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Abstraet. This paper considers perturbations H = H, + ¢V of the Hamiltonian
operator H, of a free scalar Boson field. ¥ is a polynomial in the annihilation
creation operators. Terms of any order are allowed in ¥V, but point interactions,
such as f : 9(x)t: dx, are not considered. Unnormalized solutions for the Schro-
dinger equation are found. For ¢ — 0, these solutions have a partial asymptotic
expansion in powers of ¢. The set of all possible pertubation terms ¥V forms a Lie
algebra. General properties of this Lie algebra are investigated.

§ 1. Introduction
We consider Hamiltonian operators of the form
H=H,+V (1.1)

where H, is the Hamiltonian for a free field and V is a polynomial in the
creation annihilation operators A*. By this we mean that V is a finite
sum of monomials V;,, of the form

Vim=[A (k) ... AT (k)v,(k, K)A~ (k1Y) . .. A~ (kp)dk dE . (1.2)
We require the kernel v;,, to be smooth, for example to be in a Schwartz
space % . This paper is partly directed toward studying the Lie algebra
formed by such H, and it is partly directed toward solving the Schro-
dinger equation

iV (13)

We solve (1.3) for quite general V of the above form. (See Theorems 7.3
and 9.1.) We find in § 7 a preliminary operator T which intertwines H
and H,,
HT=TH,. (1.4)
Then
T exp(—it Hy)D(0) = ¥(¢)
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is a solution of (1.3) with Cauchy data ¥ (0) = T®(0). We have not
been able to identify the formal expression for 7-! with an operator
on any reasonable function space, and so we cannot specify “arbitrary’’
Cauchy data in (1.3). More serious defects in this 7' are the following:
(a) It seems that the associated scattering is trivial. (b) In perturbation
theory (where V is replaced by ¢ V), T contains powers of ¢~1 as well as
powers of ¢. In fact, T' is a sum of terms 7T, = T,,(¢) such as (1.2)
and each

Time) = Xizra,mé T%
has a pole of order — J (I, m) depending on / and m.

Combining this type of 7' with familiar arguments from perturbation
theory, we find in § 9 new 7"”s which have the property that 7', (¢) is
analytic in ¢ if I < N. Here N is a finite number which can be chosen in
advance to be as large as desired. In order to do this we must make a
finite renormalization of H. The resulting scattering appears to be
nontrivial, and could probably be computed, using methods from [2].
This operator 7' leads to solutions ¥ = ¥(t, &) of the renormalized
Schrodinger equation for which

"/’0(5, 8)’ v wN(t’ 8)
depend analytically on e. Here y; is the j particle component of .
The solution ¥ will presumably not be normalized, and will exist as an
element of a space larger than the Fock Hilbert space. These results
should be compared to FrIEDRICHS' ideas [2]. In his terminology we
have considered the case of a totally smooth interaction.

In §2 and § 3 we realize our operators (1.1) as bounded operators on
Frechet spaces, cf. [5]. In § 3 we prove that the Lie algebra of V’s in
(1.1) has a trivial ideal theory. The only ideal in this Lie algebra is the
one dimensional ideal,

3=A{V:V =V}

which is its center. The significance for us of this result is primarily
negative. Nontrivial ideals would simplify the search for our intertwint-
ing operator T'. We will later find 7' as a product, 7' = T T, where in T
(respectively T,) the creation (respectively annihilation) operators
dominate. Thus

(T)ym=0il<m (1.5)

(Ty)ym=01if I>m. (1.6)
The operators of the form

V= Zl>mVlm (L7)

form a subalgebra which in a generalized sense is nilpotent. In this
algebra there are many ideals and the system of equations for the
(T;)1m can be solved successively.
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The algebra of all the V’s is an algebra which, in a crude sense, is
similar to the reductive Lie algebra gl(n, C) of n x n complex matrices;
the T, and T, correspond to the triangular matrices.

Since the Lie algebras we consider are infinite dimensional, it is not
clear which topologies should be placed on them. In §4 we have some
results which show that one natural choice for a topology does not seem
to be suitable. In § 5 we choose a better topology. For a V of the form
(1.7) the exponential map converges to an element of the Lie algebra.
Thus we can identify the corresponding infinite dimensional Lie group
(Theorem 5.6). This group acts by inner automorphisms on the full Lie
algebra, and one of the group elements, namely 7', puts A in “triangular
form”. These considerations lead to our first 7' in § 7. The results of
§2—7 do not depend very strongly on the class of function spaces
we have considered. We could replace spaces of type & by spaces of
rapidly decreasing continuous functions.

Sections 8 and 9 are devoted to the process of removing the poles
from 7' = T (¢), as mentioned above.

§ 2. The operators ¥ and their domains

Let k; be a vector in Euclidean three space. (We never refer to the
components of k;.) Let u be a positive number and define

o (k;) = (|k;]? + p?)1/%,
Hy= [A* (k) (k) A~ (k)dk .
Here A" and A~ are the standard creation and annihilation operators
for a scalar Boson field. This choice of statistics does not appear to be

essential.
Let © be the set of sequences

® = {90 ¢u. - - -}
where @, is a complex number and ¢,, for n = 1, is a symmetric func-
tion of the variables &, . . ., k, and where
P €S

We give © the product topology. Then a net @ converges if there is
convergence @i — ¢f* in each term. Let ©, be the subset of ® consist-
ing of those sequences @ for which ¢, = 0 for all sufficiently large n. Let

O ={P: ;=0 1if j>n}.
Then ®" is a finite direct sum of spaces of type &, and this defines a
topology in ©". Also
Dy = U, O
@n C ®n+1 .
19*
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We give 9, the inductive limit topology. A linear functional L or a
linear transformation 7' defined on 9, is continuous if and only if the
restriction

L|on
or

T|®o"
is continuous for each n.

Let u be set of all formal sums
V=2Vin

where V,,, is given by (1.2), v,,, is in & and v;,, is symmetric in the
variables

ky, ...k, =k
and in the variables
by, ....kp=F.
We give u the product topology. Let
w={V:VeuV,=0if I+ m>n}
Uy =\ Ut .
The above equation defines a topology in 1, as an inductive limit of the
Spaces u”.
Let L(X, Y) be the set of continuous linear transformations from a

vector space X to a vector space Y.
Theorem 2.1. We have the following inclusions:

g C L(Dy, Dy) 2.1)
U, C L(9,9) 2.2)
u C L(9® 9). (2.3)

In each case the topology in u, or in u is stronger than the corresponding
topology of uniform convergence on bounded sets.

