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Abstraet. It is proved that in certain representations of the Poincaré group the
mass operator must be identically zero.

1. Introduction

The aim of this series of papers is to study various questions related
to the subject of the title, motivated in part by possible relevance to
the application of group-theoretical ideas in elementary particle physics.
Much of the work will be a continuation of that in [2].

Our immediate starting point is O’Raifeartaigh’s theorem [5]. Let P
be the Poincaré (= inhomogeneous Lorentz) group, and let G be a
group containing P as a subgroup. Consider an irreducible linear re-
presentation of G in which the “mass” Casimir operator, [, of P! is
Hermitian. O’RAIFEARTAIGH shows that no ‘“mass splittings” are
possible if @ is finite dimensional, i. e. if [J has one discrete eigenvalue m?,
thenJ (y) = m2y for all vector .

This remarkable property of the Poincaré group has both negative
and positive implications for physics. On the negative side, it indicates
that many of the recent attempts to put particles of different masses
into supermultiplets by a simple group-theoretic scheme are doomed
to failure. Positively, it suggests a more elaborate scheme, whereby all
particles of a certain type without interactions have the same mass,
but the observed mass differences are the result of perturbations due to
interactions.

The main purpose of this paper is to indicate further conditions on
G which imply that the eigenvalue m? must be zero. Roughly, this in-
volves conditions on the normalizer of T in G. (7' is the group of trans-

* Work performed under the auspices of the United States Atomic Energy
Commision.

1 The Lie algebra of a group will be denoted by the same letter in bold-faced
type. For the notations used here, see [2].
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lations in P. The normalizer of T in G is the set of all ¥ € G such that
[Y,T]CT.) It is not known whether these conditions are always satis-
fied; we conjecture that they are. At any rate, we will show that one
general method for imbedding P as a subgroup of larger groups does
indeed lead to these conditions.

2. The mass operator in representations of the Poincaré group

Let P, T and G be as described in the previous section. (& is not nec-
essarily finite dimensional, however.) We suppose that G is a Lie algebra
of operators on a Hilbert space £, with the elements of T represented by
skew-Hermitian operators. Then, for Y € G, y €9, Y (y) denotes the
transform of by Y. Let (X,), 0 < ¢ < 3, be a basis for T in which the
mass operator [] takes the form:

O=2X¢:X% with go=-1,¢,=1 for i>0.
3

Let Y be an operator of G. Then,

OY(y) =10, Y] (y)+ ¥ O(y) @.1)
= -2 g:(Y, X)X, + XY, X,) + YO(y) - '

This can be written in the form:
OY(y) = 291 (AdX)2(Y) -2 g,[Y, X)X, + YO(y) . (22)

Notice now that various simple assumptions about the commutation
relations of the X’s and Y give information about the eigenvalues of (1.

For example, the simplest result of this type would be:

Theorem 2.1. If O is a scalar on 9, i.e. O(p) = m?y for all p € H,
and if :

[Y,X,]=24X; for 0=<:¢<3, with A+0, (2.3)

then m = 0.

The proof is obvious combining (2.1) and (2.3).

We shall show in Section 3 that (2.3) is satisfied for an element Y of
certain Lie algebras G into which P can be imbedded in a simple way.

Of course, O’Raifeartaigh’s theorem gives a simple criterion that [
be a scalar. We might remark that his condition can be extended slightly
from the case where G is finite dimensional: namely, suppose G is the
set of all operators Y such that (AdX,*(Y)=0 for 0=:<3, n
sufficiently large. One proves easily that G is a Lie algebra of operators,
and an obvious extension of O’Raifeartaigh’s argument shows that if O
acting on ) has a discrete eigenvalue, than G leaves invariant the eigen-
vectors corresponding to this eigenvalue.
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If one only assumes (2.3) is satisfied, there is still a considerable
amount that can be said about [J. For

[Y’ D]le’

and thus Y and [ together generate the Lie algebra of the two-parameter
solvable group. All the representations of this group have been deter-
mined by GELFAND and Namark [4]. In particular, note that if O
does not have a discrete eigenvalue, it has a spectrum extending over
the intervals (— oo, 00), (0, o), (— o0, 0). (I owe this remark to C. C.
MoogreE.)

Now, we turn to deducing the most obvious consequences of (2.2).
Suppose that & is finite dimensional and semisimple. O’Raifeartaigh
proves [5] that the transformation AdX, in G is nilpotent. By the
Morosov-Jacobson theorem in Lie algebra theory [3], there is then a
Y € G with

[Y,X,]=24X, and 1s0. (2.4)

Suppose further that such a Y can be found which is annihilated by
D) 9:(Ad X,)?, i.e. by the mass Casimir operator of P in the adjoint re-
B

presentation of P in G. Then, we can choose? a y with X,(y) = 0 for
v=1,2,3, i.e. a p in the “rest frame.” Then, if O(y) = m?yp for all
p €9, from (2.2) we have

m?Ayp =0, hence m=0.

