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Abstract. The dynamical variables of a classical system form a Lie algebra ©,
where the Lie multiplication is given by the Poisson bracket. Following the ideas
of SouϊtiAU and SEGAL, but with some modifications, we show that it is possible to
realize © as a concrete algebra of smooth transformations of the functionals Φ on
the manifold 2!ΐ of smooth solutions to the classical equations of motion. It is even
possible to do this in such a way that the action of a chosen dynamical variable,
say the Hamiltonian, is given by the classical motion on the manifold, so that the
quantum and classical motions coincide. In this realization, constant functionals
are realized by multiples of the identity operator. For a finite number of degrees of
freedom, n, the space of functionals can be made into a Hubert space Jf using the
invariant Liouville volume element the dynamical variables F become operators F
in this space. We prove that for any hamiltonian H quadratic in the canonical
variables qx... qn> px... pn there exists a subspace ^f x C & which is invariant under
the action of pί9 qk and H, and such that the restriction of j)j, qk to ^>

1 form an
irreducible set of operators. Therefore, SOTJRIATT'S quantization rule agrees with the
usual one for quadratic hamiltonians. In fact, it gives the Bargmann-Segal holo-
morphic function realization. For non-linear problems in general, however, the
operators pjf qk form a reducible set on any subspace of 3tf invariant under the action

of the Hamiltonian. In particular this happens for H = -~-p2 -\- λq^. Therefore,

SoTJRiAu's rule cannot agree with the usual quantization procedure for general
non-linear systems.

The method can be applied to the quantization of a non-linear wave equation
and differs from the usual attempts in that (1) at any fixed time the field and its
conjugate momentum may form a reducible set (2) the theory is less singular than
usual.

For a particular wave equation ( • + m2) Φiχ) — λ φ3(x), we show heuristically
that the interacting field may be defined as a first order differential operator acting
on c°°-functions on the manifold of solutions. In order to make this space into a
Hubert space, one must define a suitable method of functional integration on the
manifold; this problem is discussed, without, however, arriving at a satisfactory
conclusion.

* On leave from Physics Department, Imperial College, London SW7.
Work partly supported by the Office of Scientific Research, U.S. Air Force.
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1. Introduction

In order to answer the question, is there a quantized field φ(x)
satisfying the equation

(D + m2) φ(x) = λφ*{x) , (1)

one must first make two definitions.
(a) What is a quantized field ? That is, within what class of mathematical

objects should we look for solutions ?
(b) When may a quantized field, as understood in a definite sense, be

said to satisfy (1) ?
The best approach to these questions is still very much a matter of

opinion. There are several well-developed mathematical frameworks
[1], [2], [3], [4], [5], [6] any one of which might be chosen as the answer
to (a). Although closely related to each other, these frameworks differ in
technical details. It is time to give consideration to question (b), which
has received comparatively little attention.

For a wide class of systems with a finite number of degrees of freedom,
SOURIAU [7], [8] has defined what he means by the quantized form of the
classical theory, and has found a solution to the problem posed. Although
SOTTRIAU'S quantization procedure differs from the usual one for non-
linear systems (as we show) it is adapted here and applied to the quantiza-
tion of fields. Our treatment is heuristic however, much of it can be made
completely rigorous for the particular classical system defined by equa-
tion (1), as shown by SEGAL [9], [10]; in spirit it is similar to that of
SEGAL in his paper "Explicit formal construction of non-linear quantum
fields" [11], [12], although the details differ considerably.

The first part of the problem is to set up the classical theory in a
sufficiently convenient form. It turns out to be best expressed in terms
of differentiable manifolds (see the book by STEBNBERG [3]). For a
system described by a given Hamiltonian, a classical path φ is uniquely
determined by the values of the dynamical variables (qv . . ., qn, pv.. ,,pn)
at time t = 0 say (or any other specified time) the set $ϊl of solutions φ
to the classical equations of motion is thus completely parametrized
by points in phase space § = Rw φ Rn. In the terminology of mathe-
maticians, 92ΐ is a manifold modelled on $). Instead of using the coordinates
(p, q) £ Rw φ Hn one could use any 2n independent functions of them to
determine the solution. If we restrict our attention to changes of co-
ordinates defined by infinitely differentiable functions, 221 becomes a
c°° -manifold.

Of great importance is the change of coordinates due to the classical
time-evolution. The vector {^(o), . . ,pn{°)><li(0)> •> Qni0)} becomes
the vector {p1{t), . . ., pn(t), qχ(t), . . ., qn{t)}. This is a mapping 3K-> 9ΪΪ.
We shall assume that it is a c°°-mapping.
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A dynamical variable F is a c°°-functional on 9ft; that is, a mapping
that assigns to each classical solution φ ζ 9ft a complex number F(φ)
such that when we parametrize 9ft by ξ) in any c°°-system of coordinates,
then JP is a c°°-function of (qv . . . , qn, pv . . . , £>w). The dynamical variables
form a Lie algebra © the bracket { , } is the Poisson bracket defined as

The function {F, 6r} is clearly a c°°-function. SOURIAU defines a quanti-
zation of a given classical system © to be a representation of © by self-
adjoint operators on a Hubert space JΓ which maps the unit constant
functional into HI, where 1 is the unit operator in Jf. By a representation
of © we mean a solution to the "Dirac Problem" namely, to find a map
F-> t such that

I {ί\G} = i|/,<5]_ (2)

II ί = Sl

where ί1, 6 . . . are operators on Jf\ We note the following differences
compared with the usual formulation of the problem.

