
Commun. math. Phys. 3, 29—52 (1966)

Application of Spectral Representations
to the Nonrelativistic and the Relativistic Bethe -

Salpeter Equation
G. KRAMER-

Physikalisches Staatsinstitut

II. Institut fur Experimentalphysΐk, Hamburg

K. MEETZ

II. Institut fur Theoretische Physik der Universitat Hamburg

Received February 14, 1966

Abstract. The eigenvalue problem of the scalar Bethe-Salpeter equation is
solved by application of the vertical Dyson representation. The method of solution
is developed in complete analogy to the solution of Schrodinger's equation by a
Stieltjes representation in the case of a Yukawa potential. The eigenvalues are
zeros of a characteristic determinant, which can be understood as a generalization
of the nonrelativistic Jost function.

I. Introduction

Recently COESTER [1] has proposed relativistic particle quantum
mechanics as a possible alternative of quantum field theory. From the
mathematical point of view COESTER'S approach has the virtue of being
based on the firm ground of functional analysis, but physically it suffers
from serious shortcomings. It does not offer physical arguments for the
choice of interaction operators, nor does it seem possible to include the
principle of causality in a simple way. As a consequence of causality
matrix elements should satisfy dispersion relations as in field theory.

The opposite situation is encountered in field theory. We consider as
an example the formulation of the relativistic two-body system in terms
of the Bethe-Salpeter equation. Here the principle of causality is in-
cluded from the outset and possible approximations for the interaction
can be taken from perturbation theory. On the other hand the mathe-
matical structure of the eigenvalue problem is obscure. It is the purpose
of this paper to shed some light on this question.

To avoid kinematical and renormalization difficulties we consider
the B-S equation for an S-wave bound state in a super-renormalizable
theory of three scalar fields with trilinear interaction. Our approach to the
solution of the eigenvalue problem is based on a suitable adaption of
JOST'S method to the relativistic situation. We briefly review the solution
of SCHRODINGER'S equation in momentum space for an S-wave bound
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state in a Yukawa potential in Sec. II. A Stieltjes transformation leads
to an inhomogeneous integral equation for the spectral function [2], [3],
which can be solved by iteration. The relationship of this method to
JOST'S approach to a solution of the differential equation in configuration
space is investigated. In Sec. Ill we summarize the general properties
of the relativistic B-S amplitude and decompose it into a one-particle
singular and a regular part. This device is crucial for a successful adaption
of the nonrelativistic method to the B-S equation, which is the subject
of Sec. IV. We use the vertical Dyson representation as a possible
substitute of the Stieltjes representation and transform the B-S equation
into an inhomogeneous integral equation for the spectral function by
splitting off the one-particle singular part. This is done for the ladder
approximation, but the method applies equally well to the complete
B-S equation. The integral equation can again be solved by iteration,
while the boundary conditions are expressed in terms of two coupled
integral equations for the absorptive parts of the two vertex functions
with one particle off the mass shell. The Fredholm determinant of this
system is the generalization of the nonrelativistic Jost function.

II. The nonrelativistic amplitude

In analogy to the relativistic formulation we describe a bound state
of two particles in the nonrelativistic theory by the two -point amplitude

χ(xί, x,) = (2π)^<0|Γ(%(%) Vί (a:2))| P> (2.1)

where T means WICK'S chronological operator and x stands for
x = {x, XQ = t}. The field operators ^(a^) and ψ2(x2)

 are related to spin-
less particles with masses m± and m2. They satisfy the commutation
relations

[^(x,*0),^x^o)] = d(x-x'), i = l , 2 . (2.2)
All other commutators vanish. The theory is supposed to be invariant
under Galilean transformations. The invariant "mass shell" conditions
read (ft- 1):

•^Γ-Aβ-O ^-fto^O (2.3)

for the basic particles and

for the bound state with binding energy βg.
The amplitude (2.1) can be written in the form

(2.5)
\ " " I

where

φ (y) = (2π)»/« (θ T (Ψl (f ) ya (- f )) (2.6)
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According to the definition of the T- operator we have

ψ (y) = Ψl (f) Ψt (- f ) P) θ (yϋ) +

(2 π)3/2 (θ ψ, (- f) Ψl (f) I P) θ (-2/0) .