Proof. A bounded set B is a set with the property that for any
neighborhood U of zero there corresponds a 4 > 0 with

ABcCU.
The bounded sets in 9, are the sets which are bounded subsets of ©»,

for some n. In view of this and the definition of the topology in 9,
we can replace the first and last inclusions to be proved by

u, ¢ L(®", ) (2.4)
ucL®"9), (2.5)
n=1,2,...Given a @ in O, an integerj = 0 and a Vinuyorinu,

(Vo) (2.6)
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depends continuously on g, . . ., ¢, and if ¥ € u* for some given k, then
VO contk,

Thus the set theoretic inclusions (2.4) and (2.5) hold. The term (2.6)
depends only on the V;,, withj — n < I £ §, m £ n. Let a bounded set
B in ®" be given. (2.6) can be made small uniformly for @ in B by
requiring that these V,, be sufficiently small. This proves (2.5). Let
U; be a neighborhood of zero in the Schwartz space for the variables
kys . . ., k;. The sets of the form

U={D:9;€U;,j=0,1,...}
form a fundamental system of neighborhoods for ®,. Given such a

sequence U; we can find a sequence U,,, such that

Vlm € Ulm
and
D¢cB
imply
(Vd);€¢U;,7=1,2,...

This proves (2.4).

Let V be given in u* for some k. Then (2.6) depends on ¢, only when
n < § + k. This proves the set theoretic inclusion (2.2). As a bounded set
B in ® we can take a set of the form

B={9:¢9,¢Bj}

where each B, is a bounded set in &. Given a j and a neighborhood U;
of zero, we find a neighborhood U,,, of zero such that

Pe € B Vi €U

imply
(Vo); € U;.
This is possible since (V ®); depends on a product
Vim@r

only for I < jand k£ — j < m < k. This proves (2.2).

§ 3. The structure of u, and u
Theorem 3.1. Let P, @ ¢ u, and let B ¢ u. Then
PQ cuy,
PR,RPcu.

It follows from this theorem that u, is an algebra and also a Lie
algebra with the bracket

[P,Q]=PQ—-QP.



276 J. GLIMM

Furthermore, for R € u,
ad P(R)=[P,R]= PR —-RP
is defined.

Definition. m is a closed ideal in u if ad4m < m for each 4 in u,
and if m is a closed subset of u.

Let 5 ={V:V €ugy, V = Vy,}. One can see that 3 is a closed ideal in u,
that 3 is the center of 1, and that the elements of 3 act as multiples of the
identity operator I on the domains ®, and 9.

Theorem 3.2. 3 is the only nontrivial closed ideal in u.

Proof of Theorem 3.1. A product P;;@;,, does not have the right form
to be in u, since k annihilators from P;, precede ! creators from Q,,,.
However, by use of the commutator identity

[A-(k), 4* (k)] = 8(k — ¥) , (3.1)

we can interchange the order of an 4— and an A™. Each such interchange
leads to a new term with the 4™ and A~ replaced by a 6 function. If
we perform the integration corresponding to the variables of the §
function the result is an operator with a smooth kernel. Thus P € u,,
and more precisely we have proved

Lemma 3.3. For some choice of § and 7' in u, we have

Plxml lema = 20 <r< min{ml,l,}‘s’ll + ly—r,my + My—7

[Pl,m,: lem,] = 21 <rsdJ Th + l—r,my + Mg—1
where

J = max{min{m,, l,}, min{m,, I;}} .

Let P € u~ for some n and let a § and a & be given. It follows from
Lemma 3.3 that (PR,,)jz = 0= (R, P if I+ m >j+ k+ n. Thus
(PR);;, and (R P);;, are finite sums of elements of 11, and so are in 1.
Hence PR and R P are in u.

Proof of Theorem 3.2. First we show that the closed ideal generated
by any
Vo= [o(k) A~ (k)dk (v+0)
is all of 1. If @ € ¥ then one can compute
[JAT (k)T (k) p(K)A~(k)dk dk',vA~-dk] = —|v||* [ pA-dFk .

Thus [pA-dk is in the ideal generated by [vA-dk. Now let g;,, be a
kernel with finite rank and let

Git1,m = Symy @ ky)g by, - - ., by, k)
If ¢ is suitably chosen then

[GHLW[(pA_dk] = -‘“(}7"2sz,
where the G’s are the operators with kernels g. Thus the ideal contains
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all operators in 1, whose kernels have finite rank and since this is dense
in u, the ideal is all of u.
Similarly one proves that the closed ideal generated by fvA™dk is u.
Now let m be a closed ideal in 11 which is not contained in 3. We will
prove that m contains an element of the form [vA*dk with v 0.
This will prove the theorem. Let M be an element of m which is not in 3.
Let

N = [4*(k)6(k — k')A~ (K)dk dk’ .

By a limiting procedure one proves that [N, m] C m. Furthermore for
any polynomial p,
p@dN)ym C m.
One computes that
[Ns Mlm] = (l - m)Mlm .
If we choose p = p,, , so that

p(r)=1

pky=0i k€Z,kkr |k =n,
then

hmnpnr(adNM=Zl me=r My €M

Thus we can suppose that M has the form },_, _, M,,, for some r.
Each operator ad fvA*dk applied to M removes an A¥ (k) from each
term of M and replaces it with a F v (k). If products of the operators
ad fvA*dk are applied to M, we can successively remove annihilation-
creation operators from M and for suitably chosen v»’s we achieve the
following result. Either there is an M = M, + 0 in m (and so the proof
is finished) or there is an M in m of the form

M=21Mz,z+1§M014=0-

Let ¢ be an element of % with unit norm and let v,,, be a kernel.
We can write v,,, uniquely as a sum

m= Zf;,’LoSymkSymk'w““@)vz—a,m-w"@ ) (3.2)
where v;_,, ,,—p is a kernel orthogonal to ¢ in the following sense:
0= [@k)vi—a,m—pky, ..., E)dk,

= f(P ’Ul oc,m—ﬁ(k e ay k;n,_ﬁ)dk]'.,
and where ¢*® = g® -+ - @ @ is an a-fold tensor product. Let vf5 be the
«, B term in this sum and let V72 be the corresponding operator. Let

= [A* P pA-dkdk .
One can compute

[P(g), Visl = («— P) Vi
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We choose ¢ proportional to m,, the kernel of M,,. We use the
Pn,—; defined above. We have

lim,, p,,—; (ad P(@) M = X' Mi75  €m.
Since My, = MJ%, we can suppose that M has the form
M=3 MirH's My +0.
We return to a general ¢ and we let

B=ad[op ® pA~A~dk ad [ATA" @ gdk

C=adfpA-dk ad [AT gdk .
One can compute
[B, Vo] = 4 {=(a+ 1) BVP+ w (B — o = ) W==2P=1 4

+ale— 1) BB~ 1) X263

Here V = V,,, has its kernel given by (3.2) and W*-1#-1 and X*~%F-2
have kernels
wrLP—1= Symy, @Dy, s@lf-DO

a*~%F—2= Sym, . =2 ®”z—a,m_ﬁ pf-2®
Also
[C, V*#] = a pWr—1P-1
[C, [C, V*F]] = at(o — 1) B(B — 1) X*—2.P~2
It follows that for some linear combination D of ad B, adC and

(ad C)2, we have
DM =3 (e + 1M em.
lim, p,, (D) M = 3] MP}, €m.
We write m{}, = Symy.q, ,®m,,, for some kernels ¢, , which are
orthogonal to my;. We choose an orthonormal base @, ¢;,... of &
consisting of Hermite functions. Without loss of generality my, = g,.
The kernels g;; can be written as an infinite series of tensor products of

the ¢; with convergence in &, see [5, §2] for example. Thus if we
choose an integer K = K (L) sufficiently large, we will have

u=rut+spall< L

where s;; is small in &, each term of r;, contains at least one factor from
the set
{pv .- o},

and where s;; is independent of ¢y, . . ., px (and of ¢, also).
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The expansion of the kernels leads to a corresponding expansion of
the M9}, ;. Each such term is an eigenvector for ad P (g;) with eigenvalue

{number of times ¢; occurs in the first / variables} —
— {number of times ¢; occurs in the last / + 1 variables} .