(1) The usual formulation requires the canonical variables (q, p) to be
irreducibly represented, while the Dirac problem does not require this.

(2) In the usual formulation no prescription F-> fi for assigning
operators for the whole of © is attempted; certain dynamical variables,
including (p, q), are selected for representation. Other dynamical variables
may be expressible as operator functions of p and q, but this may not be
possible in a way consistent with the Dirac problem.

This difference may be expressed roughly as follows [14]. Normally,
one quantizes (p, q) and then solves the operator equation of motion;
in the Dirac problem one first solves the classical equation for (p(t), q(t))
and then quantizes the result.

SoτmiAU obtains the following solution to the Dirac problem; the
Hubert space Jf is given by the set of square integrable functions ψ
on the manifold 9ft, that is, on phase space. For any dynamical variable F,
the operator P is the following first order differential operator:

/ n dF \

(ί ψ) (p, q) = \F-ΣpiΊjή Ψ(P, 1) - i{F, ψ} (p, q) (3)

It is an elementary exercise to show that (3) solves the Dirac problem (2).
As it stands, the solution depends on the choice of coordinates, since

n dF
Σ Vj "a— i s n o ^ invariant under canonical transformations. The

quantization F-> P using (3) in some other canonical coordinate system,
say (Pv . . ., Pn, Qv . . ., Qn), is unitary equivalent to the one obtained
using (pv ...,£>„, ql9 . . ., qn). The proof uses the fact that the scalar
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product

(ψ> ψ) = / Ψ (Pv ' ' > in) 9?(Pl> > in) <^1 ^il> >dPn dqn (4)

is invariant under canonical transformations. In order to adapt Eq. (3)
to field theory, one must show that the set of solutions to the classical
equations has the structure of a differentiable manifold. We note that
[9], [10] for Eq. (1) there is a unique, global solution with given values of
φ (x, t) and φ (x, t) on a spacelike surface σ, where these functions are
chosen in 2. The pair of functions (φ(x, t), φ(x, t)), defined on a given σ,
is called the Cauchy data for the solution. The phase space § of the
system is the set of Cauchy data, in this case a pair of function spaces
@(W) θ ^ ( R 3 ) which can be completed in various ways to form Banach
spaces.

A solution is also determined by its values on a different space-like
surface σ'. I t can be proved that if the Cauchy data on σ are c°° -functions
of compact support, the same holds on any other space-like surface.
In fact, the disturbance propagates smoothly at velocities up to the speed
of light, by the hyperbolic character of the equation. The transformation
σ-> σ' thus defines a transformation §-> § , i.e. a change of coordinates.
For Eq. (1) this is a c°°-change. (For a simple definition of c°°-functions
on any topological space, see LANG [15].) Thus the class of solutions under
discussion does form a manifold, 22ΐ say. Just as before, one may define
the classical Lie algebra © of the system as the set of c°°-functionals
on the manifold, furnished with the Poisson bracket. In order that the
Poisson bracket be defined, present results for Eq. (1) would have to be
extended somewhat, so that the spaces of Cauchy data in φ and φ are
dual pairs, say φ ζ& and φ £ &8f. For then if F(φ, φ) is a c°°-functional,

φ
δF δF

- is in £%' and —— is in £%" = ^ , and the bracket
δφ

iF> °} = \δφ> Ύφ)-Yϊϊ> ~dφ/> ( 5 )

becomes well defined. I t is legitimate in this case to use the common
notation for distributions

J d3 WJ
It turns out that our eventual suggestion for the quantized field, Eq. (53),
is well defined even without this extension of known results.

Thus, in attempting to treat field theory by SOURIAU'S method, one
can get as far as Eq. (3) without serious trouble. The real difficulty comes
when we try to write down the scalar product (4) for infinitely many
degrees of freedom, since the canonically invariant volume element
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7 = oo

iT c ^ <^ no longer has a meaning. This would have to be replaced by a

functional integral (10); assuming that a suitable scalar product can be
defined we get a Hubert space C/f and operators φ on Jf given by Eq. (3).
We shall then say that φ(x) ,,satisfies Eq. (1)". The sense in which this
is so differs from the so-called usual one (which is singular) in that the

right hand side of (1) is quantized according to j(x) = λ φ3(x), and this
is not equal to λ(φ(x))z. However, Eq. (1) holds in a derivative sense;
for we have

[[f(x, ί), φ(y, t)l φ(z, t)] = Qλ φ(x, t) <53(x - y) <58(x - z) (7)

holding, since this is a Lie algebra relation in d>. It was suggested by
SEGAL [11], [12] that (7) should replace (1) as the equation of motion.