The factors of the θ -functions in (2.7) can be represented by Fourier
integrals :

(2.8)

where we have chosen the normalization :

l , i = l , 2 . (2.9)

The restriction of the support of the Fourier transforms in (2.8) to the
mass shell parabolas

is of course enforced by the conservation of particle numbers. By sub-
stitution of (2.8) into (2.7) and Fourier transformation we obtain the
following representation of the two -particle amplitude in momentum
space :

/(«)= (2π)* ' ψ(y)

(2»)4
(2.11)



32 G. KRAMER and K. MBETZ:

Let us assume that the bound state has zero angular momentum.

f(q) can then be considered as a function of the two Galilean invariants

P . \ 2 /P \ 2

p IP. }
\~2 *>/ * <2

The sum % + «2 is independent of <?0 and related to the energy of the

relative motion :

k2 m2(τ+q)~~TOl(~2~~~'ϊ) 1 1 1
*1 + s2 = -m+ε£; k = - ̂ q^ - ̂  = ̂  + ̂  (2 13)

The matrix elements in (2.11) are the Schrόdinger wave -functions of the

relative motion. They do not depend on g0, because qQ is fixed by the

corresponding mass shell relation. Hence they depend on sl 4- s2 only.

Finally the vanishing of the equal time commutator together with (2.8)

tells us that both matrixelements can be represented by the same

function

q\Ψl (0)1 P=ί1(s1 + βj = (2π)*—q\ψ2(0)\ P . (2.14)

These statements enable us to write the ampHtude in a form that takes

into account the restrictions imposed by Galilean in variance, spectral

conditions, and equal time commutation relations :

(2 15)
= ~ 72^F (8l — i ε ) ( 8 t — iε) Γ^ + S^ *

The function

+ βj (2.16)

is the nonrelativistic vertex function.

The properties of the vertex function depend on the dynamics of the

system under discussion. For comparison with the relativistic case it is

convenient to set up the dynamical problem in terms of a Bethe-Salpeter

(B-S) equation. The B-S equation with a local two-particle potential

F(X!— x2) reads (d10 = djdx^ etc.)

ZJ I y (x x )

= * F (Xj — x2) δ (xw — x20) χ (xlf x2) .

Separation of the center of mass (s. (2.5)) leads to

id + .1 (f * p )2} x
o 2m2\ 2 y] / (2.18)
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The Fourier transform of (2.18)

x

X (2jϊ)» F(q-q') /(<?') (2.19)

«/

has the structure required by (2.15). If we introduce the ,,Ansatz" (2.15)
into (2.19), we can perform the q0 integration to obtain SCHBODINGEB'S
equation in momentum space for the wavef unction F (s1 + s2)

) F(k — k').F(k'2). (2.20)

The potential in closest agreement with the relativistic B-S equation,
we shall study later on, is the Yukawa potential

Γ) (2.21)

where λ and μ are parameters. The equation

(fc-^. + „*»").
(2.22)

has been solved by WANDEBS [2] and BLANKENBECLEB and COOK [3] by
means of a Stieltjes transformation that displays the analytic properties
of the wave function F(k2). For comparison with the solution of the
relativistic problem we briefly outline this method in a form convenient
for our purposes.

We consider (2.22) as an integral equation for the nonrelativistic
vertex function

Γ(k*) = (F+α2)^2) . (2.23)

Introducing the spectral representation (Stieltjes transform)

8 ' - p (2.24)

we obtain

(2.25)
/ JL X V

X

3 Commun. math. Phys., Vol. 3
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The integrals over k space occurring in (2.25) are of the same type and
can be simplified by symmetrical integration, e.g.

