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Abstract. Groups of ^-automorphisms of 0*-algebras and their invariant states
are studied. We assume the groups satisfy a certain largeness condition and then
obtain results which contain many of those known for asymptotically abelian
(7*-algebras and for inner automorphisms and traces of (7*-algebras. Our key result
is the construction in certain "finite" cases, where the automorphisms are spatial,
of an invariant linear map of the C'*-algebra onto the fixed point algebra carrying
with it most of the relevant information.

1. Introduction

In the works of DOPLICΉER, KASTLER, ROBINSON, and RUELLE [7,13,
15] there is developed a theory for (7*-algebras acted upon by representa-
tions of the translation group En as *-automorphisms. It is assumed that
the <7*-algebra in question is asymptotically abelian, which means
roughly that the group of automorphisms obtained, is very large, or
somewhat more precisely, that if given two operators in the algebra then
large translations of one of them will commute with the other. Recently
parts of this theory have been generalized to arbitrary groups by LAN-
FORD and RUELLE [14] in a paper which clarifies the underlying mathe-
matical structure of this theory in some respects, but which leaves other
aspects of it open. We shall therefore in the present paper develop a
theory for representations of groups as "large" groups of automorphisms
of (7*-algebras, thus obtaining a better understanding of the underlying
mathematics. It will be shown that our situation is less general than that
studied by LANFORD and RUELLE. However, having more structure, we
shall be able to obtain stronger results, see Theorems 3.1 and 3.7. In
particular, in section 5 we shall recover more of the results known for
(7*-algebras asymptotically abelian with respect to Rn. Technically we
shall say a group G is represented as a large group of automorphisms of a
0*-algebra 21 if there is a representation g -> τg of G as *-automorphisms
of 21 such that for A self-adjoint in 21

conv(πρ(τ,μ)) : g £ 0)- n πρ(3l)' Φ 0

for all G-invariant states ρ = ωx o πρ of 21, πρ being the canonical cyclic

representation of 21 induced by ρ. In addition to the asymptotically abelian
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case an example of a large group of automorphisms of a (7* -algebra with
identity is the group of inner automorphisms. Hence, since for large groups
the 6r-invariant states form a simplex, our results generalize a theorem of
THOMA [17], in which he shows that the normalized traces of a (7*-algebra
form a simplex, the extreme points of which are the factor traces.

We shall refer the reader to the two books of DIXMIEB, [4, 5] for the

theory of von Neumann and (7*-algebras, to [1, 3] for the theory of

simplexes, and to [7, 10, 13, 15] for the physical background of our work.
We shall use the notation ωx for positive linear functionals of the form
A -> (Ax, x) whenever x is a vector in the underlying Hubert space (it
should be remembered that our inner products are linear in the left

variable and conjugate linear in the right). If g -> τg is a representation
of the group G as *. automorphisms of the (7*-a]gebra 21, the map

ρ -> ρ o τg is an affine isomorphism of the state space $(2ί) of 21. We shall
say a state ρ is G-invarίant if ρ = ρ o rg for each g £ G. More generally, if
Φ is a positive linear map of 21 into another (7* -algebra 33 we shall say Φ
is (r-invariant if Φ = Φ o τg for all g ζ G. If 11 is a group of unitary
operators such that the maps u : A -> UAU~l are automorphisms of 21
for all U ζ 11, we shall also say ρ is ll-invariant if it is invariant with
respect to the group of automorphisms u. If it is clear which group wτe

have in mind we denote by /(2l) the 6r-invariant states of 21. If G is a
topological group we shall say the representation g -> τg is norm con-
tinuous (resp. strongly continuous), if

Km sup \\τg (A) — A\\ = 0 (resp. Km IT, (A) — A\\ = 0 for all A ζ 31)

as g converges to the identity element e in G. If 921 is a set of operators we

shall denote by 92l~ or 221 the weak closure of 221, and by 221' its commu-
tant. Since it is no restriction to assume 2ί has an identity we shall

always assume our (7* -algebras have identities denoted by /. If {Ax : α £ J}
is a set of operators we shall denote by conv(^4α : α 6 J) the set of all
finite convex combinations of the Aκ.

We shall not in the present paper discuss the problem of existence of
(^-invariant states. It should, however, be noted that when G is abelian

the Markov-Kakutani Theorem [8,V.10.6] yields the existence of
G-in. variant states, see also [6].

The main ideas of our proof are based on those of THOMA [17] to-
gether with those behind DIXMIEB'S construction of the center trace in
finite von Neumann algebras [4, Ch. Ill, §§4, 5]. Two examples will
describe the ideas and some of the difficulties of our approach. The
essential point is that we want a positive linear G-in variant map Φ of 2ί

onto the fixed point algebra of the automorphisms carrying with it
enough structure. We shall as an illustration do it for G compact.
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Example 1.1. Let 21 be a (7*-algebra, G a compact group, and g -> τg

a strongly continuous representation of G as *-automorphisms of 2ί. Let
23 denote the sub-(7*-algebra of 21 of those operators B such that
tg (B) = B for all g £ G. Then there exists a positive linear 6r-in variant
map Φ of 91 onto 23 such that Φ restricted to 93 is the identity map, and
such that the map Φ* : #(23) -> $(2ί) denned by Φ*(ρ) = ρ o Φ is an
affine isomorphism of $(23) onto 7(31). In particular, 7(21) is a simplex if
and only if 23 is abelian.

In fact let Φ(A) = fGτg (A) dg, where dg is the normalized Haar
measure. If h ζ G then rh(Φ(A}} = f rhτg(A) dg = f rhg(A) dg
= f r g ( A ) dg = Φ(A), so Φ(A) ζ 23. Clearly, Φ is positive linear, Φ|23
is the identity. If h ζ 6r, then since G is unimodular,

Φ(τΛ(^)) = frgrh(A) dg = f rgh(A) dg = f τ g ( A ) dg = Φ(A) ,

so Φ is ^invariant. Let ρ ζ $(23). Then Φ*(ρ) is clearly in 7(91). Since
Φ is onto, Φ* is one-to-one. If ω £ 7(21) then ω|23 f $(23) since 7 ξ 23.
Thus, for A € 21,

ω(A) = f ω ( A ) d g = f ω ( τ g ( A ) ' ) d g = ω ( f τ g ( A ) d g )

= ω(Φ(A)) = (ω|23) oφ(^) .

Thus ω = Φ*(ω|23), so Φ* is onto, hence an affine isomorphism of
$ (23) onto 7 (21). Now $ (23) is a simplex if and only if 23 is abelian. Hence
the last statement follows.

If G is non compact the results in the above example are in general
false; there may not even exist invariant states. But even with invariant
states around the map Φ with all properties in Example 1.1 may not
necessarily exist.

Example 1.2. Let Jf be a Hubert space. Let £(^) denote the com-
pletely continuous operators on Jti?. Let 2ί be an abelian (7*-algebra on
je such that 21 r\ €pf) = {0}. Then 21 + £(3P) is an irreducible C*-
algebra, and if G is the set of unitary operators in 21 -f £(^f) then the
fixed point algebra of the automorphisms A -> UA U~l, U £ G, is the
scalars, while 7(21 + £PΠ) = $(21).

