o € I(A). Then,

1) I(Q) is a stmplex.

2) (75, (A) v U())' = Vo).

3) P,is an abelian projection with central carrier I in (7, (2A) U U(p))"”.

4) The following five conditions are equivalent.

i) o is extreme in I ().

ii) 7, (A) v U(p) ts an irreducible set of operators.

iii) B (p) ts the scalars.

iv) P, is one dimensional.

v) wxg(@g (4)B) = wxg(A) g, (B) for all A, B€ m,(2).

For the rest of the section we shall be concerned with the structure of
@, and the clustering property (4 v) in the above theorem.

Lemma 5.3. Let A be a C*-algebra which is asymptotically abelian with
respect to the group G. Let A be a self-adjoint operator in . Let D be a weak
limit point of the sequence {U,(g,(A)) 75,(4) U,(g9,,(4))~'}. Then D € €(p).

Proof. Let g,, = g, (4). Since 7, is norm continuous,

lim [T, (9.) 7o (4) Uy (g) ™, 7o (B)]] = 0

for all Bc . Let BEQA, let , ..., 2, ¥, - - ., ¥ be unit vectors in
K, let € > 0. Let n be so large that

[([D, 71, (B)] — [U,(gn) 7, (A) Uy(gn)™" o (B) Dy, y5)| < /2
forj=1,...,k and
LU, (9n) o (A) Uy (gn)~2 7, (B)]| < /2.

Then |([D, 7, (B)]z;, y;)| < & for j=1,..., k. Since ¢, x;, y; are arbi-
trary, [D, 7, (B)] = 0, and D € 7, (A)~ N7, (A)" = €(p).
Using the terminology of [13] we say p in I () is strongly clustering if

lim (7, (4)(4) B) = ¢(4) ¢ (B)

whenever 4 and B are self-adjoint in Q. This condition is very strong,
as our next theorem shows.

Theorem 5.4. Let A be a C*-algebra which is asymptotically abelian
with respect to the group G. Let o be a G-invariant state of A. Then o s
strongly clustering if and only if ¢ is extreme and

D, (7, (4)) = weak lirlln Uy (g, (A)) 7,(A) Uy(g,(4))~1
for all self-adjoint A in 2U.
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Proof. Let g, = g,(4). Assume g is extreme in I () and that @, is
given by the formula above. Then by Theorem 5.2 (4 v),

lim o (7, (4) B) = lima, (Us (9) 7 (4) Uy ()7 7, (B))

= wxe(q)e (7, (A4)) 7, (B))

=e(d)e(B) .

Conversely, assume g is strongly clustering. Then p is extreme. In fact, if
o is not extreme there exists by Theorem 5.2 (4 iv) a unit vector y in P,
such that y is orthogonal to ,. Let ¢ > 0 be given. Choose B € 7,(2)
such that |y — Bx,| < ¢/3. Let 4 € 2 be self-adjoint, and |x,(4)] =< 1.
Then for n sufficiently large,
(. 77 (4) )| = (U, (9) 70, (A) U (g) 71y, )| =

= |(Uy(gn) 700 (A) Uy (gn)* By, )| + f3 =
= Jog (7, (4)) g (B)] + &f3 + &3 =
(B, z,)| + 2¢/3 =

E.

A

A IA

Since ¢ is arbitrary, (y, m,(4)x,) = 0 for all 4 in 2. But z, is cyclic,
hence y = 0, a contradiction. Thus P, is one-dimensional, g is extreme.

Let D be a weak limit point of the sequence {U, (g,) 7, (4) U,(g,)~1}.
By Lemma 5.3 D ¢ €(g).Choose a subsequence {Uy(g,,) 7,(4) U,(g,,)7}
which converges weakly to D. Since o(7,, (4)B) - o(4) o(B) the same
convergence holds for the subsequence Q(Tﬂnj (4) B). Hence, by the above

paragraph and Theorem 5.2 (4 v),
wzq(@e (7, (A)) 7, (B)) = wx@ (”e (4)) wxq(ne(B))
= hnnl wzg(Ug (gnj) T (4) Ug (gn]-)—l ”Q(B))

= wa(an(B» ,
for all B ¢ . Thus

(”@(B)xe’ (¢9(759 (4)) — D) x@) =
for all B¢l Since , is cyclic, (@, (7,(4)) — D)z, = 0. Since z, is
separating for € (), @, (7,(4)) = D. Thus D, (7, (A4)) is the unique weak
limit point of the sequence {U,(g,) 7, (4) U,(g,)~'}, hence this sequence
converges to @,(n,(4)). The proof is complete.