CO 1

' x_ k 2 + . y. +
o o (2.26)

X '2 z(l— z) k* + zμ2 + (1— z)α2 '

The integral over z can be dispersed with the standard formula (s. [4]) :

i

J dz 2(1—2) &2 + z(μ* + V*) + (I — z) (α2 -f &'2)
° oo (2.27)

_2 f ___ *^—^._^- l

__ _ J Ϋλtf, μz + ~V*> α2 + F2) s' + &2 >
(γμa + k'2 -f J/αa + k'3 )2

where
λ(a, b, c) = az + b*+c* — 2ab — 2ac — 2bc. (2.28)

Finally we substitute (2.27) into (2.26), interchange the order of integra-
tions, and evaluate the k' integral. This yields the result of BLANKEN-
BECLEB and NAMBU [5]

Using (2.29) we may derive from (2.25) an integral equation for ρ ( s ) ,

ρ(s) - λ'Γ(-α2) ρM(β) θ(s- (μ + α)2) - λ'ρM(β) X

__ (2.30)

with

Equation (2.30) may be considered as an inhomogeneous integral
equation for the function ρ (s)/(s — α2), which can be solved by inversion

Γ pθ)M '
+ λ'fds'B(8, s') λ'Γ(-«?) jr^ θ(s' - (μ + α)2) .

It is shown in Appendix A that the resolvent E (s, s') is bounded by

00 I

r Λ(I> (r\

M / d*-£Ά\ (2-32)
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It is, therefore, an entire function of λ' and can be expressed by the
Neumann series

R(s,s')=Σ λ'^KWφ,*) where E(s,s') = —
n = ι (2.33)

Observing that

^.-θ(8-(μ + »)ί!)=-π(8,-0f) (2.34)

we can write the solution (2.31) in a more compact form

_1̂ L = _Λ'Γ(-α») B(β, -«a) . (2.35)

Integration of (2.35) yields

Γ(— α2) (1 + λr Jds E (s, — α2)) = 0 , (2.36)

because of (2.24).
It is important to realize that the function

l + λ' dsR(s, — α2) (2.37)

is the Jost function f0(k) with argument k = — ίoc. As is well known
(s. e.g. [6]), fQ(k) is analytic in the complex k plane cut along the positive

imaginary axis from k = -~- i μ to infinity in the case of a Yukawa

potential (2.21). This is just what the representation (2.37) says. Hence
(2.36) is identical with the statement that a bound state is a zero of the
Jost function on the negative imaginary axis. As is seen from (2.36) and
(2.33) zeros can occur only for an attractive potential (λr > 0), because
/o (—i α) > 0 if λ' < 0. According to the general properties of the Jost
function the number of zeros is finite [6].

III. General properties of the relativistic amplitude

The simplest matrixelement arising in the field-theoretic description
of a bound state due to the interaction of two fields is the two -point
amplitude

where T is again WICK'S chronological operator and x is the four-vector
(cc°, x). For the sake of simplicity we assume that the field operators
^i(^i) an(i ^2(^2) are asymptotically related to neutral scalar particles
with masses ml and m2, and transform like scalars under the inhomo-
geneous Lorentz group. They are supposed to commute for spacelike
distances

[^(30,̂ (30:1 = 0, (*-a02<0, i , f c = l , 2 . (3.2)
3*
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The mass shell conditions are

Pι = Pw — Pι = ™f;

for the basic particles and

= £»|0 — pi - m|

for the bound state with binding energy εB and spin zero.

By translation invariance we have

where

We decompose φ (y) according to the definition of the T-operator

φ(y) = (2π)3/2(θ A1 (f) A, (- f)

+ (2π)»/"(θ Az (- !) A (f) P)θ(-y0) .

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

To introduce the spectral conditions we expand the matrixelements in
(3.7) in a complete set of physical states:

mf) β (?+0) X

/Q Q\

ί) β(ϊ_β) _> X

X

where

We have used the normalization

(3.9)

(3.10)

and have given the one particle contributions with masses m1? m2 and
the continuum contributions explicitly for comparison with the non-
relativistic expansion (2.8).



Application of Spectral Representations

The Lorentz invariance of the amplitude

φ(y) = I (2π)3 (f ) ,At (- f

37

(3.11)

depends critically on the condition of locality (3.2). To secure the causal
structure of the amplitude we use the Jost-Lehmann-Dyson representa-
tion in DYSON'S volume form [7] for the matrix element of the comu-
tator

(3.12)

The support of a (λ2, u) is restricted to the region

u+ ζ V+, u_ ζ 7+ λ2 ^ Max{0, m1 —
P (3.13)

— }ju\ , m2 — yu?_ } where u± = -«- ± ^5

and F+ is the forward light cone. (We assume Jf > |mx — ni2\). Ob-
serving (3.13) we can decompose (3.12) into its positive and negative
frequency part.