In fact, since the irreducible (7*-algebra 2ί + (£(^) is generated by
its unitary operators, the fixed point algebra is the scalars. If ρ is a
state of 21 -f S(c^) which annihilates £(«#") then ρ is a trace. Since every
state of 21 has such an extension to 2ί + Sp^9), we have obtained the
desired identification of 7(21 + S(^)) and $(21).

In our treatment of the problem we shall be able to construct a map
Φρ like Φ in Example 1.1 of πρ(2l) for each 6r-invariant state ρ, and then
use similar arguments in order to obtain the desired results.

The author is happy to record his gratitude to J. GLIMM for intro-
ducing him to the physical background of the present paper together
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with very helpful discussions and correspondence during the progress of
the work.

2. Abelian von Neumann Algebras

If α is a *. automorphism of a von Neumann algebra 51 then α maps
the center £ of 51 onto itself, hence α £ is a *-automorphism of £. It is
therefore necessary to study *-automorphisms of abelian von Neumann
algebras. This will be done in the present section. We shall throughout
the section assume 5ί is an abelian von Neumann algebra acting on a
Hubert space &\ II a group of unitary operators on ffl such that
U2iU-1 = 51 for all ϋ ζ II. 33 shall denote the fixed points in 51 of the
automorphisms. Hence 33 == 51 ΓΛ 11' is an abelian von Neumann algebra.
We shall develop a comparison theory for projections in 5ί with respect
to 11, and then use this to prove a variant of DIXMIEB'S J5Theoreme
d'approximation" [4, Ch. Ill, § 5].

Definition 2.1. Let A and B be self-ad joint operators in 51. We say A
and B are II-equivalent, written A ~ B, if there exist operators Aκ

(resp. BΛ) α £ J, in 51 such that AxAβ = 0 (resp. BxBβ = 0) if α φ β,
A= Σ A*> B= Σ £«> and Z7α e U such that £α - t7αv4α ZJ-1 for all

α £ j κζ.J

α ζ J. If A is a projection so is B, and the ^lα and J3α form orthogonal
families of subprojections of A and .£> respectively. If E and .F are pro-
jections in 51 we write $ < jP (or F > 7£) if E ~ F1 ^ jP. By the ll-cαmer
of J^, denoted by Xl^j, we shall mean the least projection in 33 greater than
or equal to E. Note that since / £ 33 and 33 is a von Neumann algebra,
this definition makes sense. If E and F are projections in 51 we say they
are "U-dίsjoint if there exist no non zero It-equivalent subprojecbions Eλ

and FI of E and ̂  respectively.
Lemma 2.2. ~ i5 an equivalence relation.

Proof. Since I fll, A ~ A for ^4 self-adjoint in 5ί. Suppose ^4, 5 and
C are self-ad joint operators in 5ί such that J. — B and B ~ C. Then there
exist orthogonal families {^4α}α€j5 {£α}α€j> {Jδ^^j/, and {C$β±j such
that J. = ΣAX9 B = ΣBX = ΣB'β, C = ΣCβ, and unitary operators
Uκ, Vβ in II such that UxAaU~l - Bx, VβB'β F^1 = Cβ. Since^5ί is an
abelian von Neumann algebra the self-adjoint operators in 51 form a
lattice. Let BΛβ = Bx f\ B'βί for α ζ J, βίJ'. Then J5α = Σ B*β,

βζJ'
Bβ ^ Σ Bxβ, the sums being orthogonal. ~LetA^— U~lBκβUκ and

<xζ.J

CΆβ = VβBaβV^1. Then it is immediate that (α, /?) Φ (α', /5/) implies
AaβAΆ>β> - 0 = CvβCa'β', so the families {^αj8}(«^)€ j x j' and{(7α^}(αjj3)€ j x j,
are orthogonal. Moreover,

= ^ 1 = "1 = =
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and similarly Σ C<*β = @ Since It is a group, and

*(VβUΛ)AΛβ(VβUΛ)-1= VβBxβVβl = Cxβ,
A ~ C. The proof is complete.

Lemma 2.3. // E is a projection in $1, UίE is the maximal projection F
in 21 such that F = ΣFΛ9 Fx orthogonal projections in 2ί, and for each α
there exist a projection Eκ< E in 2ί and Ux £ It such that U^E^ U~l = F^.

Proof. ΊίF = ΣFX is such a sum then UEF = ΣUEFΛ = ΣUE UKEX U~l

= ΣUΰίUEEQlU-l=ΣUxExU-l=F, and UE ^ F, hence UE majoiizes
any maximal such F. The projections F = ΣFΛ as above form a partially
ordered set by inclusion, and each totally ordered subset has an upper
bound, namely the union. Let F — ΣF^ be a maximal element. Then
F = UF U~l for all U £ It. For otherwise there exists U ζ II such that
Fl = (UFU-1) (I — F) ψ 0. Then Fl is a projection in 21, and
(T! = U~1F1 U ^ F is of the same form as JP, hence so is J^, and therefore
Fl + 1̂ , contradicting the rnaximality of F. Thus F = UFU~l for all
U in It, jP <E 33. Now F ^ E, for if not the projection E — FE could be
adjoined to jP, again contradicting the maximality of F. Thus ̂  ̂  H^,
and they are equal.

Lemma 2.4. Let E and F be projections in 21. Then they are li-disjoint
if and only if HEUiF = 0.

Proof. If E and F are not ll-disjoint let E1 and F^ be non zero sub-
projections of E and F respectively such that there exists U in It with
FI = UEτ U~λ. By Lemma 2.3 El < HE11F, so the latter projection is non
zero. Conversely assume G = It^Xt^ φ 0. By Lemma 2.3 there exist non
zero projections Ex ^ E, Fβ < F and C7α, Vβ in H such that
(7 = ΣUxEx U-1 = ΣVβFβ V^1. Choose Eκ and ̂  such that

6?!= UΛEΛU-iVβFβVϊlΦθ.

Choose non zero projections j^ and ̂  in 21, E^^ E, F^< F such that
E7.ΛC7J1 = Gί = FβίΊ FJ1. Then F1 = (V^ Uκ) E,(V^ UΛ)~l, so E and
F are not It-disjoint.

From this point on the proof of the Comparison Theorem is a straight-
forward modification of the proof of the usual Comparison Theorem for
von Neumann algebras. For completeness we shall include a proof
based on one given by KADIS ON during lectures at Columbia University,
Spring 1963. λVe remark that it is also easy to show that the ordering <
is a partial ordering of the projections in 21. As we shall not need this the
proof is omitted. The next lemma is immediate from the definition
of-.

Lemma 2.5. // {Eκ} and {Fκ} are each families of orthogonal projections
in 21 and Eχ~Fa (resp. Ex < FΛ) for all α, then ΣEX~ ΣFX (resp. ΣEX <
•< ΣFK). If G is a projection in 33 and E ~ F (resp. E < F) for E and F
projections in 21 then GE - GF (resp. GE -< GF).



6 E. STΘBMEB:

Lemma 2.6. Let E and F be projections in 21. Then there exists a non
zero projection G in 33 such that either GE -< GF or GE > GF.