If (< (̂x, t), φ(y, t)) forms an irreducible set for fixed time t, (7) implies
that j(x, t) differs from the usual λ(φ(x))z by terms like a φ(x) + b
which are interpreted as renormalization terms. We shall see that in the
case of a finite number of degrees of freedom, the canonical operators
at sharp time in general must be taken to form a reducible set if they
are quantized according to SOURIAU. Thus we might expect a similar
reducibility to occur in field theory.

In the present paper, we give a heuristic discussion of the program
derived from SOURIAU'S rule. In Section 2 we show that for quadratic
Hamiltonians complete agreement with the usual quantization rules
can be obtained by restricting attention to suitable subspaces of square-
integrable functions on phase-space. We arrive at the MOYAL-BARGMANN

formalism [17], [18], [19] for the harmonic oscillator in terms of anti-
holomorphic functions. For a particle with λg4 interaction, SOURIAU'S

rule definitely disagrees with the usual rules.

In Section (3) we find the most general linear differential operator
solving the Dirac problem, and show that it can be obtained from
SOURIAU'S rule by a canonical transformation. Using the generalization
we construct a quantization rule, unitarily equivalent to SOURIAU'S,

in which the quantum motion coincides with that given by the classical
path in phase space. Applied to field theory one obtains a natural realiza-
tion of the field operators on the space of functionals of the classical
incoming field.

In Section (4) we tentatively suggest how theories with Fermions
might be included in the formalism; only gauge invariant quantities
can be quantized by this method.

In Section (5) we discuss the problem of functional integration. We
show that by quantizing the incoming free field one can allways find a
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Lorentz invariant method of functional integration, which however, is
not likely to lead to a theory with positive energy. Solving the latter
problem is difficult and no simple method suggests itself.

2. Comparison with the usual quantization

SOURIAU'S rule (2), as it stands, differs from the usual quantization
rule. For the operators φ, q are

Λ = i — A= - i — (8)

and these are reducible on JU^2(R2). For example, the operators p-\-i-γ-

and i~γ- commute with them. In order to compare with the usual pro-
cedure, one must ask if there exists a subspace or differential subspace Jf1

of iί?2(R2) with the following properties (ignoring domain questions)
(i) M?

1 is mapped into itself by H (ii) φ and q map 3tif\ into itself and form
an irreducible set of operators on Jfv

In his discussion [14] of a suggestion of SEGAL, PROSSER does not
consider the question of the reducibility of the canonical operators;
SOURIAU [7], [8] suggests an appropriate restriction for certain simple
cases, but does not formulate the general problem in the above terms.
Conditions (i) and (ii) are necessary and sufficient for SOURIAU'S theory,
restricted to J^l9 to be entirely equivalent to the usual theory, at least
for polynomial interactions. We shall show that such a subspace can be
found if the Hamiltonian is at most quadratic in the p's and g's, but
does not exist for the general non-linear system. We illustrate this by

considering the two cases H = p2 + q2 and H = ~^ p2 + λq* in detail.

Harmonic Oscillator H = p2 + q2-

Instead of the rule (3), one may use the formula

/ 1 dF 1 dF\
(Fψ)(p,q)= \F{p,q) - y p - y - ~γ(2~d~) ~ *{&> ψ} (9)

which is rather more symmetrical in p and q. It is easy to see that (9)
also solves the Dirac problem; it is obtained from (3) by a linear canonical
transformation, and leads to operators that are unitarily related to those
obtained by (3). It is clear that the question at issue, whether or not
there is a subspace satisfying (i) and (ii), is not affected by a unitary
transformation of all the variables, and so we might as well choose the
most convenient quantization rule.

The rule (9) assigns to p the operator

P . ^

25 Commun. math. Phys., Vol. 2
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and to q the operator

These are the same as the quantization rules given by BARGMANN [18],
MOYAL [19] and KLAUDER [20], and used by SEGAL for field theory

[11], [12], [17]. Rule (9) quantizes the Hamiltonian according to

Hψ=-ί{H,ψ} (12)

since H = p2 + q2 is a homogeneous quadratic function of the variables
p and q. For then, by EULER'S theorem on homogeneous functions,

1 dH I dH

and (9) reduces to (12). Therefore

) ( + ) + ( l a iΓ)

Let us write 6 = ί-̂ - + i -~j—\ + ί-̂ - — ί y—I = p2 + g2

5 which is the

usual quantization of the Hamiltonian. Then H — 6 = — l-^ — i~~j~\

~" ("2" + *"gΓ") commutes with 6̂ and q. Therefore, restricting all the

operators to the subspace Jfx on which p and q are irreducible, there

must exist a number, say Eo, such that for all ψ

(H-6)ψ = EQψ ,
that is

Equation (14) is a second order differential equation that must be
satisfied by the vectors of any subspace Jίf?