Since ad P (¢;) My, = 0, we can argue as above and eliminate those terms
for which the eigenvalue is not zero. We do this for 1 < j < K.

We set ¢ = ¢; in our definition of B = B; and C = C;. For a new
linear combination E; of ad B;, adC; and (ad C;)? we have each term in
the expansion of the M0} . ; an eigenvector of E; with eigenvalue

= 1 if ; occurs

= 0 if ¢; does not occur .
As above
[]YjE 1lim, p, o (BT MY, 1 = 81, @ @y

for 1 £ 1= L. Also p,,¢(E;) My, = My,. It follows that My ¢ m and
the proof is complete.

Our Hamiltonians H = Hy+ V and H; are not in u since the kernel
of H, is singular. However the set

{AHy} +u=mw (3.3)

is a Lie algebra since the bracket [H,, V] is defined and is in 11; 1t is thus
an ideal in w. It can be seen that the algebra a of operators of the form

AH,+ Voo (34)

is a maximal abelian subalgebra of w. We remark that Theorem 3.2
and its proof remain valid if we replace the requirement that the kernels
belong to & by the requirement that they belong to L.

§ 4. Canonical transformations of u

The constructions of automorphisms and derivations which we shall
consider lead to operators in u which are not in u,, even if our perturba-
tion ¥ is in 1, Thus u, is too small to provide a satisfactory framework
for the theory. On the other hand u is not a Lie algebra and we will show
in this section that an attempt to study derivations and automorphisms
of u leads to certain pathological phenomena.

‘We consider the following explicitly soluble problem. Let V=3, Vo
consist entirely of annihilation operators. Let I'V = 3'I'V,,,, where
I'V,,, has the kernel

- (2(0,-)"1’007" .

Then I'V ¢ u and I'V is a solution of the equation
(Hop, I'V]=V;
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also V and I'V commute. Using this, it can be seen that
exp(I'V) (Hy+ V) exp(—I'V)
=exp(I'V)Hyexp(—=I'V)+ V
=Hy+ [I'V,H 1+ V
=H,.
We let
ap = {AH} + Vo
=exp(—~I'V)aexp(I'V).
Since a is a maximal abelian subalgebra of w, one might expect that ay

would be maximal abelian also. However we will see that this is not the
case. We let

Bt (k) = exp(I"'V)A* (k) exp(—I'V)
=A*(k)+ [I'V, AT (k)]
B-(k) = exp(I'V)A~ (k) exp(—I'V) = A~ (k) .
One might hope that the map
G = G(4%)—> G(B*)
=GQAT 4 [V, 4™], 47)
obtained by substituting B* for A% would be an automorphism of u.

Although exp (4 I'V) and B+ are defined (since V =3, V,,), G(B*)
is not in general defined. By this we mean that formally

G(B:k) =F=21mFlm

and that each kernel f;,, is expressed as an infinite sum of terms depend-
ing linearly on the kernels g;,,.. Since there is no restriction in the rate
of growth of the g,,  as I',m’'— co, such a sum will not in general
converge.

Definition. Let g=g(ky, ..., k,) be a distribution of class F*

which is symmetric in the variables %, ...,%y If v4pm=Vitpm
(kys -« o kygpokys - ., k) is a kernel of the class we have considered
(§ 2), let

<g: 'vl+p,m> (kaﬂ" S EICILIES ] kl+w k')
= fg’(k,_, o« ooy k,,)'v,,.,.,,,m(lcl, “ ey kl‘("j” k')dkl oo dkp .

Theorem 4.1. Let g be given as above. If g = 0, then the range of
the map

Vitp,m=> {Is Vit p,m) (4.1)

is the set of all our kernels in the variables &y, . . ., k;, &y, . . ., kp,.



The Schrédinger Equation for Quantum Fields 281

Proof. 1t is clear that {g,v;+,, ) is a kernel of the right class. Let
@ be a function of one variable k;, ¢ € &, such that
0% [gky,.... k) plky) ... plky)dly...dK,.
Let a kernel v,,, be given. There are kernels u,,,, . . ., %;,, for which

Vim = Zjl= O<P(l_j)® ® Ujp, -
Here ¢*® is the k-fold tensor product of ¢ (and g, u;,,» = 0). All tensor

products are taken to be symmetric in the first [ variables. Any kernel
of the form

¢'® ® g, = const. (g, g4+ PO @ uy,,)

is in the range of (4.1). We suppose by induction on J that for j < J we
have kernels of the form ¢—"® @u;,, in the range of (4.1). Then

g ¢ P0 @uy ) = <9, %) 97V @y
+ (terms in the range of (4.1))

and so =P ®@u,,, is in the range of (4.1). This completes the induc-
tion and the proof.

Suppose that @ has L, norm equal to one. The u; , are given explicitly
by a formula

const. u;,, = (@O y, % — 371 const. pi—H® @u,,,
where the constants are ratios of the factorials. It follows that the u;,,
depend in a linear continuous fashion on v,,,. Thus v, , ,, can be chosen
to be a continuous linear function of v;,,.

If g and v;,, are in the class LA of rapidly decreasing continuous
functions introduced in § 8, then ¢ can be chosen in this class also. The
Uiy, a0d vy 4, belong to this class (this requires the use of formula (8.10)),
and v;., can again be chosen to be a linear continuous function of v;,,.
We need these facts in § 9.

Theorem 4.2. Let

H= HO + Zl—m>-—rvlm + VOa'
for some r with 7 = 2. Suppose that V,, = 0. There is a G in u for which
[H,G]=0,
G =Gy .

Proof. We write G =}, . o Gy, where G, =23;_ . _ .G m- The kernel of

Ho, Gl is (X ©)g;, Where
o= 10k)~ X7 o).

The equation for G can be written as
[Vor Gi] = terms depending on Gy, . . ., Gy, (4.3)
for k=1,2,... We solve this by induction on k. For fixed %, (4.3) is
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equivalent to
[Vor Gilj + 5—r,; = known operator
or to
[V()r: Gj + k,f]] +k—r,j = known operator (4 4)
+ terms depending on Gy g, - - -» K1 4y kjo1s
for j = 0, j = r — k. We solve this by induction on j. Then (4.4) is
equivalent to
(Do 9j + 1,jy = known kernel .