Proof. If E < F or F < E take # = /. We assume that E < F and
F ^E. In particular ^ Φ 0 Φ P. If ll^llj, =•- 0 then G = ϊλE φ 0 will
work, for 0 φ .# = 11̂  > 11EF = 0. We may therefore assume H^H^ φ 0.
Let £f be the set of ordered pairs ({Ea}, {Pα}) with first term a family of
mutually orthogonal subprojections of E contained in 21 and {Fx} same
for F, such that Ea ~ FΛ. ^ is rion null since E and F are not ll-disjoirit
(Lemma 2.4). Partially order ̂  by inclusion term wise (i.e. ({Ea}, {Pα}) ̂

,{Mβ}y if and only if {EΛ}c{Nβ} and {FΛ}c{Mβ}). Let

α}> be a maximal element. Let E0 = ΣEX, F0 = ΣFΛ9 ElL=E- E0t

and Fl =F — FQ. By Lemma 2.5, E0 ~ P0. If J^ = 0 then E = E0 ~
~ F0 ^ F, so E < F, a case which is ruled out. Thus E1 Φ 0, hence
lί̂  φ 0. Now il^Zt^ = 0, for if not then by Lemma 2.4, E^ and ̂  have
non zero equivalent subprojections which could be adjoined to {Ex} and
{Fx} respectively, contradicting the maximality of ({^/α},{^α}). Thus

UEίFι = 0, and by Lemma 2.5 lλEF = HEιF0 - H^^0 < UEιE. The
proof is complete.

Lemma 2.7. f Tλe Comparison Theorem.) Let E and F be two pro-
jections in 2ί. Then there exist two projections G and G' in 23 such that
G + 0' - / and such that GE < GF and G' F < GΈ.

Proof. Let {G^ be a maximal orthogonal family of projections in 53
such that GKE < 6̂ , and let {6%} be a similar such family with
Gf

βE>GβF for all α, /8. Let #0 - 27 #α, G'Q = ΣG'β. By Lemma 2.5,
#0# < (90̂  and (9̂  < ̂ ό^. Let S=I—GQ — G'Q + GQG'Q. If £ φ 0
there exists by Lemma 2.6 some non zero projection P in 33, P < S,
such that PE < P^7 or PE > PF. In the first case {P, GΛ} contradicts
the maximality of {6rα}, and in the second {P, Gβ} that of {Gβ}. Thus
£ = 0, I=GQ + GQ — GQG'Q. Let (9 - #0, G' = GQ — GQG^. Then
G,G' £<&,G+G' = /, and by Lemma 2.5, £# < G^7, ^P < ̂ ^.

We shall next begin the proof of an analogue of DIXMIER'S « Theoreme
d'approximatioiD), and complete it in the next section. Our proof will be
modelled on that of DIXMIER [4, Ch. Ill, § 5], but will, due to our more
complicated ordering, be more technical. If T is a self -adjoint operator
in 21, E a non zero projection in 2ί then we put

ME(T) = sup{2; ωx (T) : Ex. = xx ζ 3ff , and Σ ί^J!2 = 1} -
α α α

mE(T) - inf{2; ωx (T) : Exx = xol£je, and Σ W 2 - 1} -

If E = I we drop the subscripts and write M(T),m(T), and ω(T). If
5 is a family of orthogonal projections in 91 we put ω%(T) =
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Lemma 2.8. Let T be a self-adjoint operator in 21. Then there exist two
orthogonal projections G and G' in 33 with sum I and a self -adjoint operator
8 ζ 21, S ~ T, such that

2) ω

Proo/. Let n(T) = \ (M(T) + m(T}). There exist spectral projec-
tions Έ and F of T such that -M^T) ^ n(T), mF(T) ^ w(!Γ). By Lem-
ma 2.7 there exist two orthogonal projections G and G' in 93 with sum
/ such that EG^FG and FGf <EGf. Thus there exist orthogonal
projections EΛ in 21 such that GE = ΣEX, and there exist Ux in 11 such
that the projections UKEX U~l are all orthogonal, and Gl = Σ U^E^ U~l ̂
^ FG. Similarly there exist orthogonal projections Fβ in 21 such that
ΣFβ = (7./P, and JF ̂  6 it such that the projections WβFβ W^1 are ortho-
gonal, and G[ = ΣWβFβWji ^ EG'. Let F'Λ = UΛEΛU^1

9 so GI = ΣF'Λ.
Let T'Λ = TF'Λ, so TG1 = ΣT'Λ. Let ̂  = WβFβWβl, so ̂  - ΣE'β. Let
T^ - T^, so TG[ = ΣT'β. Let Tκ = TEa, Tβ - TFβ. Thus T^^J - ΓTα,
TG' F =-- Σ Tβ. T can thus be written as an orthogonal sum as follows:

T= TEG+ TG±+ T(FG—G1)+ TFG' + TG[+ T(EG' — G[)

= ΣTΛ + ΣT'Λ+ T(FG—G1) + ΣTβ + ΣT'β+ T(EG'-G[}.
Let

^ + ΣU~lTf

xUa+ T(FG~G1) +

βWj* + ΣWjlT'βWβ + T(EQ'-G() .

Then all summands in sums for S and T are orthogonal, so S ~ T. Note
that

T'x UXE = TF'X UXE =TUXEX U^ U,E=TU,Ee[.
Therefore

= inf {Σ ωx (Σ U-i T'x Ux) : GExe = xβζ^, Σ\\xβ\\z = 1}
ρ ρ α

= inf {Σ (TU.E.%, UxExxs) : GExe = xe ζ #>, Σ\\xβ\\* = 1} .
ρ α

= inf {Σ ωUB , (T) : OExQ = xg 6 X>, Σ\xβ\* = 1} .

NOΛV,

= 2 =II UΛEΛX^ = ΣΣ ll^^l!2 = Σ * =
ρ α

since

and
EGxρ = xρ.
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Since also
U.E^ζF'^

we have

^T'ΛUΛ) ^ mGι(T) ^ mf(T) ^ n(T) .

Consequently,

= TEG + TG^ T(FG~G^} ^

m(T) EG + n(T) Gl + n(T] (FG—GJ
l)G1 + (ΣU~lT'ΰcUΰc)EG + T(FG~G1) ^

^ m(T) G1 + n(T)EG + n(T) (FG—GJ .

Adding these two inequalities we obtain,

%(T + S)G^% (m(T) + n(T}) (G1 + EG) + n(T) (FQ—GJ ^

Thus
mG(| (T 4- 8)G) > MίT)-j ω(T).

Since clearly,

(I) follows.
In order to show (2), a computation like the one above shows

Mpff(ΣWβlT'βWβ) < n(T). Thus

TG' < M(T)FG' + n(T)G[ + n(T) (EG' — G[)

Now continue as above to show (2).
Lemma 2.9. Let T be a self-adjoint operator in *Ά, 5 a fin^e family of

orthogonal projections in 33 with sum I. Then there exists a finite family
5' of orthogonal projections in 33 with sum I and 8 ~ T in 2ί such that

ωr(|(Γ + S))ί:fω(T).

Proof. If the lemma is true for a finite family of von Neumann
algebras, it also follows for their product. The proof is therefore reduced
to the case when 5 consists of the projection /, hence the lemma is a
consequence of Lemma 2.8, with 5' consisting of two operators.

With T self -adjoint in 21 let

£! = conv(/S:S£2l ,/S~ T) .

Inductively we let for n ̂  2,

£n = conv(£ : 8 6 31, S ~ S', S' ζ &n^) .
CO

Then £n D £w_1. We put &τ equal to the norm closure of U £n.