= ί '
J

= f

q0— ua) δ((q — u)* —

θ(u— g0) δ((q — u)*— A2) σ(

(3.14)

Ignoring the question of subtractions required by the possibly singular
behaviour of the matrix element (3.12) at y = 0 we obtain the following
representation of φ(y)

φ(y)=
Ύ^'

'/ (3.15)

By Lorentz invariance the Fourier transform
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depends only on the scalar invariants #+,#?_ and P2, where the latter is to
be considered as fixed.

A more refined representation exhibiting the one particle singulari-
ties of /(#+,#?_) is obtained from the Dyson representation of the vertex
function Γ 1:

where

ml)

(3.17)

d*u- (3.18)

and

),

(3.19)

Hence the support of ρ(λ2, u) is given by (3.13) with m1 and m2 replaced
by the least masses of the continua <73 and <72. The structure of the poly-
nomial P(q\ίq

2__) depends on the dynamics. (We have assumed that
fields and currents commute for equal times.)

Next we introduce the quantities

ra2) =

g!) - f(m15 mj) (3.20)

and decompose f ( q 2

+ , g?_) into a one-particle singular part and a regular

X (3.21)

X (mf, ml)} .

differs from the field-theoretic vertex function Γ by a factor

where J^τ and Zl^- are Feynman's Green's functions for interacting and free fields
respectively.
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The residues of the singular part are related to physical matrix elements

Γ. f(2π)'<g-|Λ(0)|P> ί-o >0

Γ0 =

In cases where single variable dispersion relations can be proved for the
vertices with two particles on the mass shell :

, (3.23)
«ι az

the one-particle singular part of f(qz

+,qL) is local, i.e. the corresponding
contribution to the matrixelement of the commutator vanishes for
spacelike distances. The singular part may then be considered as a one-
particle approximation of /(#+, #?_) that is in agreement with locality. As
we shall show in the next section, the regular part is completely deter-
mined by the singular part in the simple model of the B-S equation in
ladder approximation.

IY. The ladder approximation

We now turn to the properties of the two -point amplitude in the
ladder approximation. Let us assume that the fields A1(x) and A2(x)
interact with a neutral scalar field C(x) of mass μ with the property

<0|C(*)|P> = 0. (4.1)

Then the ladder approcimation of the B-S equation reads in configuration
space

χ(xv x2)=—g^ fd*x[ f dίxf

2ΎAF(x1~x[, w?) X

1 1
X

or in momentum space

ί_ Γ
)4 J+, -

where g is the coupling constant, and all masses have small negative
imaginary parts. The corresponding equation for the vertex function
(Γ = Γ within the ladder approximation) is

Γ( 2 2 \ _ ^2 Γ
J (q+ » Ϊ-) - (2π)i J X
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The polynomial P(q\, g?_) in (3.17) vanishes due to (4.1). Equation (4.4)
is then in agreement with locality, if the integral operator on the r.h.s.
of (4.4) reproduces the general form of the Dyson representation

0

Actually even the vertical Dyson representation

(4.6)
+ ™—\q + z—}

is compatible with (4.4). It is well known [8] that the vertical representa-
tion as proposed by DESER, GILBERT, and SUDARSHAN [9] is not a
completely general one, i.e. it does not follow from the general postulates
of local field theory alone. Its validity depends on the interaction. In
this respect we have a similar situation as in the nonrelativistic case,
where the existence of the Stieltjes transform (2.24) is due to the analytic
properties of the Yukawa potential.

Because the representation (4.6) seems to be generally valid in per-
turbation theory [10], it is natural to use it also for the solutions of the
B-S equation as has first been suggested by WANDERS [2], It remains,
however, an open question, whether every solution can be represented by
(4.6). (But see in this connection the work of IDA and MAKI [11]). We
shall not discuss the problem of uniqueness here, but restrict ourselves
to solutions of the form (4.6).