This can be solved by Theorem 4.1. Finally we observe that G, for
example, can be chosen arbitrarily. Thus we can have G = Gy,.

§ 5. A Lie algebra between u, and u
Let u,, be the set of @ in u which have the form

Q = Zl—mgrle .

u,, is a closed subset of u; we give it the relative topology from u. Let

u'1 = Uf ulr )
and let u, have the inductive limit topology.
Theorem 5.1. We have the following inclusion:

u, C L(9,9).

The topology of u, is stronger than the topology of uniform convergence
on bounded sets. ~

Theorem 5.2. u; is a subalgebra of L(®, ®) and the product PQ
of two elements of u, is jointly continuous in its two factors P and @
provided one of the factors P or @ is required to remain in a bounded set.

The algebra u, gives an unsymmetrical preference to creation
operators. If we formed an analogous algebra but gave the preference
to annihilation operators instead, we could obtain the set of formal
adjoints uf* to u,. Here we have

u¥ C L(Dy, D) -
Proof of Theorem 6.1. Let B be a bounded set in D. We can suppose
that B has the form
B={9:¢; € B}
where each B;is a bounded set in an . space. For any given % and for
@ in u,,, the component (Q D), depends only on

Por + - o> Pr+|r|
andon @, forl < k,m < k + |r|. Thus if these terms of @ are sufficiently
small in & and if @ € B, then (Q D), can be made as small as desired. In
view of the definition of the topology in u,, this proves the theorem.
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Proof of Theorem 5.2. 1t is sufficient to prove separate continuity
and also joint continuity at zero. To prove separate continuity, it is
sufficient to consider the case P €1u,,, for some fixed r. Then a term
(PQ);m depends only on

(Puj =Lk =0+ )
and on
{Qir:j = 21+ |r], k < m}

by Lemma 3.3. Thus P@Q ¢ u and the product is separately continuous.
By Lemma 3.3,

Uy, ulsculr-!n?

and so u, is a subalgebra of L(®, ®). The bounded sets in u; are just
the sets which are bounded subsets of 1, , for some r. Thus if P is in some
bounded set, the above argument shows the joint continuity at zero.

Now let B be a bounded set in some u,, and suppose that @ ¢ B.
We can suppose that B has the form

{Q: Q Eulw le é Blm}

where the B;,, are bounded subsets of % spaces. To give a neighborhood
U of zero in u; we choose an integer k,. For each k = k, we choose an
integer I(k) = I(k — 1) and we choose neighborhoods U, ,,. We define U
to be the set

{R:Rcu, R+, €U,;, 14y for k= ky, and 1< 1(k)}.

These U form a basis for neighborhoods of zero in u;. A term P, ,,p
contributes to a term (PQ);, ;45 only when k < f+ r and « < I. The
formulas

(Payatp @1+ €21 U 4y, 1= LR

will be satisfied for k£ = k&, provided each of the terms
{Pa,a+ﬂ:ﬂg ko‘r’“§ l(ﬂ+7‘)}

is sufficiently small. These terms will be small if P is a suitable neigh-
borhood ¥ of zero and this completes the proof of the theorem.

Let w; be the set of operators of the form H=AH,+ V, V €u,.
w, is also a Lie algebra. Theorem 3.2 and its proof are valid for u;;
consequently u,/3 is simple. Each subspace u;,, 0 < r, of u, is a sub-
algebra and a Lie subalgebra of u,. This is not the case for r < 0. If
0 = 7, = ry, then u,, is anideal in u;, . The derived subalgebra of 1, is
contained in u,,, for 0 < r.

Theorem 5.3. If @ €u,, and if 0 < r, then the power series exp@
converges in the topology of 1, to an element of I + u,,. The set

(Suey @)1 N=0,1,..}
of partial sums is a bounded set.
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Theorem 5.4. If Q cu,,, if 1 < r and if {ay, a,, . . .} is any sequence
of numbers, then the power series

2 aQ
converges.

Proof of Theorem 5.4. Let I and m be given and let @ and r be as in
the theorem. Then (Q"),,, = 0if n > 1 — m.

Proof of Theorem 5.3. A product
Qllml lem2

has a nonzero I m term only if
L=

b=l+ (G —m)=1.
Hence

(Qn)lm = ((Z‘mx =L <l Qllmq)n)lm

and so there are at most (27)* terms of the form

(Ql,ml R anm,,)Lm

which contribute to (©");,,. Each of these terms is a sum

Zoheainzt (- @ == Q) =e— - ) == Quum im - (5:)

J1

Here —o— is defined by the formula
?

Qm, o= Qum, = (@Qum, Quomt, + 1o —7,my +1ma—j >
which differs slightly from the definition in [2]. There are [* summands
in (5.1) and so there are (272)" terms in (Q"),,, which have the form of a

summand in (5.1). Hence for any seminorm | - | defined on the operators
@, we can find a constant K such that

1@ )m| = K.

The convergence of exp{ and the boundedness of the partial sums
follow from this.

Let H € w; and let @ € u,,,. The map

H— exp(Q) H exp(—Q) (5.2)
is an automorphism of w,. This map is determined by its effect on the 4*.
Let
B* = exp(Q) A* exp(—Q) . (53)
Then
exp(Q) Vexp(=Q) = Y [ B (k) ... B™(ky) vy (k, k') B~ (k) (5.4)
. B~ (ky) dk d¥' .
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The conventional relation between automorphisms and derivations
holds for (5.2).

Theorem 5.5. Let H be in w; and let @ be in u,, . Then

oo

exp(Q) H exp(— Q) = 21(%1)"1(301@)" .
The series converges in w;.

Proof. We have

exp(Q) Hexp(—Q) =limy g . Micsz<cx (1 k) Q7 H(-Q)F.
Because the partial sums }; - ;(j1)~1( 4+ @)* are bounded, we can write
this limit as
imy o0 Xagn()™? Yivz—a(}) @ H(— Q)

= limy_ o0 Zns v (0))(ad QP H .
This proves the theorem.
In a similar fashion one proves

exp(s@) exp(t Q) = exp((s + ¢) Q) .

The group I + u;,, is the (infinite dimensional Lie) group correspond-
ing the to Lie algebra u, ,. This group and its Lie algebra are in some
sense nilpotent, although they are not nilpotent if one uses the conven-
tional definitions [3]. The next theorem gives a property which they
have in common with nilpotent Lie groups and algebras.

Theorem 5.6. The mapping exp is a one-one map of u, , onto I + u, ;.

Proof. Let V be in u, ; and let

V,= 21~m=r Vlm .
We must find a solution @ € u, , of the equation

expQ=I1+7V. (5.5)
This is equivalent to solving the sequence of equations
Qr ="V, = Dz an!H(@), (5.6)
forr=1,2,... . For a @ in u, , the operator
@),

depends only on @, . . ., @,_, . 1. Thus the equations (5.6) can be solved
by induction, and the solution is unique. This proves the theorem.

Let an » be given. There is a polynomial p, such that

it Q=<2 (V).