Lemma 2.10. Let T be self-adjoint in 31, and let ε > 0 be given. Then
there exist a positive integer n, S ζ £n, and an operator B in 33 such that
\\S-B\<ε.
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Proof. For each integer ρ> 0 there exist a family ^ = {Ev . . . , Em}
of orthogonal projections in 93 such that ΣES = /, an integer n, and
$ £ £n such that

This follows from Lemma 2.9 by iterations of p. If we choose the real
numbers oc3 properly, we have

Let B = 27α5 % Then B ζ 93, and if p is sufficiently large ||£ — J3|| < ε.

3. Automorphisms of C*-algebras

The main results of the paper appear in this section. We first study
large groups of spatial automorphisms, in \vhich case our treatment will
be related to DIXMIER'S study of the center trace in finite von Neumann
algebras [4, Ch. Ill, §§ 4, 5], and should also be compared with Example
1.1. Then this theorem is applied to representations of groups as #-auto-
morphisms of C* -algebras.

Theorem 3.1. Let 51 be a C* -algebra acting on a Hilbert space $? . Let
It be a group of unitary operators on ffl such that U(ΆU~1 = 51 for all
U £ It. Let <ε denote the center of SI", let 93 = £ r\ It', and let (51, It) denote
the von Neumann algebra generated by 51 and It. Assume there exists a
normal li-invariant state ω which is faithful on 93, and that for each self-
adjoint operator A in 51

conv(CM U-i : U ζ XI)- n 51' Φ 0 .

Then there exists a unique normal Ίi-inυariant positive linear map Φ of
5ί~ onto 93 such that

1) Φ(AB) = Φ (A) Band Φ(I) = I whenever A ζ 2l~, B C- 93.
2) // ρ is a normal Uί-invariant state of 51 then ρ = (ρ 1 93) o Φ.
If moreover we assume ω is of the form ωx with x a unit vector in ffl

cyclic under 51 such that Ux = x for all U in H then the following properties
hold :

3) (Si, Π)' - 93.
4) // P denotes the projection onto the set of vectors y in ffl such that

Uy = y for all U in It, then P is an abelian projection in (51, II) with
central carrier /, hence P (51, li) P = 93 P.

5) If ρ is a 11-invariant positive linear functional of 5ί such that
ρ ^ λωx on 5ί for some λ > 0, then there exists a unique positive operator
Bρ in 93 such that ρ = ωx(Bρ.) The mapping ρ -> Bρ is an order-iso-
morphism between such functionals and 93+.

Proof. Notice that by weak continuity, £72l~ U~l = 5l~, and
U& U~l = C for all U ζ M. Furthermore, 51 r\ IΓ C 93, for if B ζ 51 r\ W
then coπv(UBU-1 : U ζ M) - {£}, so by hypothesis 5 ζ 51 n 51' C <£.
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By [4, Theoreme 1, p. 117] there exist a locally compact Hausdorff
space TJ, a positive measure v on Z, and an isomorphism of the normed
*-algebra L™(Z, v) onto 33, and we identify 33 and L™(Z, v) by this iso-
morphism. Then the positive part 33 + of 33 is imbedded in the set 33+ of
positive measurable functions, finite or not, on Z. As is shown on [4,
p. 262] o.) extends uniquely to a faithful normal trace on 33 +. Now follow
[4, Prop. 3, p. 264]. Let 8 ζ 2ί+. The map T -> ω (S T), T ζ 33, is a normal
trace on 33. By [4, Lemme 1, p. 262] there exists a unique element
Φ(£)ξ33+ such that

ω(ST) = ω(Φ(S)T), (*)

for all T in 33+. Let /S, 8l ζ2i+, Uζ It, J7, T^ ζ 33+. Then

T) - ω(ST1T) = ω(Φ(8)T1T) ,

ω(Φ(USU-l)F) - oj(U8U~lT) - ωtσSTU"1) = ω(8T)

- ω(Φ(8)T).

By uniqueness of Φ($) such that (*) holds, Φ is linear it-invariant, and
Φ(£2rτ

1) = Φ(/S)!Γ1. Moreover, by (*) Φ (/) = /. The argument in [4,
Lemme 1, p. 262] shows Φ($) is the unique operator in 33 such that (*)
holds and that Φ can be extended by linearity to a positive linear
It-invariant map of norm 1 of 2l~ into S3 such that Φ 33 is the identity
map. Φ is normal. In fact, let {$α} be a monotone increasing generalized

sequence in 3ί+ with least upper bound 8 in 2l+. Then, since Φ is positive
and of norm 1, (Φ($α)} is a monotone, increasing generalized sequence
in S+ with a least upper bound Q. Since 0}(8XT) - ω(Φ(8a)T) for
Tζϊβ+7 ω(8T) = limω(8ΛT) = lim oj (Φ (#α) T) = cα(QT), so Q = Φ(£)

α α

by uniqueness. Φ is normal.
Now Φ : 21- -> 93. In fact, since 33 - <£ π Hr and ί/£ U~l =- € for all

U in It the results of section 2 are applicable to S, 33 and It. Let -4 be a
self -adjoint operator in 2ί. Let Ŝ  = conv(C7^4 U~l : C7 ζ It). By hypo-
thesis S Ĵ r\ S φ 0. Say B ζ S?J r\ (£. Then for each positive integer j
there exist by Lemma 2. 10 operators 8jζ$,B, Bό ζ 33 such that
H/Sj — Bj\ < 2~j. Now Φ is normal, hence weakly continuous on the
bounded sets $J and £j. Since also Φ is U-invariant Φ(Kj)==Φ(£j5)

. Thus Φ (Sj) = Φ(B) = Φ(A) for all /, and Φ(^) - J5r Thus

In particular, {JS^} is a Cauchy sequence converging uniformly to Φ(A).
Thus Φ(u4) ζ 33, Φ : 21 -> 33, and by continuity Φ : 21- -> 33 as asserted.
Furthermore,
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so Sj-*Φ(A) uniformly; in particular Φ(^4) ζ S_g r\ 93. Let now
3nA = conv(£β :B ζ SξJ n S)~. Then by the weak continuity of Φ on
bounded sets, Φ(3RA) = {Φ(A)}, and Φ(A) £ $RA r\ 93. Let Φl be an-
other map with the same properties as Φ. Then by the arguments above
applied to Φ15 Φ1 (A) ζ 2RA n 93. However, if T ξ 3H^ n 93, then T = Φ(T)
= Φ(^), so 2ft^ n 93 = (Φ(^)}5 and Φ1 = Φ,Φ is unique. This completes
(1) and assertions of Φ preceding (1).

In order to prove (2) let ρ be a normal It-invariant state of 2ί. Then
by the arguments above, {ρ(A)} = ρ(2H^) for each self-adjoint operator
A in 21. Thus ρ(A) = ρ(<3RA r\ 93) = ρ(Φ(A)) = (ρ|93) o Φ(A), and (2) is
proved.