Finally, let us try to formulate a more general criterion that this sort
of argument apply. Let N(T, G) and C(T, G), the normalizer and centra-
lizer of T in @, respectively, be the set of ¥ € & such that [¥,T]CT
and [Y, T] = 0, respectively. Notice that:

[C(T, &), N(T, })]CC(T, G) ,

ie. C(T, @) is an ideal in N(T, ).

Let L be the subalgebra of P generated by the homogeneous Lorentz
transformations. Now, we have:

Theorem 2.2. Suppose that:

a) O(y) =m2y forall p € H.

b) N(T, G) is larger than L + C(T, G).

Then, m = 0.

Proof. Suppose that ¥ € N(T, G). Then

[Y, X, ]=20ai;X;, 0=9=3.
i

* This is a point that admittedly should be made more precise, e.g. by the
methods of “‘generalized eigenfunctions” of GELFAND and VALENKIN [1]: The X,
cannot be expected to have a discrete spectrum, so that y is not in the Hilbert space.
The point that must be justified is to show that it is permissible to act with ¥ on ¢.

6*
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Suppose that y is an “eigenvector’ of the X,
Xi(p)=0biy, 0=i=<3.

(Note that at this point we are taking the same risk with rigor mentioned
in the last footnote, namely assuming that eigenvectors of the X,
can be added to § in such a way that it makes sense to act on them with
operators of G.) Then, choosing this p for 2.1, we have:
Z 9:0:50:6;=0. (2.5)
i
Now, if Y €L, the left hand side of 2.5 is identically zero in b;, since
AdY preserves the metric tensor on T. Let Y ¢ L + C(T, G). The ad-
joint representation of L in T is just the usual SO (3, 1) representation of L,
the Lorentz group. Hence, the left hand side of 2.5 is not identically
zero in b;, but only vanishes when:

2 gibiby=m?.
i
This is clearly only possible if m = 0.

3. A method for generating groups containing the Poincaré group

Let P=L® T be the Lie algebra of the Poincaré group. Now, P
is the contraction (see [2]) in the sense of Inonu-Segal-Wigner of various
other Lie algebras; say that F is one of them. We propose a method for
imbedding P in a Lie algebra G as follows: Find a one-parameter imbed-
ding ¢ > F, of F in G in such a way that, as ¢ - 0, F, approaches (in
the sense described in [2]) a subalgebra of G which is isomorphic to P.
We will not work at this level of generality in this paper: Instead, moti-
vated by the detailed examples of this process worked out in [2], we will
proceed in a more explicit manner.

Let us forget about P for the moment, and start off with a Lie algebra
@, a subalgebra F of G, and an element X € G such that AdX acting in
G is completely reducible and has real eigenvalues. Let C(X) be the cen-
tralizer of X in @, i.e. the subalgebra of elements Z ¢ G with [Z, X] = 0.
Let C(X, F) be the centralizer of X in F, i.e.

CX,F)=C(X)NF.

Let N*(X) be the subspace of G spanned by the eigenvectors of AdX
for positive eigenvalues. Then N*(X) is a nilpotent subalgebra of G.
Further,
[€(X), N*(X)]CN(X).
Notice that C(X, F') + N*(X) = P(X) is a subalgebra of G that is a

semidirect product of the subalgebra C(X,F) and the ideal N*(X).
We will now give a sufficient condition that N*(X) be abelian, hence
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that P(X) have the same type of algebraic structure as the Poincaré
group.
Suppose that there is a subspace M of G such that:

G=FeoM XcM, [C(X, F),MCM.

Then, the projection of & on F commutes with the action of AdC(X, F).
Suppose further that the following conditions are satisfied
(I) AdC(X, F) acting in F/C(X, F) is irreducible.
(II) IfZ ¢F and [X,Z] €T, then Z ¢ C(X, F).
Consider the projection of N*(X) on F, which we will call F(X). Then,
[F(X), C(X, F)]CF(X) .

Project F(X) on F/C(X, F). In view of (I), there are two possibilities:

a) F(X)CC(X, F), or

b)) F=CX,Fe F(X).

Let us consider a) first: Let W ¢ N*(X), with

X, W]l=AW.
Then, W =Y +Z, with Y ¢ M, Z ¢F. Then,
MY +2)=[X,Y]+[X,Z].

But, if condition a) is satisfied, [X, Z] = 0. Hence, Ad X leaves invariant
the subspace of G spanned by Y and Z. However, it does not act in a
completely reducible way in this subspace, contradicting our assumption
that AdX is completely reducible. Then, a) is eliminated. Now, we can
use the same argument to prove that:

Lemma 3.1. F(X) n C(X, F) = (0), i.e., in view of b),

F=CX,F)e F(X).
Proof. Suppose otherwise, i.e. there is a relation of the form
W1+ AR W},= Y+Z, YGM,ZEF,
[X,Z21=0; [X,W,=AW,; for i=1,...,r.
Then,
[X, Y]=)»,Wl+"'+/1,.W,..