1 satisfying (i) and (ii). Conver-
sely the set of solutions of (14) is invariant under p and q, and therefore
under H and 6. To see this note that

(H-ή-E0)pψ=[H-ίϊ- Eo, p]ψ + p(H-ά- E0)ψ

= 0 for φ ^ j .

Similarly qψ is also a solution of (14) if ψ is, and therefore (p2- + q2)ψ
is also a solution. But on J^lt H coincides with U, proving that Hip ζ3#Ί
for any ψ ζ Jfj .

We have yet to show that we may choose a subset of solutions to (15)
that are square-integrable and whose closure forms a non-trivial space
on which p and q are irreducible. With an eye to the answer, write
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ψ=e 4 φ. Substituting in Eq. (14), and simplifying, we find

^ ^ ^ ^ (15)

Putt ing z = p + iq,z = p — ig, this equation is

i-^-4f-^o+l),. (16)

A solution to (16) is -~— = 0, EQ = — 1 ; thus we may take the sub-

space $?x of J?2(R2) to consist of anti-holomorphic functions φ, inte-
grable with respect to the scalar product

7 7

i Ψz dP dq
We have therefore arrived at the representation of the harmonic oscillator
by anti-holomorphic functions in the complex plane as proved in detail
by BARGMANN [18], this is entirely equivalent to the usual theory.

Looking at Eq. (13) we see that the restriction to the subspace ̂ x

not only makes p and q irreducible, but is a direct way to eliminate the
negative energies that would arise from the negative sum of squares
in (13).

Non-linear Problem H = -^p2 + λq*.

Let us quantize this theory using Eq. (3) thus

and

β = (^+λqή-liλq3JL + ip±.. (17)

We will show there is no subspace $?x satisfying (i) and (ϋ). Let us write

β = ~(pr + λ(q)i (18)

which is the "usual" quantization of this system. It is clear that any
subspace J^x invariant under p and q will also be invariant undet 6.
We remark that since (3) solves the Dirac problem, and \φ, [p, H]] is
linear in q, we must have [p, [p, H — ά]] = 0. Further, H — 6 commutes
with q. Since by assumption, H, and therefore H — ή, maps 3f1 into
itself, the restriction of H — A to fflx must be a function of q restricted
to J f v since this operator is a complete commuting set when restricted.
Since p and q are irreducible on Jf\, the equation [p, [p, H — ΰ]] = 0
implies that H — ή is at most a quadratic function of q when restricted.
It follows that vectors in Jfv if it exists, must satisfy the fourth order
differential equation

(H - ά - ocq2- βq- γ)ψ = 0 (19)

25*
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for some numbers α, β and γ, which may be interpreted as renormalization
constants.

The set of solutions to (19) is not invariant under the action of p, and
so vectors in J^f>

1 are subject to the further condition

(H - ά - ocq2 - βq - γ) pψ = 0 .

For vectors in 3^x this is equivalent to

[(H - H - ccq2 - βq- γ), p]ψ = 0

which simplifies to

g 0) ( | | ) i/Sv» = O. (20)

The set of simultaneous solutions to (19) and (20) is again not invariant
under the action of p, and so vectors in J^f?

1 satisfy the further independent
condition

{H - U- ocq2- βq- γ) p2ψ = 0 .

For solutions to (19) and (20) this may be written as

[[(H - ά - a p - βq-γ) ,p], 0] = 0 (21)

which reduces to

| J 0. (22)

The conditions (20) and (22) are equivalent to the constraint

and the condition
dψ —3
a - o -ψ- (24)
dp 8 oc r v '

We learn from (24) that the ^-dependence of any ψ ζ J^?

1 is essentially
trivial. But such a form cannot possibly satisfy Eq. (19), which contains

the multiplication operator — -x- p2. We conclude that for this system

there does not exist a subspace ^f x with the desired properties.
There is another, more general sense in which one may say that our

quantization "agrees" with the usual one. In this new sense one does not
demand that the subspace 3tfx be mapped into itself by the Hamiltonian
one demands only that the time development of the operators p and q

as given by p(t), q(t), is the same automorphism of the ring generated

by p{o), q(o) (restricted to ffl^) as is given by the usual theory, up to
harmless renormalization terms. More specifically, we might seek a
subspace fflγ with the properties

(i) For each t, p (t) and q (t) map J^[ into itself
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(ϋ) For each t, p(t) and q(t) form an irreducible set of operators.
However, there is no Jίf[ with these properties, and we must be content
with the conclusion that for certain interesting elementary systems,
SouRiAu's rule gives answers different from the usual one. The details
of the more general notion of agreement, using Jf[, are as follows. We

require that p (t) and q (t) mapjf^ into itself for all time, and so the time

derivatives p{t), q(t) must also have this property, that is [H, p] and
\H, q] have restrictions to J^[. But then using the fact that (p, q) are
irreducible as before, but with [H, p] replacing H in the argument, one
finds that

[H,p]- [6,p] = 2ocq+ β (25)

on Jf{. This leads to Eq. (20). The supposed invariance of J4?[ under
the action of p leads again to Eq. (22), and so the ^-dependence of ψ
must be essentially trivial. But this holds for all t, impossible since in
general q(t) is a non-trivial function of both p{0) and #(0). This concludes
our discussion of (i) and (ii) and the non-linear problem. In this discus-
sion the very special nature of the quadratic Hamiltonian is apparent;
for this system the operators H, p, q and 1 form a finite dimensional
Lie algebra with H acting as an outer derivation of the "Heisenberg
algebra" (p, q,l). Because of this, the solutions to Eq. (16) are mapped
into themselves by p and q. For the non-linear problem, this does not
happen, and one is led to too many conditions.