This can be proved directly by induction on r. It also follows from the
Baker-Hausdorff formula [3]. This formula exhibits p, explicitly and in
fact gives Q as a power series in V.



286 J. GLIMM :

Let H be an element of w; and let
Cg = {Q:Q Eul,l, [Q’H] = 0} .

Theorem 5.7. ¢z is a subalgebra of 1, and I + ¢z is a subgroup of

I+, Also
I -+ Cg = expcly
={Q:Q€I+u1,1, [Q,H]::O}-

Proof. If @ € ¢cg then [Q*, H] = 0 and Q" € ¢. Thus ¢z is an algebra,

I 4 ¢g is a group and
exp ¢g C I + ¢y

The reverse inclusion follows from the fact that the @ in (5.5) is a limit
of polynomials (without constant terms) in V. The last equality is
obvious.

We remark that ¢z and I + ¢y are closed in u.

§ 6. Canonical forms for certain elements of w,
In this section we consider elements H of w; of the form
H=1H0+Zl—m>——r Vim+ Vo, (6.1)

r>0, Vy=*=0. (6.2)
The main result is
Theorem 6.1. If H is given by (6.1), (6.2) then there is a @ in u,,, for
which

exp(Q) Hexp(—Q)=AH,+ V,,.
It can be seen that the equations
exp(Q) (4 Hy + 8,,) exp(— Q)
=puHty+ Ty, ,
Q Cuy,y
imply u = A and §;, = T,,. Thus we regard
H =1Hy+ V,, (6.3)

as a canonical form for H with respect to the inner automorphism groug
exp (1,;). In proving this theorem we do not assume 4 = 0, and we regard
Vo, rather than H, as the dominant term in H.

Proof of Theorem 6.1. We write

Q=200 (6.4)
QS:Zl—m=sle’ §>0

Qo=0

where

and
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and we let
QW =22, 0Q;.

Let a ¢ = 0 be given. We suppose inductively that @, @, . . ., @, have
been chosen and that

S o) (d QO H = Hy  (moduy,—441) -

The inductive hypothesis is true for ¢ = 0; we use the hypothesis and
define ;.. Let

2n=om) M @dQUH = Hy + X1 me—rts41 Vim(f) (modty,—pp ).
We choose @4, as a solution of the equation

[Qt+1, Vor] = - Zl—m=—r+t+1 Vlm(t) .

This equation is equivalent to the system of equations
Z;= 1 VOr _;"’" Qm+i—r+ t+1,m+5 = m-—r+t+1,m(t) . (65)

We solve (6.5) by induction on m. The equation for Q,, +;+ 1, then has
the form
Vor—o— @+ t+1,m = known function .
r

This equation has solutions, by Theorem 4.1. The induction starts
with m = max{0,r —¢ — 1}, and for 0 = m <r — ¢t — 1, @4 s+1,m CAN
be chosen arbitrarily.
However
(ad QWY H = (ad QD) H  (modity, 4 445)

for n > 1. Thus
2n-0@dQCV H=H, (moduy, ,i;+4),
and the induction on ¢ is complete. We define @ by (6.4). As above

(adQO) H = (ad@P H (modity, 41,
and
Zn—on!) ™ (ad@Q)r H=H, (moduy,_,is4y).

This is true for ¢ =1, 2, . . . and this completes the proof.

§ 7. The transformation and solution of the Schrédinger equation
In this section we consider time dependent operators. We set
AE(k, t) = €T 1@t 4% (E, 0) (7.1)

where the 4% (k,0) are the standard annihilation creation operators
introduced in § 2. We consider operators of the form

Vom= [ AH (s t) oo A (g, ) v (b, B) A= (Bl 8) « . A= (Ko, 8) B AR, (7.2)
Commun. math. Phys., Vol. 2 20
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and of the form

V=2 Vin. (7.3)
Such operators are said not to depend explicitly on ¢. We see that the 4%
satisfy the differential equation

i A% (b, 8) = [Ho, A% (E, )] . (7.4)
Let
D(t) = exp(—1tH,) D(0)

be a solution of the free field Schrodinger equation
P2 ®=H,®. (7.5)

If ©(0) € O, then D () € D, for all t and (9/0¢t) P exists in the topology
of ®,. A similar statement holds if @(0) € ®. In either case

p(t) = [ A*(k, t)v(k) dk D(t)

is a solution of (7.5). [This follows formally from (7.4).] Thus A% (%, ¢)
is an operator on the Cauchy data of @ for the time ¢ which creates or
annihilates a particle of momentum % at the time #= 0. Similarly
A=x(k, t — s) acts on the same Cauchy data (at time ¢) and creates or
annihilates a particle at the time ¢ = s.

We use the symbol w;, etc. to denote the class of operators (7.3)
which for each fixed ¢ belong to the class w,, etc. considered earlier.

Lemma 7.1. If H € w (resp. w,, w,) then (0/0¢) H exists in the topology
of w (resp. w,, w;) and
.0
Yot
If ©(0) €9, (resp. Dy, D) then H D () is a solution of (7.5) in D (resp.
D, D).

Proof. It is clear that the derivative exists and that it defines a
derivation of w, = {1 H,} + u, which is continuous in the w topology.
The right member of (7.6) defines a derivation of w, with the same
properties. The exponential factors cancel in

Hy(t) = [ AT (k, ) (k) A= (k, 1) dk ,

so Hy(t) = Hy(0) and (7.6) holds for H = Hy. For H = V4, or H = V,,
(7.6) is equivalent to (7.4). For a general H, (7.6) follows from these two
cases and the derivation property. The last statement follows from (7.6).

Let @ be in u,, , and define B+ by (5.3). We regard the A* as indepen-
dent variables and we regard an H in w, as a function of these variables,

H=HA).

H = [H, H]. (.6)
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We use (5.4) to define the operation of “‘substituting” B+ for 4%, and

thus we define
H(B*) = exp(Q) H(4*) exp(— Q). (7.7)
If the multiplications in the right member of (7.7) are performed, we
obtain a new function of the 4+
exp(Q) H(4*) exp(—Q) = H(4%),
and so
H(B*)=H(4%).

These considerations and Lemma 7.1 provide the proof for the following
theorem.

Theorem 7.2. Let @ be in u,,, and let
H = exp(—@Q) Hyexp(Q)
B* — exp(Q) A* exp(~Q) .
Then
iy BE (b 1) = [H(B*), B=(k,0)].
Since H(B*) = H,(4%)= H,, we see that (7.5) is equivalent to the
Schrodinger equation for a problem with interaction:
.0
i @)= H(B*(0)) D(t) . (7.8)

Let @ €9® be a solution of (7.8) and let ¥ €u,. Then V(B*)= V(4%)
with ¥ € u,. Thus
V(B=() @)

is a solution of (7.5) and (7.8).
Next we consider the Hamiltonian
H=H,+ V,,.
As above and as in § 4 we define
B =exp(I'V,,) AT exp(—=1I'V,,) .