Consider the subspace of @ spanned by ¥ and W, ..., W,. AdX leaves
it invariant. Again, by complete reducibility of AdX, there should be
a linear combination of ¥ and W,, ..., W, which is an eigenvector of
Ad X. This is clearly impossible.

Thus, the composite maps N*(X) - F(X)— F/C(X,F) is an iso-
morphism. In particular, in view of (I) we have:

Corollary. Ad€ (X, F) acts srreductbly in N* (X).

As a consequence of this, we have:
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Theorem 3.1. N*(X) is abelian, and AdX acting on N*(X) is just
multiplication by a scalar.

Proof. [N*(X), N"(X)] is a proper subspace of N* (X) and is invariant
under AdC(X,F), hence, in view of the Corollary to Lemma 3.1, must
be zero. That Ad X is a scalar follows from Shur’s Lemma.

Let us recapitulate this construction from a slightly different point
of view. Start off with a Lie algebra @&, a subalgebra F such that there is a
subspace M of G with:

G=F+M, [F,M]CM.

Let L be a subalgebra of F such that AdL acting in F/L is irreducible.
Then, if Ad L acting in M has an invariant vector X satisfying the relevant
conditions, L + N*(X) is a subalgebra of G consisting of a semidirect
sum of an abelian ideal N*(X) of “translations”, together with a sub-
algebra L and a representation of L which is equivalent to the action of
AdL in F/L. Under further conditions described more carefully in [2],
L + N*(X) will then be a contraction and a limit within G of the sub-
algebra F. Further, if T is put equal to N*(X), we will be able to apply
Theorem 2.1, since X is in N(7', &), and T will have a basis on which Ad X
is diagonal with real eigenvalues.
For example, let us apply this construction to the case

L=80@3,1), F=80(4,1), G=5804,2).

It is readily verified that all these conditions are satisfied, and we get
L + N*(X) as P, the Lie algebra of the Poincaré group. @ is of course
just the conformal group of Minkowski space, so our imbedding of P
in a larger group is just that which is most natural from a geometric point
of view. Further, SO (4, 2) is locally isomorphic to SU(2, 2), the group
of 4 x4 unimodular complex matrices which preserve a Hermitian form
with two plus and two minus signs. The Lie algebra of this group can be
expressed in terms of the Dirac matrices, of course. This seems to be
tdentical with the representation of P in terms of Dirac matrices used
recently in the many attempts to render the S U(6)-theory of Gursey,
Radacati and Sakita relativistically invariant.

We can make one final remark about these attempts. Suppose that
we put together P and another group K by the “Wigner construction”,
namely choose representations g, and g, of P and K on vector spaces
Viyand V,. Let V=V, ® V,, and construct a representation g of the
direct sum Lie algebra P @ K on V by the rule:

(X @ 2) (v, ® vp) = 0,(X) () ® V34 v, ® 0(Z(v)) .

Wigner’s construction now consistsin letting G be the smallest associative
algebra of operators on V containing o(P ® K). For example, if P is
imbedded in SU (2, 2) as explained above, and if SU(2, 2) is regarded
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in the usual way as a group of transformations on C*= V;, and if
K = 8U(3), with V, = 03, then V is C'%, and G is SU(6, 6).

Now, one basic difficulty in interpreting this physically® is that T,
the algebra of transformations in P, is no longer maximal abelian in G.
The additional abelian operators would give new ‘“quantum numbers”
of particles which must be interpreted physically. If one “throws them
away’’ by considering unitary representations of G on a Hilbert space £,
then only considers subspaces of $ on which the additional operators
are zero, one runs into the well-known ‘‘unitarity difficulties.” Now,
these additional abelian operators arise because g,(X), for X €T, is
nilpotent of second order, ie. g,(X) g,(X') =0 for X, X’ ¢T. To see
this, consider

0.(X)0,(Z), for X€T,Z€K.
It applied to v, ® v, gives g, (X) (v;) ® 02(Z) (vy).
Hence, [0, (X) 05(4), 01(X") 02(Z)] (v, ® vy)

= 01(X) 02(2) :1(X") 02(Z") (v ® vy) —
— 01(X") 02(Z") 0:(X) 02(2) (v; ® vy)

= 01(X) 0:(X') () ® 05(%) 05(2") (vp) —
= 01(X') e1(X) (1) ® 02(Z") 05(Z) (vp)

= 0:(X) e:(X") (v)) ® 0o([Z, Z']) (vy) -

Thus, no matter what the structure of K, all these operators will be zero:
This is the source of the “‘catastrophe,” since it gives a huge number of
additional abelian operators in G containing T. However, if the represen-
tation g, of P were chosen so that the g,(T) were nilpotent to a higher order
than two, the number of such additional abelian operators would be
cut down considerably. Such representations of P have not yet been con-
sidered: Presumably they are in spaces of much higher dimension, and
introduce other severe complications.
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