For a general system, the path determined by the infinitesimal change

ψ-> ψ 4- {H, ψ}

is the classical path in the space of functions ψ; that is, the path

The generator is called the Koopman Hamiltonian for the problem. We
shall call the path determined by

ψ-> ψ -f- iHψ

the Souriau path, and the path determined by

ψ-> ψ + iύψ

the quantum path. Thus, when we quantize using (9), the classical path
coincides with the Souriau path if and only if H is homogeneous qua-
dratic, and when one restricts to solutions of (16) both paths coincide
with the quantum path. This is a well-known result in other terms;
in the language of KLAUDER [20], quadratic Hamiltonians possess a
quantization in which they are exact.

The fact that the classical and Souriau paths coincide for this case
is not a significant property of quadratic Hamiltonians. We shall see
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later that any Hamiltonian possesses a quantization on phase space in
which the classical and SOURIAU paths coincide, without, however,
being exact, since the quantum path is different.

We note that the SOURIAU and quantum paths depend on the co-
ordinates used in the definitions of p and q and H.

Although the difference between the SOURIAU solution and the usual
quantum solution is disappointing, it does not exclude the method from
being useful in quantum field theory; there, the usual method leads to
divergences, while SOURIAU'S formula promises to give a field theory
with some interesting properties.

3. Effect of a contact transformation

How general is the solution (3) to the Dirac problem ? More speci-
fically, one might ask for a solution in terms of finite-order differential
operators on phase space of the form

^ ^ ^ (26)

foF some functions fi,j,ι,m on phase space (for simplicity we have con-
sidered only one degree of freedom). Let us now impose the condition

(27)

as an identity in F, G, ψ and all their derivatives. I t is likely that the
only solution to (27) of the form (26) is actually of first order, namely

* (28)

for some functions /, g and h. The author has proved (by an elementary
but lengthy calculation) that (28) follows from (26) and (27) if the sum
in (26) is restricted to i,j,l,m^2. If we put

dF dF

+H)-^ (29)
it is easy to see that (27) implies

«({F, G}) = {F, «((?)} + {oc(F), 0} . (30)

That is, the mapping F -> α (F) is a derivation of the Lie algebra of Poisson
brackets. The typical derivation is

oc(F) = {W,F} (31)

for some function W of (p, q), and we can easily see that this is the most
general form for α satisfying (29) and (30) identically in F and G. In
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fact, simple substitution of (29) in (30) leads to the equations / = const,

ΊΓ~ = — -0— when we identify the coefficients of F, G, -~—, -=— etc.

on both sides of the resulting equation. The value of / must be zero if

we wish to maintain 1 — %\ where 1 is the unit operator1. I t follows that
d W BW

there exists a function W (p, q) such that g = —^— , h = -^— and we
are led to (31).

For any function W, provided it is smooth, we get the solution to
the Dirac problem

-±P^-±q^-+{W,F})ψ-i{F,y,}. (32)

It might be thought that (32) is significantly more general than (3)
or (9) but in fact (32) can be obtained from (9) by a canonical trans-
formation, and W is the classical generating function for the transforma-
tion. To see this, note that (3) and (9) are not invariant under a change
of coordinates. In this discussion we regard the states ψ as functions on
the manifold 221, numerically unchanged by a change in coordinates.
Similarly the dynamical variables are functions on 921. Thus, the only
terms in the two quantization rules

-Po-jj—jψ~i{F,ψ} (33)

and

fi'ψ = \F — p-~—) ψ — ί{F, ψ} (34)

that differ, if (p0, q0) -> (p, q) is a canonical transformation, are the second
ones, since

dF(po,qo) dF(pQ(p,q),q0(p,q))
p _j_ pip n ) .

vPo Qo dp 0.