Assume now ω = ωx with # a unit vector in ffl cyclic under 21 and
such that Ux = x for all U in H. Then # is a separating vector for 21', so
in particular for (£, and hence for 93. Thus ωx is faithful on 93. By de-
finition 93 C 2Γ π U' = (21, II)'. Let J5' be a positive operator in the von
Neumann algebra 2Γ r\ 11'. Then ωB*x is a normal H-invariant positive
linear functional on 21. In fact, if U ζ It and -4 ζ 21 then

ωB>x(U-^A U) = (A UB'x, U B' x) - (^4 5'α, 5^) - ωB>x(A) .

Now ω^'a ^ \\B'l2ωx on 21. By the Radon-Nikodym Theorem, see e.g.
[4, Theoreme 3, p. 89], there exists a unique positive operator B in 93
such that ωjB'aj = ω^ on 93. But ω^ is H-invariant, so by (2) ω^^)

= ωBx(Φ(A)) - β>£a.(^[)for all A in 21. Thus for S, Tin 21,

= (T*SB'x, B' x) = (T*SBx, Bx) = (B*Sx, Tx) .

Since x is cyclic under 21, B1 2 = ^2. Since 5r and B are both positive,
B' = B ζ 93, and 2Γ n H' - 93, (3) is proved.

Let P denote the projection onto the subspace of vectors y such that
ϋy = y for all ϋ in II Then Px - x so P Φ 0. If y ζ ̂  then Z7P?/ - Py
for all ϋ in H, so UP = P = (C7P)* - P C/*, and ί7P - P = P Γ7. If
5 ζ 93 is self-adjoint then U B P = B U P - B P, so for y ζ J f ,
PBPy=BPy, and BP - P£P - (PBP)* - PJ5. Thus P ζ 93'
- (21, II), by (3) and the Double Commutant Theorem. Let A ζ 21. Then
PA P - P UA U~1P by the above for all U in U. Let S ζ <2RA. Then a
trivial argument shows PAP = PS P. Hence PA P = PΦ (A) P

n
= Φ(yl) P ξ 93 P. Operators of the form Σ fj A j C73 , the sum being finite

? = ι
with ^^ £ 21, ZTj ζ H, are weakly dense in (21, It). Therefore, in order to

show P(2ί, lt)P = 93 P it suffices to show P [J Ai UΪP ί ̂ p for eacn

? = ι
positive integer n. lί n = I, PA1 U1P = PA^P ζ 93 P by the preceding
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argument. Assume it true for n — 1. Then

j = i
by the induction assumption. Hence P (21, li)P = 33 P. Since x is a
separating vector for 33, and Px = x, P is separating for 33. Since 33
equals the center of (91, XI) the central carrier of P in (91, 11) equals 7, (4)
is proved.

Let ρ be a it-invariant positive linear functional of 21 such that
ρ ^ λωx for some positive real number λ. Then there exists by [4,
Lemme 1, p. 50] y ζ 3%* such that ρ = ωy, hence ρ is normal. As was
pointed out in the proof of (3) there exists a unique positive operator
BQ in 33 such that ρ(A) = co^T?^) for all A in 91. Thus the mapping
ρ -> J5ρ is positive, and by uniqueness linear. If E ζ 33 and the functional
A -> ωx(BA) is positive on 2ί then, since it is It-invariant and majorized
by a multiple of cox, there exists a positive operator B' in 33 such that
o)x(AB] = ωx(ABr) for all A ζ 91. The argument used in proving (3)
shows B = B' ', hence 7> ^ 0, and the mapping ρ -> Bρ is an order-iso-
morphism, i.e. if ρ1 and ρ2 are It-invariant positive linear ίunctionals of 2ί
majorized by multiples of ωx then BQι + Qz — BQι + BQz, and ρ1 ίg ρ2 on 21
if and only if Bβι < BQz. The proof is complete.

In section 2 we promised to prove a variant of DIXMIER'S «Theoreme
d'approximation» when 21 is abelian. This can now be done if 91 is assumed
to be "finite".

Corollary 3.2. Let 21 be an abelian von Neumann algebra, II a group of
unitary operators such that £721 U~λ = 21 for all U in It. Let 33 = 91 n It'
and assume there exists a normal Iλ-invariant state which is faithful on 33.
Let A be a self -adjoint operator in 91, and let $,A be defined as in section 2.
Then £,A r\ 33 consists of exactly one operator.

Proof. With Φ the mapping of 91 onto 33 constructed in the above
theorem we showed $,A r\ 33 = {Φ(A}} if A belonged to the center.

We shall now apply Theorem 3.1 to representations of groups as
*- automorphisms of (7*-algebras. If ρ is a state of a (7*-algebra 91 then ρ
has a unique decomposition ρ = ωx o πρ as a composition of a vector

state and a cyclic representation. We shall mainly be concerned with
large groups.

Definition 3.3. Let 21 be a (7*-algebra and G a group. Let g -> τg be a
representation of G as *- automorphisms of 21. We say G is represented by
r as a large group of automorphisms of 21 if for all 6r-invariant states ρ and
all self -ad joint A in 2ί

conv(πρ(τ5 (A)) : g ζ G}~ P, πρ(2ί)' ± 0 .
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Once and for all we introduce some notation.
Notation 3.4. Let 21 be a (7*-algebra, G a group, and g -> τg a repre-

sentation of G as *- automorphisms of 2ί. 1(31) denotes the 6r-invariant
states of 21, i.e. the convex compact set of states ρ of 21 such that
ρ o τg = ρ for all g £ G. If ρ ξ /(2l), ρ = ω^ o πρ, where τrρ is a represen-

tation of 21 on a Hubert space Jfρ, and xρ is a unit vector in Jti?ρ cyclic

under τrρ(2ί). There is a unitary representation g -> J7ρ(<7) of 6? on Jfρ,
strongly continuous if (r is a topological group and g ->rg is strongly
continuous, such that Uρ(g)xρ = £ρ and πρ (τg ( J. )) = £7ρ(<7) πρ(^4) UQ(g)~l

for all g ξ 6? and J. in 21, see [16]. We denote by U(ρ) the group of the
unitary operators U ρ ( g ) , by £(ρ) the center of πρ(2l)~, and by 23 (ρ) the
von Neumann algebra S(ρ) r\lt(ρ)'. We shall denote by PQ the pro-
jection onto the set of vectors y in 3?q for which UQ(g}y = y for all

gζG. Then Pρα:ρ = a:ρ so PQ Φ 0. We denote by 5?ρ(^4) the set

for each self -adjoint ^4 in 21. Thus

®e(A) = conv(UQ(g) πe(A) UQ(g)^ : g ζ G) .

In this notation τ represents G as a large group of automorphisms if and

only if ®β(A)~ n πρ(2l)' Φ 0 for all ρζ/(2l) . Thus Theorem 3.1 is
applicable to πρ(2l) and U(ρ). We denote by Φρ the map Φ constructed
in Theorem 3.1 of πρ(2l)~ onto 93 (ρ).

It should be remarked that if G is represented as a large group of
automorphisms of 21 then by Theorem 3.1 (4), PQ πρ(2l) Pe is an abelian
family of operators for each ρ ζ /(2l). This means that 2ί is (r-abelian
in the sense of LANFORD and RUELLE [14]. They show [14, Theorem 2.3]
that 21 is 6r-abelian if and only if for all self -adjoint A, B in 21, and all

as A' runs over conv(τ^(^l) : g ζ G), where [ , ] denotes the commutator.
We shall now characterize large groups in a similar fashion, thus pointing
out how our structure is stricter than theirs. If ρ is a state of 21 and
S ζ 21 we denote by ρ# the positive linear functional A -> ρ (S*AS) of 21.