Then

B- = 4-

Btr=A4++ [I'V, 4+].
One can show directly that

Hl(Bi) = Ho(Aﬂ:)

i7 BE() = [H,(B%), B=()].

Finally we consider the Hamiltonian H given by (6.1), (6.2) with
A=1. Let @ = Q(A4%*) be given by Theorem 6.1. In a formal sense

0% (1) = exp(Q(B* (¢))) B* (t) exp(— Q(B* (1)) (7.9)
20*
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is a solution of the equation
P92 O (1) = [H(C*), C*(0)] . (7.10)
Although @ and exp(V,,) have meaning as operators on certain Fock
type spaces, the space for @ is different than the space for exp(V,,)
and the expression
Q(Bi) = exp (P Vor) Q exp(—F VO'r)
appears not to have a meaning as an operator on the domains we have
considered. Consequently we have not found canonical annihilation
creation operators C'= (t) for particles H by the method of Theorem 7.2.
We continue to consider the same Hamiltonian H, but we now do
this in the Schrodinger picture. We let A+ denote time independent
annihilation creation operators, as in the previous sections.
Theorem 7.3. Let H and @ be as in Theorem 6.1. Let
T =exp(—Q)exp(—1"V,,). (7.11)
Then T € uC L(D,, ®) and
HT=TH,. (7.12)
If @ = @(t) is a solution of the free Schrodinger equation (7.5) and if
D(0) € 9, then
p(E)=TD()
is a solution of the interacting Schrédinger equation

i yp=Hy. (7.13)

The @ of Theorem 6.1 is not unique. Let

exp(Q,) Hexp(—Q,)=H,, i=1,2.
Then
exp(—@y) exp (@) €1 + ¢x
and by Theorem 5.7,
exp(— @) = exp(R) exp(— @)
where R € ¢g. Thus the 7 in (7.11) is determined up to multiplication
on the left by an element of I + ¢g. This nonuniqueness of 7' does not
affect the solubility of (7.13).

Proposition 7.4. Let y (¢) be a differentiable function of ¢ with values
in ® and let P be in I + ¢z. Then p is a solution of (7.13) if and only if
Pyis.

Proof of Theorem 7.3. It is evident that the product 7' in (7.11)
exists and defines an element of u. If @(0) € D, then D(f) €D, and
(0/0t) D (t) exists in O, Thus T' D = yp is defined and (9/0f) p exists in D.
Furthermore

HT = exp(—Q) Hyexp(—= 1" V,,)
=TH,,
and this implies that y is a solution of (7.12).
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We do not know what physical significance, if any, these solutions
have. In § 9 we find solutions which appear to correspond to the standard
formal solutions of perturbation theory.

§ 8. The operation I"
The operator [Hy, V;,,] has a kernel
(X 0 = X o) vk, B) (8.1)

where
w; = w(kj) ) w; = O)(k;) .

Thus any solution I" V,,, of the equation
[Ho, r Viml=Vim

will in general have a singular kernel. In this section we derive some
properties of such singular operators, following the ideas of [2].

We let 2, denote the angular variables %,/|k;| and we write

dkj = wjlkj] da)j d.Q, .
Let
P 02)= [et* e pk)dow
(AN, Q,Q2)= [e it oV yk k) dodw .

Actually it is not these Fourier transforms which interest us, but rather
the transform in the next lemma.

Lemma 8.1. Let ¢ € &. There is a constant M such that

(UL (e; By 12 @I (W) = M T+ [A4])~%4, (8.2)

and similarly for v.

Proof. (Cf. [4], p. 124.) It is sufficient to consider the case where
@ = ¢, depends on k, only. We write

k] = (0 — ‘u2)1/2
= (0 — P2 (o + w2 .
Then (8.2) is given by
| [ et (w — pl* y((w — p)?) do| = |20f e" " 32 (1) dv|, (8.3)
13

where y(7) = (7% 4 w)V3(12 4 2u)2 @(z (v* + 2 )2 Q) is in &. We con-
sider first the case y, = a exp(—12). If we substutite this in (8.3) and
deform the contour of integration in the complex plane, we obtain

2a [exp(— 1+t A7) 132dr < 2a(1+ [A])"%t [ e~ 132dr. (8.4)
0 0
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Next we consider the case y, = b 7 exp(—1?). As before we obtain in this
case the bound

26(1 + fl{)‘7/40foe_" 2 d7 (8.5)
for (8.3). We set a = (0), b = 4'(0) and
X=X~ — Xz
(@ — ) ga((w — w)V%) = 27 257(0) (0 — )Pt + - - -

has two derivatives in L,. Thus

Then

| fme—““’((o — Mt ys((0 — p)V?) dow| < const. (1 + |A])-2.
m

The lemma follows from this, (8.4) and (8.5).

We now define
F o = [IL(w; k)2 o1,
and similarly for v. Let A;=:0/0 4;, let »=v;,..., 9, be a multi-
index and let
A= IT, 47 .
If ¢ = @y, define ||, = |p|. Now suppose ¢ = @, (k) where k has 3n

components. Let 7 be a vector with r components (each a real number)
and with 7, = 0 and let j be a function,

il .unp—>{1,.. ., r}. (8.6)
Define
Atr=17+ Ti@s - - "ln'i'r:i(n)
dt=dt,...d7,

”(p”i,vz Sﬂugp fIAyF?)(}-‘I’T, 'Q)[ dr

Il = sup;|l;,, - (8.7)

Let LA be the completion of & in the set of seminorms (8.7). Each ¢
in LA is a rapidly decreasing continuous function. If ¢ is a real number
andA+o=4XA+o0,..., 4, + o we define

yo=—1F?' [ Fo(l+o)do. (8.8)
<0
[We get this definition of A+ ¢ if j(¢3) =2 = r in (8.6).] The inverse
Fourier transformation in (8.8) is taken in the sense of distributions.
These definitions apply also with kernels v;,, replacing the function g,.
Let
By, =1Fy ...k,
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denote a vector with 3n components and let
<(pn> "Pm)s = f E((k’)n—w (k)s) wm((k”)m—-s’ (k)s) dk (8.9)
if n,m = s and let {(@,, P,)s = 0 otherwise.
Lemma 8.2. Let ¢, and y,, be in LA. Then

“(‘pm 1/’m)suv = Ks”‘}’n”v ”wm”v . (8.10)
If s = 1 then

1<y @ns Ymdsls = K2l @ulls [9mls (8.11)

K@ns ¥ Ymdelly = Ko @ulls [9mls - (8.12)

Proof. We use the Fourier transform to express the integration in
(8.9) as integrals with respect to A and £. The operator A* does not
effect the proof and so we only consider the case » = 0. Let a function §
be given. If an integration occurs with respect to some variable 7; which
affects ¢ but not y, we have

[eyldr=y| [ ly| dv; .
If 7, affects both variables we use the bound

[ eyl dr; = (supy, |@|) [ || dv; . (8.13)
We find

@, p)sli = @n) sup [|F (X +7, ) Fp(X +7,2)| dr dAdQ
< Qa)y (fdQ)sup[(Fo(A + 7, W Fp(" + 7, dvdA.
We write
T=017T 0

where g, is the part of v which affects the variables of ¢ alone. Then
JIF@A + 1, ) Fp (' + 7, A)| drdA

= [[[IF @A + o1+ 03 M do] [Fp (" + 05, 1) dy A2

= Bup/[Fo(l + e Adeid S [Fy (2" + 0o Dl des d2

= lolzlvls
for some new function j,. Thus (8.10) holds with K =2z fdQ, = 8n2.
We now suppose s = 1 and let ¢ be a real number.
<y @ w25l = Kesup [[Fy o (' + 01 D) dea|9ls
= Kylysup [[|Fo(X + o1+ 0, 2+ 0)| dodg, .