In fact
dF(po(p,q),qQ(p,q)) __ dF dp0 dF dq0

When (35) is substituted in (34) we obtain

Frw— \F — (pίpn, an) I—=-̂ -1 I - = — — [piptίiQh) I~5~̂ *I I "5—I Ψ — i\F, w\
\ \ \ dp IQ/ uPo \ \ dp IQ/ dqQ I

 r *• r j) J
which is of the form (28), and solves the Dirac problem. But we have
proved that the most general form of type (28) is

~ + {W,F}) Ψ - i{F, Ψ}

for some W. I t follows that there exists a function W(pQ, q0) such that

\ (dpo\(dF\ (dqo\(dF\

1 We choose units so that % = 1.
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for all functions F. Clearly we must have

We now show that W can be identified with the Hamilton-Jacobi
function for the transformation (p0, q0) -> (p, q) for any canonical
transformation (pQ, q0) -> (p, q) that has the property that (qQ, q) form a
coordinate set for 2K, there exists a function on 921, call it W'9 which
when expressed in terms of (qQ, q) satisfies

dW'\ (dW'

(see, for example, GOLDSTEIN [21]).
We therefore see that

dW'\ (dW'\ (dW'\ ίdq\ ί dq \

sd.=bar).+ \-wh\m*=p°-v Uik (38)

/BW'\ _(9W'\ /Jq

Thus W can be identified with W. apart from a constant, provided we
can prove that

(dqΛ - ( d q

as is seen by comparing (38) with (36) and (39) with (37).
To prove (40), write

dp-^ dto + ^dq, (42)

dq = ^dpo + ^ d q o . (43)

To find I-y^-j we put dq = 0. So, from (43),

dq I dq

and from (42)

Ho
Therefore ("y^l = (~Ξ—I > since {q, p] = 1. Similarly one proves (41).

Thus we have proved that on change of coordinates (33) becomes (34)
which is
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where W is the Hamilton- Jacobi generator of the change of coordinates

(Po>qo)-+ (P> ti-
lt is easy to see that the different quantizations obtained by making

canonical transformations in this way are all unitary equivalent (for
a finite number of degrees of freedom). This means the following. Let
σ (Vo> #o) = (P> ti ̂ e a canonical transformation. Then there exists a
unitary operator U(σ) on J?2(R2) such that

U(σ)ί1U'1(σ) = Ff for all F

with ί1 given by (33) and ί" by (34).
For many purposes it is useful to formulate the canonical quantiza-

tion procedure in a way that gives the same answer in all coordinates,
and not merely equivalent answers.

Let X be a dynamical variable, that is, a function on 9JI; X will
generate a one-parameter group of transformations on 9ft, given by the
classical path (q(τ), p(τ)) satisfying

dq^_dX dp _ _ dX

We now quantize X according to

- p ^ + {W,X})ψ-ί{X,ψ}. (45)

It is clear that if we choose W such that

dX ew dX dw dx
χ-P^="-{W'χ}=-W^¥~^¥~W ( 4 6 )

then the quantization of X becomes

iXψ = {X, ψ} . (47)

In this case the "Souriau path" would coincide with the classical path.
To find solutions W to (46) given X, remark that both sides are functions
of (p, q), and so implicitly they depend on τ. Using (44) we see that (46)
becomes

so that
r

W=-f(x-p^-)dr'. (49)

The lower limit is chosen at a point where W vanishes, say. The integral
is along the classical path, up to the value τ at which the quantization
(45) takes place [this means, we are using the coordinates (#>(τ), q(r))
in (45), abbreviated to (p, q)]. If X is the Hamiltonian, then W is the
action integral along the path, i.e. the Lagrangian, which is well-known
to give time-displacements in the Halmilton-Jacobi theory. Thus we
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have rederived the previous result showing how (45) transforms on a
change of coordinates from (p(τo)} q(r0)) (in which W = 0) to the co-
ordinates (p(τ), q(τ)).

In classical mechanics, functions such as W are not dynamical var-
iables; they do not keep the same numerical value when we change
coordinates. Thus W depends not only on p and q, but on the two co-
ordinate systems (p(τQ), q(τ0)) and (p(τ), q(τ)) as well, and expresses
the relation between them (in an implicit way). If we keep r 0 fixed,
W is a function of p, q and r i.e. a function on 92ΐ x It. But the τ-depen-
dence is of a particularly simple form, namely

W(p,q,r)= W(p(τ),q(r))

for some function W of two variables (we assume τ 0 chosen so that the
action vanishes; τ 0 = — oo will be chosen in field theory, where the W
in the symmetrical form (32), vanishes).

To see this, consider the function of p(0), g(0)

o

W(p(0),q(0))=f(x-p?~-)dτ'
(i)

over the path (1), which ends at (p(0), #(0)). The value of the function

W(p(0),q(0),τ) is

o

which is equal to / lX — p-^—\dτ' i.e., the value of the function

(2)

W(p(τ), q(τj). This proves the result. Thus under a change of coordinates
(P> Q) "^ (P (τ)> ̂  (τ)) a transformation function W changes its value accord-

— oo

(1)
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ing to W(p,q)-> W(p(τ), q{r)), i.e. keeps the same functional form in
terms of the new variables.

We conclude that equation (32) is form invariant under canonical
changes of coordinates if W is taken to transform according to the above
rule for transformation functions. Moreover, if W is the action, the
quantization is such that the SOTJRIATJ path coincides with the classical
path.