Formally (4.5) and (4.6) are related by

(4.7)

While the more general form
oo

(4.8)

of DYSON'S spectral function follows from the assumption that a Fourier -
Bessel transform exists with respect to the variables y* and y P of the
commutator matrixelement of the currents [12],

d z ρ ( ζ , z)Δ(y*, ζ)
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one cannot conclude from (4.8) via the spectral conditions (3.13) that

\ — £V ϊ — £ F

C^Max{o,i ih + ̂ -(l~»)^,m2 + ̂ -(l + »)^-}f

and (4.7) holds, because DYSON'S volume form (4.5) is not unique.
Nevertheless, we shall see that the solutions of (4.4) satisfy the support
conditions (4.10).

We now introduce the representation (4.6) into (4.4) and, similarly
as in the nonrelativistic case (2.25), split off the contribution from the
double pole term of f(q*+, q2_) (3.21):

**

_ 1

+ 1

Λ i I j*f I J ?-' β(ζ'>z')= ιλ I dz I dζ -jr, T^T
(v-zr-μ2

J J

(3?-*
. , (

»ι) (2- — ml) ' \

1+*'
2 ,

q'2 — m\ '

l-z' \

2 j 1
_ p \ 2

9 /

X

where

By sjπnmetrical integration we find

τ . Γ ™ , 1 1 1

+ ι i
π2 /• Γ
^- I dz I

J J

(4.13)
_ 1-α V ;

doc

-I 0

The integral over α can be dispersed as (2.27) :

+ι

*- 2 / dz dζ ζVλ&μww ζ _ / q + z p _ γ (4'14)
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The second term in (4.11) is of the same type, because

/74 rf1

« ( ,
+ 1

- f >-~F I az

+J *
— 1 0

where

j{/Γ2 ( ?~f v' y\ <•M Is ί % ) z ) —

1 i 1
r q'γ μ2 y^'2 m| i 0/2 m<2. 1 / p \ 2

f-^ + z'-^-J
i (4.15)

Λ
I ^^ ~ / P \

7i/f2 /;•' ^^ «\ .̂ 2 / ' z \ iii/ + (± , * , «) — ml ^ 2 j !

P2 / 1 -4- y' \
T ' \ ( Λ . «'2\ ^ .... m'2! \* i μ - 4

 m^\ 2 j / ι - ^ \ P2 _ ^
1 — 2' \ 2 / ' ^ J ^ j ^ ^ ^

2 (4.16)

ί Ml - ) o " m^ I o I / 1 i ~ \
71/2 (T t „' «\ ^ \ ^ / / A Ί- 2 \

- ^ k / . _ V b > ^ > ^ / 1 + sx I 2 /

2

+ ml ( ' 2 ) ^ ^2) 4 ? ^ < ̂

Using (4.14) we finally obtain the following equation for the spectral
function ρ (ζ, z):

ρ(ζ, z) = λΓ(m\, ml) ρ«(f, β) 0(f _ (̂  + M(2))2)-

+ι (4.17)

—1

where

(4.18)

(4.17) can be considered as an inhomogeneous integral equation for
ρ ( ζ , z), but in contrast to the nonrelativistic equation it is not of the
Volterra type. To see this, we determine the region, where the iterated
terms are different from zero. The support of the inhomogeneous term
is bounded by the curve

and for the %-th term we have

» =in (μ
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The details of this minimization problem are given in Appendix B, the
result is sketched in Fig. 1. As long as anomalous thresholds exist, the
support decreases with increasing order of iteration. This is in complete
analogy to the nonrelativistic case, where only anomalous thresholds
occur. But in the relativistic case the anomalous thresholds pass the
normal thresholds after a finite number N of iterations, and the support
of all higher order terms is bounded by the same curve WN(z), equ. (B 7),
(B 8) of Appendix B.

-1 +1 z

Fig. 1. Support of iterated terms of the integral equation (4.17) (N = 2)

The preceding discussion makes clear, in which sense the singularities
of the vertex function Γ(q2

+, q^_) in the ladder approximation are "major-
ized" by the lowest order term. From (4.6) and (4.17) we have

(4.21)

The singularities of ΓW (<?+,<??_), considered as a function of two complex
variables #+,#?_, are easily derived from (4.21). The normal thresholds

f+ = (μ + mtf, ?! = Gκ + ™a)» (4.22)

result from endpoint singularities of the ^-integration at z = ± 1 re-
spectively, while the singular manifold [13]

μ* + ml - ql 2mf mf - Pa = 0 (4.23)
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is due to a double root of

2μM(z) - (q\ - mf) _ - (<f_ - mf) = 0 .

