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Abstract. A charged particle following the Reissner-Weyl vacuum field-distribu-
tion shows in its interior a real singularity (the matter-tensor becomes infinite).
By embedding the interior submanifold ds2 = gu dr2 + g00 dt2 into a pseudo -
Euclidean space Ez ids2 = dZ\ -\- dZ\ — dZ\ one finds that the embedded (r, t)-
metric looks like a cone with the top Hying in the Zl9 Z2 plane. The general formulas
of embedding the complete manifold into a pseudo-Euclidean space JE6 are discussed.

I. Introduction

The problem of embeddings of non-Euclidean metrics into pseudo-
Euclidean spaces is of current interest. The embedding of various re-
lativistic Einstein-Riemannian spaces has been given in the literature [1].
Leaving out the difficult mathematical aspect which concerns the classi-
fication of relativistic manifolds, embedding methods seem useful to
obtain a geometrical imagination of non-Euclidean metrics as was
first pointed out by FRONSDAL [2].

In a previous publication [3] the author considered a complete re-
lativistic solution of a Reissner-Weyl-like particle [4] which was also
applied to a curved de Sitter background. The Coulomb-repulsion is
balanced by gravitational action, but no Newtonian approximation
exists because space-time is strongly non-Euclidean even for an in-
finitesimal mass of the particle. This is due to a singularity of space-
time at the origin of the particle, where the trace of the matter-tensor
becomes infinite. The radius of the particle is directly proportional to
its mass. To get a better feeling for the character of the singularity we
shall embed our solution into a pseudo-Euclidean space. This adds to
our knowledge of embedded four-dimensional solutions of Einstein's
theory.

II. General formulas of embedding the particle into JE6

From Einstein's equations
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(Tik) UiJΰ are the energy tensors of matter and electromagnetic field),
we obtained the complete solution [3] of a Reissner-Weyl like-particle
(in terms of polar-coordinates)

Exterior (vacuum):

-911 = SΌo = [(1 -Uβrf- (4re/r-r^/r2 + 5r2) (A/15)], (1)

g2i = —r2, 033 = —r2 sin2 ϋ .

Interior (charged matter)

Λi = - [4/9 - (8/15) λ • r 2 ]-i, gw=C r,

0 M = - Λ 9-33 = - r a sin2 ϋ , (2)

((7 = 4/9ro-(8/15)A r o ) ,

where r0 is the particle radius.
There appears to be a "coordinate-singularity" at r = ro/3 (for sim-

plicity we take λ = 0) which however is of no physical interest since (1)
is valid only for r ^ r0. The interior manifold (2) shows a real singularity
as one can see from the time-coefficient g00.

Now we perform the general embedding of the vacuum manifold (1)
into a pseudo-Euclidean space E6 which is minimal. Using the notation
(+ H ) the line element is then given by

ds2 = dZ\ + dZ\ — dZ\ — dZ\ — dZ\ — dZ\

with two temporal coordinates Zλ, Z%. ( " + " is used for temporal coordi-
nates and "—" for spatial).

The embedding transformations for the vacuum manifold (1) are of
the form π Λι— .

Z\ — ]/{7o * s i n * ί

Z2 ~ γg0 cos t

7 Γ A * Γ too.'/2>2 + ι i l 1 / 2

J I 9o 1 \όai)

£ 4 = r cos #

Z5 = r sin # cos

Z6 = r sin 1? sin φ
where g0 = g00, gQ0-gn = — 1 , gQ,r means differentiation with respect
to the coordinate "r" and "£" is the time coordinate.

The embedding of the interior manifold (2) into EQ is given by

Zx = j/C r - sin t

Z, = VC^ cos- *

Z3=fdr [C/4r + (4/9 - (8/15) λ r3)-1

Z\ + Z\ + Z% = r2 .

For further investigation we try to draw a picture of the interior manifold.
We have to specialize to the subspace d$ = d& = 0 and we get a 2-dimen-



Embedding of a Relativistic Charged Particle 57

sional surface in a pseudo-Euclidean space U73. The surface represents the
complete interior space-time.

III. The interior surface

The manifold & = const, φ = const, means that the line element
of the solution (2) becomes (we take λ = 0)

ds*=C'r'dt2-{9l±)'dr\ (4)

where C — 4/9 r0. This can be embedded in the space1

ds* = dZ\ + dZ\ — dZ\ , (5)

(which is not a subspace of the Euclidean space E6 defined before).
From the identity (4) and (5) the following transformation is valid

(for simplicity we put the particle-radius ro= 1):

zi = (2/3) ' j / ^ ' s i n # t

Z2 = (2/3) ]/V' cos t (6)

The surface is then defined by the parameter-representation

Z\ + Z\ = (4/9) r

Z* = (3/2) [ |/(4/81+ r) r + (2/81)In
1/(4/81 + r) +γr

+ r) - ΫF (7)

We note that (7) admits to a rotation group in the Zv Z2 plane. I t is
also invariant under "time" reflection Zx -> —Zv Z2 -> —Z%. Drawing the

Fig. 1. The surface defined by Eq. (7) of the embedded interior manifold of a charged particle

picture of the embedded manifold schematically one gets Fig. 1 with
the numerical values

α = arc tg (15/18) - 43°, 0 ^ Zz ^ 1,7, 0 ^ Zv Z2 < 2/3 .

Near the top (Z3 -> 0, the singular point) the surface looks like a cone.
1 It is an interesting property of (2) that a choice of notation (-J ) would

not permit a complete embedding.
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The embedding shows thus, that the topological character of the
manifold is completely different from the one of the Schwarzschild line
element. In our model space-time is simply connected while the Schwarz-
schild singularity is well known to have a "throat", i. e. a doubly connec-
ted space-time. The singularity encountered in our model is thus far
less serious than the one of Schwarzschild's solution.
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