For Eq. (1) SEGAL has proved [9], [10] that there exist weak limits
of φ (x, t) (as a limit of ^-dependent elements in the space of Cauchy data)
as t-> ±°° ; the field converges to solutions of the free equation, which
can be used as coordinates to parametrize the manifold of solutions.
Thus for a class of <^in(x,ί),the Cauchy data (^ i n(x,0), <^in(x, 0)) deter-
mine a point in 221. Similarly <^out(x, t) exists as a weak limit. SEGAL has
also studied [9], [10] the question of the uniqueness of the asymptotic
fields. The asymptotic fields are in many ways the most natural coordi-
nates to use. Thus, using (9) to quantize in these coordinates we obtain
the following rule for quantizing the smeared field φ{f).

- 4" /" άin(x, 0) δφ{f) d?x -
2 J V v ' ; (5<£in(Xj0)

I ftί (Y ί i ϊ ' cί Ύ I # ^ 7 I * fί ΠΓ ι 1" ί #t 11

This quantization rule has the advantage that the Hamiltonian, and
indeed the whole set of generators of the Poincare group, is quantized
by the Koopman rule, that is, these operators generate the classical
motion. This is because these dynamical variables are quadratic functions
of the in-fields, and so the non-Koopman part of the expression vanishes.
We have used the coordinates (^ in(x, 0), <^in(x, 0)) in Eq. (50); the
quantization is unchanged if we use (<^in(x, t), φin(x, t)) for any time t.
We let t-> —oo and then propagate back to t = 0 using the same values
of the Cauchy data but propagating according to the non-linear equation.
By the transformation theory developed above, we can rewrite (50) in
terms of the coordinates given by the interacting field at time t. In this
case the transformation function is given by

since this form for the action vanishes at t — — oo. For the system given
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by Eq. (1) the action (51) is

t

8(t) = -4" / dt' j d*xφ*(x,t') . (52)
— CO

SEGAL has shown that for the class of solutions considered by him, S(t)
exists and is a smooth function on the manifold.

We may, therefore, rewrite (50) as

*+?** - (53)
δφ(x,t) J δφ(x,t) Sφ{x,t)

__ r δS(t)

J δφ(x,t) δφ(*,

SEGAL'S suggestion [11], [12] for the field operator differs from (53) by
the omission of the terms involving the action 8{t). Because of this, his
field operators do not satisfy (7), at least, not as an identity on smooth
functionals. The field given by (53) naturally satisfies (7) since (7) is a
Lie bracket relation [and (53) solves the Dirac problem]; it will also
satisfy local commutativity, relativity and the canonical commutation
relations. But it must be emphasized that these relations hold only as
relations between transformations of the space of functionals Ψ on 2ft.
Until we put a suitable scalar product on this space (say by a method
of functional integration) we cannot assert that φ (/) is a operator on a
Hubert space. We return to this problem later, without solving it however.

4. Quantization of systems with fermions

There is no analogy of Poisson brackets for spinor fields, and so there
is no classical Lie algebra to which we can apply the above rules. However,
there certainly exists a corresponding c-number theory, defined as the
complex-valued solutions ψ of the coupled non-linear partial differential
equations appropriate to the problem. For example, for the pseudo-
scalar theory of the π° interacting with neutrons, the equations have the
form

(9μ 7μ + m) ψ(#) = 9 Φ (v) 7BΨ(X) ( 5 4)

(D + m2) φ(x) = gψ{x) γ5ψ{x) . (55)

In this case one is looking for global smooth solutions with ψ complex
and φ real; unlike for Eq. (1) the proof that such solutions exist has not
yet been given. We shall therefore proceed heuristically. (For the similar
equations of electrodynamics, L. GROSS has recently proved the existence
of local solutions). The idea presented below does not depend on there
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being a physical interpretation of the c-number function ψ(x) (see the
remarks on the difficulties of this in JOST [3]).

We propose to define the classical algebra © for the theory to be
the set of gauge-invariant functionals on the space of c-number solutions.
A functional will be said to be gauge invariant if

F{φ,ψ) = F{φ,eίCίψ)

for any real number α. Functionals of this sort, roughly speaking, con-
tain the same number of ψ as yj* in each monomial. We may make them
into a Lie algebra by defining the Poisson bracket, and then we can
proceed as above. For example, for Eq. (54) and (55) the solution is
presumably determined by the values of ^(x, 0), < (̂x, 0), ψ(x,0) and
ψ(x, 0). The actual independent variables are Reψ and ϊm.ψ; ψ and
ψ = <ψ* γ0 may be used formally, since they are linear combinations
of them. One may then define

δF SO f δF δG
ίJ d +

r
- J δφ(τ,0) φ ( , ) J ^ ( X j O ) φ ( 9 )

+ Γ δF - δG <Px- f - ^ ^
W δψ(x,0) δφ(x,0)a<L J δψδψ{x,0)

This is gauge invariant if both F and G are. The set of quantized opera-
tors thus obtained does not contain any Fermion fields; the approach
is therefore best done within the HAAG-ABAKI framework of quantum
field theory [5]. While the algebra © does not contain all field operators,
there is no reason to restrict oneself to observable fields only. Thus in
electrodynamics one may quantize any tensor field, including the poten-
tials Aμ, which are not themselves observables. In the realization of a
theory with Fermions, the different charge sectors of states [22] will be
smooth functionals of the solutions that are respectively gauge invariant,
linear in ψ, quadratic in ψ, etc. Each of these spaces would be mapped
into itself by the algebra.