If one of the variables q\, g?_ is on the mass shell, (4.23) gives the anom-
alous thresholds. This agrees with eq. (B 2) of appendix B, because
Φ(g?!_, #?_, P2) is proportional to the discriminant of the quadratic equa-
tion equivalent with (4.24).

A more consistent approach to the solution of the B-S equation (4.4)
is suggested by the general structure (3.21) of the amplitude f(q\, q^_).
If we split the righthand side of (4.4) into the contributions from the
complete one-particle singular part and the regular part of /(#+, g^L),
instead of separating off only the double pole singularity as in (4.11), we
are led to the following integral equation for the spectral function

ρ(ζ, z) = λΓ(m\, ml) ρ«(f, M*(z)) θ(ζ-(μ

xθ(ζ-(μ+M+(ζ',z',z)γ')-
+ 1

-λfdz'fdζ' ^'^ ρ« (ζ, M*_ (ζ', z', z)) X (4.25)

-1 Xθ(ζ-(μ + M_(ζ',z',z)γ') +

dz'fdζ'ζ,
e^(zΊρW(ζ, M*(ζ', z', z)) X

xθ(ζ-(μ + M(ζ',z',zγf),
where

\ (f, z',z) z'>z

^',z',z) z ' < z , <4 26>
in contrast to the definition (4.16) of M2. The first three terms result
from the one-particle singular part, while the last term is due to the
regular part of f(q2

+,q2_). (4.25) can also be derived from (4.17) by adding
and subtracting the last term of (4.25). Eq. (4.25) assumes a more
transparent form, if we use

s , = •
-4--**
1+z'

2
(4.27)

ι-,
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as integration variables for the second and the third term respectively
and introduce the quantities (see (4.12))

+ ι +ι
£ι (sι) = / dz ρ(M* (slt m\, z), z), ρ2 (s2) = f dz ρ(If2 (mf, <$2, z), z) . (4.28)

-i -i

This yields

ρ (ί, z) - λΓ(wf, m|) ρd) (f, Jf« (mf, ml, z)) θ(ζ-(μ + M(mf, mf, z))2)-
00

- A / dί! ̂ -̂ ρ*1) (ί, -M2 K, ml, z)) Θ(C - (μ + M (βl, mf, 2))
2)-

-0« + Jf (mf, *2! 2))2) + (4.29)

z X

X

It is shown in Appendix B that the minima of sv s2 are tantamount to
the anomalous thresholds a^\ α^2) respectively. The meaning of Qifa)
and ρ%(s2) becomes clear from the representation (4.5) with one of the
variables q2

+ , <fι_ on the mass shell,

(4.30)

Hence, the coupling constant Γ(m\, mf) of the bound particle can also
be expressed in terms of Q^(S^ or ρ2(<$2).

Eq. (4.29) should be considered as the relativistic analogue of (2.30).
It is, in fact, an integral equation of Volterra type, and the resolvent
(solving for ρ (f, z)/(f - Jf2 (z))

(4.31)

*(MΓX) = ̂ ^'V-U

is an entire function of λ. Fig. 2 shows the relevant domains of dependence
for the kernels of (4.17) and (4.29). The convergence of the Neumann
series (4.31) is proved in Appendix C.



46 G. KRAMER and K. MEETZ :

As in the nonrelativistic equation ((2.31), (2.34)) we can express the
inhomogeneous terms of (4.29) by the kernel (4.31),

Fig. 2. Domain of dependence for the kernels of the integral equations (4.17) (hatched) and (4.29)
(cross-hatched)

z'),

(4.32)

,*2,*2 Λ σ U —
___ T^~ (f" /y\ TW^ Λyyj2 Q ^\ y'\\
— jίJL ^ ̂  , <v J-fJL ^llv-i , O o j ^ / , ) \Z =-{-1 J

where the kernel in the first line is actually independent of z'. Hence

ρ(ζ, z) = λΓ(m\, ml) E(ζ, z \, m|, z'), z')l«--±ι-

z i M 2 ̂ > mi> z')> 2')i^'= -i -
(4.33)