Theorem 3.5. Let 21 be a C*-algebra, G a group, and g -> τg a representa-
tion of G as * -automorphisms of 21. Then τ represents G as a large group of
automorphisms of 21 if and only if for each ρ ζ /(2ί), and each finite family
[A, BI} . . . , Bn} of self -adjoint operators in 21

inf\ρs([A', B,])| = 0, j=l,...,n,

for all S in 31, where A' ranges through conv(τg(A) : g £ G).
Proof. If /(2l) = 0 the theorem is trivial, so assume ρ £ 7(21). Assume

G is large. Choose a net {πρ(Aκ)} in &ρ(A) such that πρ(Aκ) converges
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weakly to an operator D ζ &ρ(A)~ r\ πρ(Sl)'. Then

weakly, whenever B^ . . ., Bn is a finite set of self-adjoint operators in 21.
Therefore, for given ε > 0 and S in 21 there exists α such that

\ρs([AΛ9 Bj])\ = |([πρ(Λβ), πρ(B,)] πρ(S)xρ, πQ(8)xQ)\ < ε .

Thus inf \ρs([A', B3 ]}\ = 0 for all S in 21. Conversely assume this con-
dition holds. Then, since xρ is cydie,

iπt\ωy([πρ(A'), πρ(JS3 )])| = 0 for all y ζ Jf .
Thus

inf|ω([πρ(^t/)^ρ(^ )])| = 0, ?'= 1, . . . , r a ,

for all weakly continuous states ω. Let J^n = ̂ ρ © © ̂ ρ, the sum
taken n times. Let 23 (^fn] denote the bounded operators on J^n. The
map χ : πρ (21)- -> 93 (^n) by

n
o y ^ r or / 7? M

is weakly continuous. Now inf o)(%(A"^)\ = 0 for all weakly continuous
states ω of 93 (^fn), as A" runs through &ρ(^4). Since &ρ(A)~ is weakly
compact, ^(S?ρ(^)~) is weakly compact, hence there exists Dζ $Q(A)~
such that χ ( D ) = 0, i.e. [D, πe(Bί)] = 0,7 - 1, . . ., n.

Let 9l(Bί9 . . .,Bn) = ®e(A)- n (πρ(J5,-) : / = ! , . . . , w}'. By the
above 2l(j51? . . ., jBn) Φ 0. Clearly, if (7l5 . . ., (7m is another finite famity
of self-ad joint operators in 21

Hence the sets 2l(J51; . . ., Bn) have the finite intersection property. As
they are all weakly closed subsets of the weakly compact set &ρ(A)~
they have a non empty intersection. Thus $ρ(A)~ r\ πρ(2l)' Φ 0, and G
is represented as a large group of automorphisms of 2ί. The proof is
complete.

If G is represented by τ as a large group of automorphisms of 21 it
follows from the remarks preceding Theorem 3.5 and [14, Corollary 3.2]
that /(SI) is a simplex. We shall include another proof of this more in the
spirit of our treatment.

Theorem 3.6. Let 21 be a C*-algebra. Let G be a group represented as a
large group of *-automorphisms of 21. // /(2l) Φ 0 then it is a simplex.

Proof. Let //(2l) denote the cone in 21* of positive linear (r-invariant
functionals. Let ρl5 ρ2 ζ //(2l). Let ρ = ρl + ρ2, and assume ρ(/) = 1.
Since ρ, < ρ, ρ5 = αλ, o πQ with ωs XI (ρ)-invariant and 0 :£ ω} ^ ωx .

By Theorem 3.1 (5) there exist unique positive operators B^ j — 1,2,
in 93(ρ) such that ω, (πρ(^)) - ωx (Bsπq(A)) for all A in SI. NOΛV 93(ρ)



Large Groups of Automorphisms 15

is an abelian von Neumann algebra, hence its self -adjoint part is a
lattice. Let B = B1 Λ 7>2. Let ω = ωx (B ). Since the map ρ -> BQ in

Theorem 3.1 (5) is an order-isomorphism oj is the greatest positive linear
XI (ρ) -in variant functional smaller than or equal to co/, j = 1,2. Hence
oj o πQ = ρλ Λ ρ2 in L(2l), so the latter is a lattice; 7(21) = L(2l) n $(2ί)
is a simplex.

Since 7(21) is a simplex each (r-invariant state can in a unique way be
written as an average over the extreme boundary of 7(21). Hence a
knowledge of the extremal invariant states is very important.

Theorem 3.7. Let $ί be a C*-algebra. Let G be a group represented as a
large group of automorphisms of 21. Use the notation in 3.4. Let ρ ζ 7(21).
Then the following five conditions are equivalent.

1) ρ is extreme in 7(21).
2) πρ(2l) W U(ρ) fc's αw- irreducible set of operators.
3) %$(ρ) is the scalar s.
4) Pρ fc's one- dimensional.
5) cα, (Φρ(A)B) - cα, (4) Os (5) /or all A, B ζ πρ(2l).

Proo/ By Theorem 3.1 (3)*2)<»3). Hence by Theorem 3.1 (4)
2) <=> 4). By Theorem 3.1 (5) 1) <=> 3). Finally 3) ̂  5), for if 5) holds
then by continuity of Φρ it holds for A, B ζ πρ(2l)~. Hence ωx |93(ρ) is

a homomorphism. Since XQ is a separating Λ^ector for 93 (ρ), 3) holds. Con-
versely, if 3) holds then ΦQ(A) = ωx (A] I, hence

and 5) holds.
The equivalence 1) <=>£)<=> 4) is also a consequence of [14, Pro-

position 4.1] and Theorem 3.1 (4). Notice that 5) is a generalized cluster-
ing property. In a number of cases 93 (ρ) = ®(ρ)> m which case condi-
tion 3) above means πρ is a factor representation. We note the following
situation where this equality prevails.

Lemma 3.8. Let 2ί be a C*-algebra. Let G be a connected topological
group. Let g-^τgbe a norm continuous representation of Gas a large group
of automorphisms of 21. Let ρbea G-invariant state and use notation in 3.4.

Proof. If g is in G then for all A in 21,

\Ue(g)πe(A) Ue(g)~i-πΰ(A}\\ = \\πβ(τg(A) -A)\\ £

Hence the representation g -* UQ(g) Uρ(g)~1 is a norm continuous
representation of G as *- automorphisms of πρ(2ί). By [12, Corollary 8]
there exist unitary operators Ugm πρ(2ί)~such that Uρ(g) πρ(A) Ug(g)~l

= Ugπρ(A)U~l for all A in 21. If Sξ£(ρ) then Uρ(g) SUQ(g)-1

= UgSU~l - 8 for all g ζ G, so 8 ζ U(ρ)f n € - 93 (ρ), and 93 (ρ) = S(ρ).
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The nice simplexes are those with closed extreme boundary, hence
those for which the extreme points form closed sets. For completeness
it is desirable to know when the extremal 6r-invariant states form a
closed subset of 7(21). As the theorem to follow is of general nature, we
do not assume G large. The reader should only keep in mind Theorem 3.6.