According to a recent construction of BOUCHERS [23] one might be
able to define quasi-local operators carrying the Fermion quantum num-
bers, from a knowledge of the algebra of observables alone. However,
it ought to be possible to construct the Fermion field itself by an exten-
sion of the treatment of the present paper.

5. Concluding remarks

The main obstacle to finishing the program outlined here is the
problem of finding a suitable method of functional integration; this is
also the difficulty in the rather similar program of SEGAL [6]. We now
discuss what is meant by suitable functional integral, and the chances
of finding one. The meaning of "suitable method of functional inte-
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gration" depends on the required properties of the field operators and of
the theory in general. Let us define the quantitized field by (50), so that
that the Poincare group acts classically on the space of functionals. If
one insists that φ{f), as an operator in the eventual Hubert space, is a
WIGHTMAN field, then the scalar product between functionals must
satisfy a number of stringent conditions. Certain of the WIGHTMAN

postulates, such as the distribution character of φ(f), seem rather un-
natural in this formalism. But there must remain a minimum set of
conditions to be satisfied, not only for physical reasons, but in order to
give a theory which is analytically tractable and not too arbitrary.
Since local commutativity will always hold, the determining role will
be played by the axiom of positive energy. We shall, therefore, require
that the scalar product be given by a Poincare invariant method of
functional integration, such that, if Ψ is ''square integrable", then so is
Ψa,A- Here, Ψa,Λ i s the functional defined by

where φa,Λ{χ) — φ{Λ~1{x — a)). The requirement that the resulting
representation of the Poincare group be continuous puts further condi-
tions on the choice of functional integral. Finally, one would hope that
the generator of the time-translations have a spectrum that is bounded
below.

In order to get fields in the theory, it is necessary that for a dense set
of square-integrable functionals ψ, the functionals φ{f)Ψ are also square
integrable, at least for a class of test-functions /.

These remarks emphasize how difficult it is to find suitable methods
of functional integration.

It is not necessary for the chosen subset of square-integrable func-
tionals to be mapped into itself by all dynamical variables, quantized
according to (3). In order to get a theory that might legitimately be
called a field theory, only the field itself and the Poincare group, say,
need have this property. Thus in the final Hubert space Jf given by
square-integrable functionals, we have lost the representation of ©
given by SOURIATJ'S formula. While the Dirac problem appears to be too
ambitious, it turns out to be a very useful and systematic way to find
field operators satisfying a non-linear equation such as (7) it is difficult
to see how one could have solved (7) without solving first the larger
problem posed by Dirac.

It might be thought that our program is too ambitious for another
reason, and so unlikely to succeed. For we discuss fields at sharp time,
and it would seem from Eq. (7) that there is no necessity for coupling-
constant renormalization there is a general feeling that in a realistic theory,
Eq. (7) should be divergent. Now such a situation could quite well happen
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in the present theory it is possible that the field operators at sharp time
are undefined as operators, since they might not preserve the square-
integrability of the functionals when applied to them. In this way the
conventional divergences would show up, without, of course, upsetting
the finiteness of the theory in terms of the four-dimensional space-time
smeared fields. In such a case Eq. (7) itself would have no meaning
as an operator equation on Hubert space, but would still hold on the
larger space of smooth functionals. In this sense one could claim to have
"solved" Eq. (1).

It might be worth remarking that for Eq. (1) one can show that there
exists a Lorentz invariant method of functionals integration the result-
ing theory is not likely, however, to have positive energy. This functional
integral is obtained as follows.

The manifold of solutions to (1) can be parametrized by the in-field
φin(x), and these fields form in a natural way the one-particle represen-
tation space Jti?0 for the Poincare group. The set of cylinder functions on
Jf0 is invariant under the action of the Poincare group; we obtain a
space Ctif by defining the scalar product between cylinder functions on
J^o by means of the Gaussian distribution on J^Q. We may define the
quantized fields φm, φ and ^ o u t on this space directly by equation (50),
if we ignore the domain problems of φ and <^out. If we restrict Jf* to
contain only the anti-holomorphic functions, the action of φm becomes
identical [17] with the Fock representation of the free field, and the
energy is bounded below. This Hubert space is naturally identified with
the space J4?m of incoming states.

In defining the interacting field by (50) one meets with a difficulty
which is purely algebraic: the field operator φ (/) will take an anti-holo-
morphic function on ^ 0 into one not anti-holomorphic, as far as can be
seen. Thus in the suggested method of functional integration, the field
will not mapJf111 into itself; not only will asymptotic completeness be
violated, but states created by the interacting field will have energy less
than the asymptotic vacuum. In the same way, <^out will not preserve
the anti-holomorphy of the functions, so that this method of functional
integration will not work, if we insist that the energy is positive in all
states. Whether a suitable method of integration without this drawback
exists is an open question.
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