R (ζ, z

Referring to (4.28) we get a system of coupled integral equations for
ρ^s ,) and ρ2(s2) from (4.33):

n (Sl, ml) - λ f ds{ Kn («1; s{) f1^, -11V 1? ^; j i iiv ι> i/ ^ — m|

, m
(4.35)
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where e.g.
+ι

*n(*ι, *ί) = fdz^^R(M^(s1) mf, z), z\ M*(s[, m|, z')9 ^)L'=-ι (4-36)
-i

etc. A similar system of equations for the absorptive parts QI(SI) and
ρ2(s2) has been obtained by NAKANISHI [14] in the unphysical case
P2 ^ 0. His approach is based on a double spectral representation of

/(<??> #?) ^na/k is vatid only, if P2 ̂  0. The more general vertical Dyson
representation leads to corresponding results in the physical region of
eigenvalues (P2 > 0).

The system (4.35) of coupled Fredholm integral equations is the
relativistic generalization of (2.36). The much more complicated structure
of these equations is of course due to the fact that in configuration space
the B-S equation is a fourth order partial differential equation, whereas
the nonrelativistic Schrόdinger equation is only a second order ordinary
differential equation (for fixed angular momentum). Further light is
shed on this point by an analysis of the case P = 0, where the B-S
equation reduces to a fourth order ordinary differential equation. From
(4.6) we have with P = 0

fc (4.37)
o

Again we split the amplitude / (q*) into a one-particle singular part and a
regular part fR(qz)

We then obtain the following integral equation for the spectral function
ρ (ζ ) from the B-S equation (4.4) with P = 0 :

(1/Γ-Λ2

ρ (ζ) = - 2 λ -~^ f ds, ρW (ζ, sj θ(ζ-(μ + mj2) -

/ _
+ Zλfdζ' (ζ,_ Jf(^mi) fd* ρm(ζ, s) θ(ζ- (μ + p/Γ)2).

This equation is again of Volterra type and can be solved by iteration.
Introducing the solution into the representation (4.37) for qz = mf and
g2 = m| we are led to a system of two linear equations for the constants
Γ(mf), Γ(m|):

Γ(mf) = a^Γ(ml) + a12Γ(m$)
(4.40)

Γ(ml) =
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which is the analogue of (4.35). Each of the elements aik is given as a

power series in λ. The eigenvalues λ must satisfy

Δ λ an(λ)-l alz(λ) =()

The characteristic determinant A0(λ) is the generalization of the Jost
function to a fourth order differential equation. In the general case
P2 > 0 finally, the Jost function blows up to the Fredholm determinant
Δ (λ, P2) of the system (4.35) and the eigenvalues of the B-S equation
(4.4) are obtained by solving

Δ (λ, P2) = 0 (4.42)

for λ or P2. Every element of Δ (λ, P2) is expanded into powers of λ as the
nonrelativistic Jost function /0(A, Jc).

Our approach does not answer the question whether the eigenvalues
in λ or P2 are real. As in the nonrelativistic case, operator analysis offers
more powerful tools for an attack on such questions. We know from the
pioneering work of WICK [15] that the eigenvalue problem of the B-S
equation (4.4) is equivalent to that of a completely continuous Hermitian
integral operator in the equal mass case. This is also true for P = 0 in
the unequal mass case, but for P2 > 0 the type of the λ-spectrum is still
an open question.
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Appendix A. Bound for the nonrelativistie resolvent

We use the following bounds for the iterated kernels of lowest order:

s)\=-£^e(.-(μ-

(μ + |/Γ)»

<*££•('-<*+ jϋ >
a (A.I)

-^f f A**-j^?o
(μ + y^γ l (μ + y^γ

^ί / ̂ /̂'̂ •(μ+y^γ χι

( \2
Γ e$b(γ\ \

ί A*iΆ β(—(A
(μ + ^Γ I



Application of Spectral Representations

The generalization to \K^(s, s')\ is obvious. Hence

oo

ΓM /
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(A 2)