Theorem 3.9. Let $i be a C* -algebra. Let G be a group and g -> tg a
representation of G as * -automorphisms of 21. Assume /(2l) is not empty.
Then /(2l) is a simplex with closed extreme boundary if and only if there
exist an abelian C*-algebra 23 and a positive linear G-invariant map Φ
of 21 onto a norm dense subset of 23 such that Φ(I) = I and such that the
map Φ* : ρ -> ρ o Φ maps $(23) onto /(2l). In this case 23 is unique up to
an isomorphism.

Proof. If 23 and Φ are as described then Φ* is an affine isomorphism
of $(23) onto / (21). Since S (23) is a simplex with closed extreme boundary,
so is 7(21). Conversely, assume 7(21) is such a simplex. Let Z denote its
extreme points. Then Zι is a compact Hausdorff space. Let 23 = C(Z).
Define a map Φ : 21 -> 23 by Φ(A) (z) = z ( A ) , z f Z . Then Φ is positive,
linear, Φ(7) = 7, and if g ζ O then Φ(τg(A)) (z) = z(τg(A}] = z ( A ]
= Φ ( A ) ( z ) , so Φ is 6r-in variant. In particular, if ρζ$(23) then

If A is self -adjoint in 2ί let A be the w*- continuous real affine function
on $(2ί) defined by A ( ρ ) = ρ ( A ) . An application of the Hahn-Banach
Theorem shows that the set oί restrictions A \ I (21) is norm dense in
Aff(7(2l)) — the w*-continuous real affine functions on 7(21). Since Z
is closed, the map b -> b Z is an order-isomorphism of Aff(7(2l)) onto
CR(Z) — the real continuous functions on Z, see e.g. [1, Satz 4.4.4].
Thus Φ(2l) is norm dense in 23 = C ( Z ) . I ί zζZ let ez be the evaluation at
z of functions in C(Z). The pure states of 23 are the states of this form.
Let ρ ζ 7 (21). Then there exists a unique measure μ on 7(21) with support
in Z such that

= fφ*(ez)dμ(z)

z
where ρ = / ezdμ(z) £ $(23). Thus Φ* maps $(23) onto 7(2ί). Let 23X

z
be another (7*-algebra, and Φ1 a positive linear (r-invariant map of 2ί
onto a dense subset of 23j such that Φx(7) = 7, and Φf ($(23^) = 7(21).
Then Φ*-1 o Φ* is an affine isomorphism of $(23^ onto $(23). Thus 23j
is *-isomorphic to 23, see e.g. [11, Corollary 4.7].

4. Traces of C*-algebras

THOMA [17, p. 116] has shown that the normalized traces of a
(7* -algebra 21 form a simplex and that the extremal traces are exactly
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the factor traces, the latter being defined as those traces ρ for which
πρ(2l)~ is a factor. We shall show this by showing that the inner auto-
morphisms of 21 is a large group of automorphisms. If 21 is a (7* -algebra
we denote by U (21) the group of unitary operators in 21.

Theorem 4.1. Let 21 be a C* -algebra. Then It (21) is represented as a
large group of automorphisms of 21 via the representation U -> U U~l. In
particular, if there exists a normalized trace of 21, then the normalized traces
form a simplex the extreme points of which are the factor traces.

Proof. Assume ρ = ωx o πρ is a normalized trace. Let U ζ II (21),

and let Uρ denote the unitary operator on ̂ ρ such that

πβ(U) πβ(A) πs(U)-ι = πe(UA C/-1) = ϋ^A) U"1 , (**)

for all A ζ 21, and such that UQxQ = XQ. Let 11 (ρ) denote the set of the
Uρ. If 23 is a (7*-algebra denote by 11(93, 2) the set of unitary operators
in 93 whose distance from / is less than 2. Then by [9, Theorem 2,
Lemma 5] and their proofs,

11(̂ 21)-) CUCM21)- 2)- = H(πρ(2l), 2)-Cπρ(Zί(3l))- .

Hence by [4, Theoreme 1, p. 272] and (**)

conv(τrρ(Z7.4 C/-1) : ϋ £ H (21))- n πρ(2l)' φ 0 ,

and 11(21) is large. If S ζ S(ρ) then S = πe(ϋ) SπQ(ϋ)~l = UρSU~*
for all ϋ in It (21). Thus £ ξ 93 (ρ), and 93 (ρ) = £(ρ). By Theorem 3.7 ρ is
extremal if and only if it is a factor trace.

5. Asymptotically Abelian Algebras

It is clear from Theorem 3.5 that the results on large groups of auto-
morphisms obtained in section 3, make it possible to obtain considerable
generalizations of the known theory for (7* -algebras asymptotically
abelian with respect to the translation group Rn, as obtained in [7, 13, 15].
We shall in this section discuss one generalization.

Definition 5.1. Let 21 be a 0*-algebra. Let G be a group. We say 21
is asymptotically abelian with respect to G if there exists a representation
g -> τg of G as *. automorphisms of 21 such that for each self -adjoint
operator A in 21 there is a sequence {^n(^4)}n=ι,2,... °̂  elements in G
such that

for all B in 21.
In the usual definition one assumes lim ||[Tg(^t), J5]|| = 0 whenever

9~> °°
g -> oo in Rn, and that the representation g -> rg is strongly continuous.
When G = Rn our definition has the advantage that it also includes
situations in which one only requires g to diverge to oo in some pre-
scribed set. If 21 is asymptotically abelian with respect to G then Theo-
2 Commun. math. Phys., Vol. 5
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rem 3.5 shows r represents G as a large group of automorphisms of 21. We
summarize the results in Theorems 3.1, 3.6, and 3.7 as follows.

Theorem 5.2. Let $ί be a C*-algebra which is asymptotically abelian
with respect to the group G. Let g -> τg be the corresponding representation
of G. Use the notation introduced in 3.4. Suppose ρ ζ /(2l). Then,

1) /(2l) is a simplex.

2) (jrρ(3l)ull(ρ))' = 9ϊ(ρ).
3) PQ is an abelian projection with central carrier I in (πρ (21) w It (ρ))"
4) The following five conditions are equivalent.
i) ρ is extreme in /(2l).
ii) πρ(2l) \J H(ρ) is an irreducible set of operators.
iii) 33 (ρ) is ίΛe scalar s.
iv) Pρ is 0?&e dimensional.

v) cϋ^ (Φe(4) 5) - cα, μ) 0)3 (5) /or all A, B ζ πρ(2l).

For the rest of the section we shall be concerned with the structure of
Φρ and the clustering property (4 v) in the above theorem.

Lemma 5.3. Let $1 be a C* -algebra which is asymptotically abelian with
respect to the group G. Let A be a self -adjoint operator in 21. Let D be a weak
limit point of the sequence {Uρ(gn( A)} πρ(A) UQ(gn(A))~1}. Then D ζ S(ρ).

Proof. Let gn = gn(A). Since πρ is norm continuous,

= 0

for all .Z? ξ 21. Let .B £ 21, let xlt . . . , #fc, t/j, . . . , yk be unit vectors in
c ρ̂, let ε > 0. Let τ& be so large that

, πQ(B)} - [Ue(gn) πβ(A) Uβ(gn)~\ πβ (£)])*„ Vi)\ < ε/2

for / = 1, . . . , k, and

πβ(A) Ue(gn}~\ πβ(B)]\\ < ε/2 .