Kaprson and RINGROSE remark in the introduction of [12] that the
assumption of the spectrum condition is closely related to the assumption
that G is a topological group and the representation g-»7, is norm
continuous. Our next result should therefore be compared with [2,
Theorem 1], and Lemma 3.8
2.
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Corollary 5.5. Assume 2 is a C*-algebra asymptotically abelian with
respect to the group Q. Let o be a G-invariant state such that € (9) = B (p).
Then

D, (77, (4)) = weak h'gl U,(g,(4)) 7, (4) Uy(g, (4)1

for each self-adjoint operator A in A. Moreover, the following three conditions
are equivalent.

1) o is extreme in I ().

2) m, s a factor representation.

3) o is strongly clustering.

Proof. Let A be self-adjoint in 2. Let D be a weak limit point of the
sequence {U,(g,(4)) 7, (4) Uy(9,(4))1}. By Lemma 5.3 D¢ €(p) =B (o).
But from the proof of Theorem 3.1 there is at most one point in
R,(4)~ N B(p), namely D,(n,(4)). Thus D= D,(n,(4)), and the
sequence converges weakly to @,(r,(4)). The equivalence of 1), 2), and
3) now follows from Theorems 5.2 and 5.4.

We conclude this section by showing that the condition (4 v) in
Theorem 5.2 reduces to the weak clustering property of RUELLE, con-
dition (2) in [15, Corollary 2], when ¢ = R”. Recall some of his notation.
fa=(d,...,a") € R with o/ > 0 we let

Vie)=J]do, Alg) ={x€R: 0=l <al,j=1,...,%},
i=1

and
M4 =V()™? [1,(d)db.

A(a)
We assume lim |[z,4, B]| = 0, whenever a — oo in R*. Let 4 be self-
a—> o0
adjoint, and let D and D’ be weak limit points of sequences in the
bounded set {m,(M,4)} = {M,7m,(4)} as a — o, o € I(A). By [15,
Lemma 3]
t= lim o(M, AM,4)

Ay, Ay —> 0

exists independently of the order of convergence. Choose sequences
{a,} and {b,,} in R* converging to o such that 7, (M, 4) - D weakly,
and 7, (9M,;, A) - D’ weakly. Then

t =lim wxg(Dne (M, 4)) = g, (DD’ .
m

Let ¢, be a subsequence of a, so that still &, (M, 4) - D weakly. Then
t = lim o (M, AM, A) = lim wxg(DnQ (9, 4))
Cn

Qn;s Cn

= g, (D?) .



Large Groups of Automorphisms 21

Thus [Dz,|? = (Dx,, D'x,) =< |Dz,| |D'z,|. By symmetry |[Dz,| x
x |D'x,| = (Dx,, D'x,). Therefore there exists a complex number A
such that D'z, = ADx, Since as in Lemma 5.3 D and D’ belong to
€(p), and z, is separating for €(p), D’ = AD. Since (Dx,, D'x,) = [Dx,| x
X |D'x,||, A= 1, and D = D’. Thus, for any sequence a, — o,

7 (M, 4) -~ D weakly .
Let x € B’. Then
Uylw) DU, (@) = Uy(a) (weak im W, m, (4)) Uy (a) !
= weak lim U, () My, 71, (A) Uy ()1
= weak 1‘1117;1 M, 7, (A) =D

Thus D ¢ B(p). As argued in the proof of Corollary 5.5
D, (7, (4)) = weak lim 7,(M,, 4) .
Ay —> 0O

In particular, by Theorem 5.2 (4 v), g is extreme if and only if
wze(®a<nq (4)) @, (”Q(B))): e(4) o(B),
or by the above, if and only if
lim o (M, AM, B) = o(4) o(B),

a,b—o0

whenever 4, B are in Q. This is the same as condition (2) in [15, Cor-
ollary 2].
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