Appendix B. Support of iterated terms

From (4.16) we have

(Wϋ(z'), z',z) = mf

~

2') + (1 - *") - ml

(B.l)

We first minimize the expressions

Min

.... , 0 , μ* + 2μM(zf)
= Mm ml + ——Ί Γ /

-l^z'^l I X ' 1 + 2

(B.2)

Hrβ(O+(l-^)~ «4

Λ/Γ 2 ,
= -if^ 1 * +

If absolute minima occur at points —1 5; ^^ 2^ ̂  1, these are the
anomalous thresholds with respect to the variables q^., q^_. Otherwise the
minima are given by the boundary values at z = ± 1 respectively, i.e.
a?) = fa + μ)\ α(

2!> = fa + μ)\
4 Commun. math. Phys., Vol. 3
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Next we minimize (B.I) :

Mmfiz M\ (W0(z'), z', z) =
" "

,1) <: ~ <~ 1

2 ^ * ̂  1

^= Z — â Zn

(B.3)

(μ

l <r ~ <• /v(ι)
A ^ Λ Igs ά^

\ ~~ i \ — / ~

and obtain
Wl(z) = ~Min{(μ + M^(z))2

9 (μ + MQ(z))2} . (B.4)

Repeating the procedure we find a sequence of anomalous thresholds

P2

"^2 I 5 I I

r,ωMin
1+*'

Min
1—2X

(B.5)

and after a finite number of steps we arrive at

αf y >=K + /ι)a, 4^ = K
This yields

α—i)^... ̂ ,,(1
2 > > %

(B.6)

!

.-lϊίzsίl (B.7)

and
PF^ (z) = mn{(μ + M^ (z))\ (μ + M™ (»))»} . (B.8)

Hence the support decreases with each step as long as k ̂  N and is
bounded by WN(z) for all iterated terms of order k > N (Fig. 1). It
should be noted that anomalous thresholds related to higher normal
thresholds, e.g. (m1 -f 2 μ)*, can appear below the normal thresholds
(B.6). But they also disappear from the physical sheet after a finite
number of iterations.

Appendix C. Bound for the relativistic resolvent

The proof of convergence for the Neumann series of the relativistic
resolvent is slightly more involved than in the nonrelativistic case,
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because the kernel (4.31)

") *', *))a) (C.I)

is unbounded (s. (4.18)). But the second iterated kernel

+ 1 _

*\r> , \ (a, Γ ar e^β.-M'tfi.*!.*)), z \ ζ ,z) = J dzt J dζ1 - ζ — M*(z) --
,Zι)γ (C.2)

is bounded. The singularities of the integrand are due to the zeros of
(s. (2.28))

λ(ζ,, μ*, M*(ζ', z', zj) = (ζ, -(μ + M)*) (ζ, -(μ- M)*)

λ(ζ, μ\ M* (ζlt z,, z)) =

Since

' "2 "2/κ^-^ι + Ci — Jf2 ^ ^ μ* + 2μM ^ " '

P^<2? (C.4)

1 ^ 1 1 ^ 1

inside the domain of integration, we may write

S.(Clβ e )-(l/C-μ) (C*5)1)2:ι'V .. i i
X

Next we evaluate the ^-integral
b

(C 6)

and determine the minimum value of M (ζf, z', %) from (4.26) and (4.16) :

Mn M(ζ',z',zl) = ]/ζr, (C.7)
-I^z1<l

for large enough values of £'. This yields

(C 8)

Hence KW is a square-integrable kernel.
4*
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The third iterated kernel,
+ 1 oo

KW(ζ, z ζ'9 z') = J dz1 f dζ1 - ζ'—M2'(zΛ X

+ ι

X /
r

dz2 J

can be estimated in a similar way. With

(C.4) and (C.7) we find
+ 1 oo

-1 __

The second integral is bounded by (C.8) with |/f ' replaced by γζf + /^5

because

Mn
— 1 =:Zι~ί 1 5

Hence

where

9>(*)=^-i7^-?τ-. (0.14)ψ^ J 2 yμx v '

The generalization

|i(»)| < |jr(»-i)| φ((n — 2)μ + yζr)9 Λ = 3, 4, . . . (C.15)

is obvious and proves the convergence of the Neumann series.
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