Then |([D, π β ( B ) ] X j , y})\ < ε for j = 1, . . .. k. Since ε, x, , y} are arbi-
trary, [D, πβ(B)] = 0, and D ζ πρ(9ί)- n πρ(2ί)' = S(ρ).

Using the terminology of [13] we say ρ in /(2ί) is strongly clustering if

whenever A and B are self -ad joint in 21. This condition is very strong,
as our next theorem shows.

Theorem 5.4. Let 2ί be a C*-algebra which is asymptotically abelian
with respect to the group G. Let ρ be a G-invariant state of 21. Then ρ is
strongly clustering if and only if ρ is extreme and

Φe(πβ(A)) = weak lira Uβ(gn(A)) πe(A) Ue(gn(A))^

for all self -ad joint A in 21.
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Proof. Let gn = gn(A). Assume ρ is extreme in /(2l) and that Φρ is
given by the formula above. Then by Theorem 5.2 (4 v),

= limcα, (ϋβ(gn) πe(A) Ue(gn)-ι πβ(B))
n Q

Conversely, assume ρ is strongly clustering. Then ρ is extreme. In fact, if
ρ is not extreme there exists by Theorem 5.2 (4 iv) a unit vector y in Pρ

such that y is orthogonal to xρ. Let ε > 0 be given. Choose B ζ :τrρ(2l)
such that \\y— Bxρ\\ < ε/3. Let A ζ 21 be self-adjoint, and ||πρ(4)|| < 1.
Then for w sufficiently large,

|(*/,πρμ)*ρ)| = |(C/ρωπρμ) Uρ(gn)-^,xρ)\ <

^ \(UQ(gn] πQ(A) Uρ(gn)~ι Bxρ, xρ}\ + ε/3 ^

^ K (πρ (A)) ωx(B)\ + ε/3 + ε/3 ^

^ \(BxQ,xe)\ + 2ε/3 ̂

^ ε.

Since ε is arbitrary, (y, πρ(A)xQ] — 0 for all A in 21. But xρ is cyclic,
hence y = 0, a contradiction. Thus Pρ is one -dimensional, ρ is extreme.

Let D be a weak limit point of the sequence {UQ(gn)πe (A) UQ(gn)~1}.
By Lemma 5.3 D £ S(ρ). Choose a subsequence {Z7ρ(<7Wj) πρ(^4) ̂ (g .̂)"1}
which converges weakly to D. Since ρ(τgn(A)B} -*- ρ(A) ρ(B) the same
convergence holds for the subsequence ρ(τg (A) B). Hence, by the above

paragraph and Theorem 5.2 (4 v),

ωXβ(Φe (πβ(A)) πe(B)) = ω^π^A)) ωXg(πe(£))

(Ue(gn.) πρ(A) Ue(gn)-^ πe(B))

for all B ζ 21. Thus

(πρ(B)xρ) (Φρ(πρ(A}} - D)xρ} = 0

for all B ξ 21. Since xρ is cyclic, (Φρ(πρ(^4)) — D}xQ = 0. Since xρ is
separating for (E(ρ), Φρ (πρ(A)} — D. Thus Φρ (πρ(A)) is the unique weak
limit point of the sequence {Uρ(gn) πρ(A) Uρ(gn)~1}) hence this sequence
converges to Φρ(πρ(^4)). The proof is complete.

KADISON and RINGROSE remark in the introduction of [12] that the
assumption of the spectrum condition is closely related to the assumption
that G is a topological group and the representation g -> τg is norm
continuous. Our next result should therefore be compared with [2,
Theorem 1], and Lemma 3.8
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Corollary 5.5. Assume 21 is a C*-algebra asymptotically abelian with
respect to the group G. Let ρ be a G-invariant state such that C (ρ) = 23 (ρ).
Then

Φρ(πρ(A)) = weaklim^^^)) πQ(A) UQ(

for each self -adjoint operator A in 2ί. Moreover, the following three conditions
are equivalent.

1) ρ is extreme in 7(21).

2) nρ is a factor representation.

3) ρ is strongly clustering.

Proof. Let A be self -adjoint in 2ί. Let D be a weak limit point of the
sequence {Uρ(gn(A))πρ(A) UQ(gn(A)^}. By Lemma 5.3 Dζ £(ρ) = 93(ρ).
But from the proof of Theorem 3.1 there is at most one point in
®ρM)-n93(ρ), namely Φρ(πρ(^)). Thus £> = ΦQ(πQ(A}}, and the
sequence converges weakly to Φρ(πρ(A)'). The equivalence of 1), 2), and
3) now follows from Theorems 5.2 and 5.4.

We conclude this section by showing that the condition (4 v) in
Theorem 5.2 reduces to the weak clustering property of RUELLE, con-
dition (2) in [15, Corollary 2], when O = Rv. Recall some of his notation.
If a = (α1, . . . , av) ζ Ev with a* > 0 we let

V

V (a) = Πaj> Λ (a) = (x ζ Rv : 0 ^ xj < ώ, j = 1, . . . , v} ,
? = ι

and

We assume lim ||[rαJ.5 B]\\ = 0, whenever α->oo in J?r. Let A be self-
ft— >00

adjoint, and let D and D' be weak limit points of sequences in the
bounded set {πQ(^\aA}} - {maπe(A)} as a -> oo, ρ ζ /(3l). By [15,
Lemma 3]

ί= lim

exists independently of the order of convergence. Choose sequences
{an} and {bm} in Rv converging to oo such that πρ(^RanA) -> D weakly,
and πρ (3RbtnA) -> Z)' weakly. Then

ί = lim ωX(DπQ (WbmA)) = ωX(DDf) .Q

Let cn be a subsequence of &n so that still πρ(3RCnA) -> D weakly. Then

t = lim ρ(manAmCnA) = limω, (Z)πρ(OTCn^))
«n, cn cn Q
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Thus \\Dxρ\\*=(Dxρ,D'xρ)^ \\DxQ\\\\D'xQ\\. By symmetry \\DxQ\\ x
x ||D'α;ρ|| = (DxQ,D'xρ). Therefore there exists a complex number λ

such that D' ' xρ = λDxρ. Since as in Lemma 5.3 D and D' belong to
C(ρ), and XQ is separating f or £(ρ), JD' = λD. Since (Dxρ, D'xQ) = §DxQ\\ x
x HD'ay, λ = 1, and D = D' '. Thus, for any sequence an -> oo,

πρ(2ttanA) -> D weakly.

Let x ζ Rv. Then

Uρ(x)DUρ(x)-ι - UQ(x) α«
= weak lim E7ρ(a;) Waπβ(A) ϋβ(x)^

an

--= weak ]im<2nanπe(A) = D .
an

Thus D ζ 93 (ρ). As argued in the proof of Corollary 5.5

Φe(πe(A)) = weak lim πρ(2ttanA) .
αw->oo

In particular, by Theorem 5.2 (4 v), ρ is extreme if and only if

ωXβ(Φe(πβ (A)) Φβ (πβ(B)))= ρ(A) ρ(B) ,

or by the above, if and only if

lim ρ(maAmtB) = ρ(A)ρ(B),
a,b— >oo

whenever A, B are in 21. This is the same as condition (2) in [15, Cor-
ollary 2].
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