We substitute g, — ¢ for g,, which eliminates ¢ from the variables
affected by g, and gives us

Ky @ 92l = Kol ol
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for some new function ju,. This proves (8.11). The proof of (8.12) is
similar but requires reversing the roles of ¢ and y in (8.13).

This lemma applies with ¢ and/or o replaced by kernels v,; and/or
¥y - Thus the v norm of any of the following products,

Vii Viws U'Viss Vimls Vi Pn
or
I'Vym®n (provided m > 0),
is bounded in terms of a product
lvsslsloemls or Jemlsll@als -
The restriction s = 1 in (8.11) and (8.12) interferes with the products
IV y0@n TVi) Vi - (T'V) Vi

The next lemma yields some continuity for I'V;, ¢, provided v;, € &,
since it shows that in this case yv,y € & < LA,
Lemma 8.3. Let v, and v,,, be in ZA, I == 0 == m. Then

Yoio(k) = (X 0;)" (k)
7Pom (k) = — (Z;)" vom (k) -
Proof. Let ¢ be in &. Then for v = v;,,
{p, yv) = const. (F ¢, F yv) = — const. i Sfol_?’_q)(/l)l?’v(). + 0)dAdo,

since the integrand is in L,. Thus
0
{pyvy == lim [ {p,ie"t@7v)do
—0

= lim _fjv (djda) {p, (3] w)~te tED ) do

Nesoo
—{p (Z0) vy - Jim [ F(S0)dE N od
=g, (Y o)) - 231‘13; [ 33 w) et EaN x
X oIl (k;0)2dQ dw, . . . dw,_1d(}) * ®)
={p, (X))
by the Riemann Lebesgue lemma.

We set Dy = 9,() and ® = D(F). Let D (LA) be defined as the
space of sequences
D = {pp, ¢1 - - }

for which ¢; is a symmetric function of the variables k,, ..., k; and
@; € LA, Let ©4(L*) be the subspace consisting of those @ for which
@; = 0 for all large j. We set u, = 11, (&), ete. and we define u, (LA),
etc. in a similar fashion.
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HVeuldMandif V=200V im we define
r'v=3IV,,

where I'V;,, is defined as an operator with kernel yv,,. We define the
seminorms

19l = sup Il @ €D (L) (8.14)
I=n
H V"v,n = ZS;IP nvlmuw V¢ ul,r(LA) . (8.15)

These seminorms define a topology in ® (L*), u,,.(L*) and
wy, . (LA) = {AH} & uy,, (L*) .
We give
0y (LA =y, Wy, , (LA)
the inductive limit topology.

Proposition 8.4. Let V,€uy,_, (L") and V,€u;,_ (L*). Suppose
(V1)oo = 0. Then

1V1@],,n = const. | Vily,n| Py, n+
1V1Vals,n = const. [Vallo,nl Vellsynsr 720
” [FVI’ V2]”V,n = const. “ Vl”mn” V2“v,n+r5 r=0.

If (V)10 = 0 then
| 'V ®D|,,, < const. | V4

The constant depends only on =, r and s.

Proof. This follows from Lemma 8.2 together with the observation
that the left hand sides of these inequalities depend only on certain low
order terms of V;, V, and @. (Cf. Lemma 3.3.)

We consider the elements of w, (L*) as operators on ® (L*). w, (L*)
is a Lie algebra, u, (LA) is an algebra and

'V, Vo] €uy (LA

if V;eu (LA and (Vy);0=10. (If (Vy)go =0 but (V;);o= 0 for some I
then the commutator is formally an element of u, (LA) but might not be
everywhere defined.)

Theorem 8.5. Let

o[ Plontr -

P=0Q,+IQ,
be given with @, € uy,o(L*) and (@,),, = 0. Then the power series for
exp P and exp(ad P) converge uniformly on bounded sets in ® (LA) and
in w, (L*) respectively. If H € w, (L") then
exp(P)H exp(— P) =exp(ad P)H .
Proof. The inequalities in Proposition 8.4 show that there is uniform
convergence with respect to each seminorm.
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Theorem 8.6. Let V € u,(LA) and let v,y € & and Vo= 0. Then

[Hy, I'V]=TV. (8.16)
Proof. We have

FHO‘pn = F(Zg;le) Pn = ZA:F%L
and for some constant « = «(l, m, n) we have

FVim@n=oaSym[Fuv,, (A, V')F @, (A", (ADp-m)d A" dQ" .

After integrating by parts and cancelling terms we find
FlHy I'Vimlon

= —iaSym [ i (o1 A+ 2P AV vy (A + 0, 2 + 0)]

<0
Fo,(A", Dp—m)dodA” d2"
=oaSym[ [ (d)do)Fv;pn (A + 0, 2"+ 0)F (", (A)p_m)dadA"'dQ"
=<0

= FVlm(Pn .

§ 9. Solutions of the Schridinger equation which have a partial per-
turbation expansion

We now consider a Hamiltonian of the form

H=H,+ eV ew (&) 9.1)
V= Zl—m >—r Vlm + Vor (9~2)

where ¢ is a parameter, r > 0 and V,, == 0. Let
H.,=H-E (9.3)

denote the renormalized Hamiltonian. £ is a (finite) multiple of the
identity operator. In this section we find a 7' which intertwines H,
and H,,

HeT=TH,, (9.4)
and the “low order” parts of 7' depend analytically on e.

Theorem 9.1. Let V, ¢ and a positive integer » be given. There is a
renormalization constant £ and a continuous transformation 7' from
Dy(L*) into D (LA) which solve (9.4). If

V=T0=T{py ..., 9,0, ..}
is in the range of T' then the terms
Wos + + > Yp (9.5)
depend analytically on e.
As a consequence of this theorem,
Y (t, &) = T () exp(—1tH,)D(0)
is a solution of the renormalized Schrodinger equation

.0
®5T= Hrenlll
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in the space ® (LA), and the low order terms (9.5) of ¥ depend analytically
on &. We conjecture that these terms agree with standard perturbation
theory up to any desired finite order (for example, n — 1) if 7' is suitably
chosen.

Lemma 9.2. There are polynomials

Q(S) — GQ(l) 4o 82nQ(2n)
and

R(e) = eRM - - - 4 g2 RE™
with coefficients

QY = 3150940 €11 (S)

and

RO = Zlgm > OR%L € ul(LA)
and there is a constant £ and there is an H'' in w, (L?); for these operators
the relation

exp (I'R) exp (I'Q) Hyon oxp(— I'Q) exp(— TRy = H”  (9.6)

is valid. Furthermore they can be chosen so that

(H" — Hy)ym =0, l—m< ~rorl=m=0(9.7)

(H" — Ho)yp=e WL + -+ -, —r=l-m<0 (9.8)

(H' — H)pp = 2 I1WERM) oo 0<1—m,1+0. (9.9)
The + - - - signify higher order terms in a convergent series.

Proof. Let Q© = 0and Q; = 3 <; <; Q@M. We proceed by induction
and so we may suppose Q; defined for some j = 0. Let

exp (I'Q;) H exp(— I'Q;) = H'(j) . (9.10)
We suppose ‘
(H'(G) ~ Hopo =& Yio O+ -+, 1>0 (9.11)
and we suppose H'(j) € w; (&). Let
QUAN = Mo Yip Y. (9.12)
Then

H'(j+ 1) = exp(['Q;+1) H exp (= I'Q;+y)

= exp(I'Q;) H exp (= I'Q;) + Yo <& T [I'YU+1), Hy]
(mod g7 +2)
= H'(j) — e +1QU+D
This proves (9.11) for j + 1. By the definition (9.12), QU+D cu,(&).
By Lemma 8.3, I'QU+Y ¢ u, (%) and by Theorem 5.5, H' (j + 1) € w,(F).
This completes the inductive definition of . Let H' = H (2n). Then

exp(I'Q)H exp(— I'Q)=H' . (9.13)
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Let R® = 0 and let R, = 37 < ; <j6* R®). We use a similar induction;
let
exp(I'R,)H' exp(—I'R;) = H"(j) .
Then .
H'G) = H)ym= 1 ZG 0+, 1zm1+0 (9.14)
and (H" (j) — Ho)io = g2n+1Z@m+D o ... for I > 0. Let

RO+ = Zlgm>0Z?m+ v
E = (H"(2n))s0
H"=H"(2n) - E.
Then
exp(I'R) (H' — E) exp(—I'R)=H"
and this combined with (9.13) yields (9.6) and completes the proof.
Let W'’ be the sum of the terms occuring in (9.9) and let
H2 = H" — W" ,
H, = exp(— I'R) exp(— I'Q)H, exp(I'Q) exp(I'R)
= Ho — exp(—I'R) exp(—I'Q)W" exp(I'Q) exp(I'R)
= Hyep — exp(— I'R)exp (- I'Q) W" exp (I'Q)exp (I'R)
and let
W,= —exp(—IT'R)exp(—I'QW" exp(I'Q) exp(I'R) .
Then W, € uy,,(L*) and
W, = 82n+1W(12"+1) 4o
Lemma 9.3. There is a P = P(¢) in uy,, (L*) such that

exp (P)H,., exp(— P) = H, . (9.15)
If | — m = p then P;,, has an expansion
Py =e2n=sPEr = 4 (9.16)

which converges for ¢ + 0 (and for e = 0 if p < 2n).
Proof. First we discuss the equation

([Pl+r,m’ 8Vor])lm = Flm (917)

where F,, is given and P, , ,, is the unknown. The proof of Theorem 4.1
gives us
Lemma 9.4. Let F,, €uy,(L*) and let ¢+ 0. A solution P4 ,,,, in
uy,1(LA) to (9.17) can be found which is a continuous linear function
of Fy .
It follows that if
Frp=¢Fd +--- (9.18;
then
Pl+r.m= 85—1P§j—k_},)m+ e (9.19]
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and (9.19) converges if (9.18) does. We construct P by induction on u.
If I — m < r set Py, = 0. Suppose

Pu=21—m§,ule (920)
has been defined so that (9.16) holds and
(exp(P,) Hren xp(— Pp))im = (Hy)ym (9.21)

if I — m < y — r. (This is true if 4 = r — 1.) In order to achieve (9.21)
for u + 1, we only need

[Pm+y+1,m: eVorlmtuti—r,m
= {_ exp (Pu)Hren eXP(— Py) + Hren + Wl'— (9~22)
- Z;':ll[Pmﬁ-y-H—j, m—a‘!VOr]}m+#+1-—r,m'
This is solved by induction on m, using Lemma 9.4.
To complete the induction on x we must verify (9.16) for u + 1.

The first two terms in the right member of (9.22) contribute a sum of
terms of the form

aldel +kymytoc e a‘dej+kj,mj(Hren)ma + 0, mp? (9'23)
wherej = 1,0 < k; < pu and

Xiakite=u+1-r.

However, — p < r and so

Sloki=p+1—(e+n=p+1. (9.24)
If o= —r then (Hpep)m, + o,m; = € Vor if mg=r and is zero otherwise.
Thus in this case H,, contributes a power of ¢ to (9.23). If p > — r then
the inequality prevails in (9.24). Combining these two cases and using
(9.16) we see that the minimum exponent of ¢ occuring in (9.23) is at
least 2jn — u < 2n — p. It follows that (9.16) is true for P,.; o, and
by an induction on m, it is true for P,, ., 4;, . This completes the induc-
tion on u. (9.15) follows from (9.21) and the proof is complete.

Let
T, = exp(— P)exp(—I'Q) exp(—I'R) .
We now have
Hye Ty = T1H,,

or in other words, H,., has been put in ‘“‘triangular form”.
Lemma 9.5. There is an operator

U=2i<nUin (9.25)

exp(l'U)Hyexp(—I'U)=H,. (9.26)

such that

The terms
Uim= SU{})Z’*' ot

are analytic functions of ¢ with coefficients U, in u, (LA).
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We give
9y (LA) = Ui O(LA)

the inductive limit topology. Each subspace ©%(LA) of states with at
most k particles gets its topology from the seminorms (8.14),» =1, 2,...,
n = k. We realize expressions of the form (9.25) as operators on ©,(LA).
We assert that the power series exp(I'U) converges and that I'U and
exp'U are continuous operators. It is sufficient to prove this on each
subspace ©%(LA). However on such a subspace at most £ + 1 terms of
the power series are nonzero. Thus the convergence is trivial and
continuity follows from Lemma 8.2 (or Proposition 8.4). Let

T="T,exp(—IU).
Our lemmas show that (9.4) holds, and so Theorem 9.1 follows from

Lemma 9.5.
Proof of Lemma 9.5. Let

U= 2l—’m=—iUlm .
Let U; = O for j = 0 and by induction on j choose U; so that
exp(I'Yi_1U)Hyexp(-I'31_,1U,) - H, (9.27)
only contains nonzero terms W, (j) for which 7 +j 4+ 1 < m. We set

Ujiy= El—m=——(:i+ » Wim ()
and check that (9.27) has the correct form. Thus U is defined and (9.26)
holds. The analyticity of U follows from that of H, together with the
fact that each term U,,, of U depends (in a continuous manner) on only
a finite number of the terms of H, — H,,.
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