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Abstract. Detailed derivations are given of the simplest properties of nested
Hubert spaces and of operators between them.

1. Introduction

A nested Hubert space is, loosely speaking, the union of a family of
Hubert spaces some of which are suitably embedded into others. There
exists a "central" Hubert space Ho. The remaining spaces come in
pairs Hr, Hψ which are in duality with respect to the scalar product in Ho.

Such objects have a "self-dual" character which makes them relatives
of ordinary Hubert spaces. On the other hand, they are general enough
to accomodate various improper functions and operators of quantum
mechanics. For example, Wick products of fields (without smearing) are
operators — in a sense to be discussed below — in a suitable nested
Hubert space.

1.1 Example: Denote by / the ordered set of real numbers. For
every s ζ /, let Hs be the Hubert space of (classes of) complex-valued
measurable functions defined on an euclidean space and such that

/ |/(#)|2exp(—s\x\) dx < oo .

For s ^ r, denote by Esr the natural embedding which associates, to
every fr ζ Hr, the same function considered as an element of Hs. Notice
that Esr is continuous and injective. The range of Esr is dense in Hs.

Denote by Hj the union of all the spaces Hs. (Actually, this in an
algebraic inductive limit; see below.) Denote by EIs the natural embedd-
ing of the Hubert space Hs into the vector space Hj.
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2 ALEXANDER GBOSSMANN :

For typographical convenience, write s to denote —s. If / and g in Hj
are such that, for some s ζ /, / belongs to EjgH^ and g to Ejg H^ then a
scalar product

= ff*(χ)g(χ)dx (l.l)

is defined. Notice that (1.1) has the form of the scalar product in HQ =
but that we do not require both / and g to be in Z/<2). The exponential
increase of — say — /at infinity can be compensated by a corresponding
decrease in g.

It is useful to classify the functions in Hj by associating to every
such function / the set J (/) Q I of all numbers r such that / ζ EIr Hr.
For example, if / is, respectively, exp(— x2), 1/(1 + x2), or5, exp(2|#|)
(in one dimension), then J(f) = (—oo oo) = /, resp. [0 oo), (0 oo), (4 oo).

The adjoint of Esr is the mapping

(Esr)*s: f(χ) -> e x p [(r - a) \x\] f(x) (1.2)
from Hs into Hr.

Notice that the mapping

urΨ : f(x) -> e x p ( r \x\) f(χ) (1.3)

establishes a unitary correspondence between Hr and Ήγ and that

1.2 Example: Denote by i/0 the Hubert space of (classes of) functions
/ (x, y) which are square integrable with respect to the Lebesgue measure
in the plane. Consider in Ho the orthonormal basis {hk(x) hj(y)} where
hk(x) is the (properly normalized) product of a Hermite polynomial

and of exp ί—^ x2\ .

Let r — r(k, j) (kf j = 0, 1, 2, . . .) be a double sequence of strictly
positive numbers. Denote by / the set of all such sequences, partially
ordered in the natural way: r 5£ s means that r(k, j) ^ s(k, j) for all k, j.
Given any sequence r ζ /, consider the sequence r defined by r (k, j)
= l/r(k,j). Notice that the correspondence r<->F is an order-reversing
involution analogous to the correspondence s <->—s in Example 1.1.

To every r ξ / associate the prehilbert space consisting of all finite
linear combinations of the vectors hk (x) hj (y) the scalar product of

7* j
and of

9 fo y) = Σ Σ diaK (x) h iy)
h j

is the number

Zu 2-i ckj ^kj 2(1, v
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where the star denotes complex conjugation. Denote by Hr the comple-
tion of this prehilbert space.

If T ^ sy then Hr Q Hs. One can introduce the operators Esr of embedd-
ing as in Example 1.1. Consider the unitary mapping uΨr from Hr into H^,
defined by:

linear extension and closure. I t can be verified that (1.4) holds.
Consider again, the vector space HI=vHr; the union is now

over all double sequences of positive numbers. Define EIr and J(f)
as in Example 1.1. That is: r ζ J(f) means / ζ EIr Hr.

At this point, a legitimate question is why we are complicating
matters by considering the full partially ordered set /, when any cofinal
subset of I (in particular, any totally ordered cofinal subset) would give
the same supply of elements.

The answer, is roughly, that the set J(f) gives a useful description
of the "regularity" of a vector / in Ή.χ. A mutilation of / can lead to a
decrease of the amount of information contained in «/(/).

In order to illustrate this, consider in Hj the vectors

(1.5)

and
/ Ί \

(1.6)

Here δ is the Dirac <5-function. One should clearly require the scalar
product (f\g} to be defined since

ffδ(x) δ(y) exp \— y x2—γy2j dxdy=l.

This means, as will be seen below, that we require the existence of
at least one rζl such that rζJ(f) and rζj(g). This condition can
easily be satisfied if / is the partially ordered set of all double sequences
of positive numbers. Indeed, if Σicr~1 (&> j) < °° f° r every j , then rζJ(f).
If Σjr(k,j) < oo for every Jc, then r ζj(g). These two conditions are
compatible: one can take e. g. r (k, j) = (k/j)2. On the other hand, consider
e. g. the subset Γ Cl consisting of double sequences of the form r(Jc, j)
= r'(k + j). I t is clear that Γ is cofinal with /; however, the above
conditions cannot be satisfied within Γ and even less within a totally
ordered subset of Γ.

In Sec. 3 a, a nested Hubert space is defined as an algebraic inductive
limit of a family Hr (r ζ I) of Hubert spaces. A certain number of condi-
tions are imposed on the set I and on the family Esr of mappings with
respect to which the limit is taken. These restrictions will be now dis-
cussed in a qualitative way.

1*



4 ALEXANDER GBOSSMANN :

First the conditions on / (see Sec. 2e): The discussion of Example 1.2
has shown that I should in general be only partially ordered. It can be
seen from the same example that it would be unduly restrictive to assume
that every r ξ / is comparable to o.

One has to assume, however, that / is directed to the right, because
this insures the existence of the inductive limit. The idea that the
spaces Hr come in pairs Hr> Hψ is expressed by postulating the existence,
in /, of an order-reversing involution r <-> r. The last requirement is the
existence of a o ζ I such that δ = o. (This condition could be dropped
without dramatic consequences.)

Next: The mappings E8r(s Ξ> r) are assumed to be injective, conti-
nuous and with dense range. For the sake of completeness, the simplest
properties of such mappings are derived in Sec. 2c and 2d; a class of
examples is exhibited in Sec. 2g. It is also assumed, of course, that the
family Esr(r ^ s) satisfies the usual conditions required to insure the
existence of the inductive limit.

One has now to express precisely the idea that Hr and Hψ are in
duality with respect to the scalar product in Ho. This is often done by
using one of the two spaces as a space of testing functions and by defining
the other as a suitable set of linear functionals. For our purposes, this
is not convenient: First of all, it destroys the symmetry between Hr

and Hf which is one of our main themes. Secondly, the procedure is not
directly applicable if r and r are not comparable to o. For example,
each of the vectors (1.5) and (1.6) could with equal justification be called
a testing function and a linear functional.

A suitable way of expressing the duality requirement is given in
Section 3 a. The condition {NH2) of that section requires the nesting
Eγ-S to be "unitarily related" to the adjoint {Esr)*s of Esr. More precisely,
it postulates the existence of a family of unitary operators urf such that
(1.4) holds.

While Rr is a Hubert space, its image EIr Hr under the natural
embedding is just a vector subspace of the vector space Hj. It is useful
to consider the family of all vector subspaces of Hj which are of the form

, r τ EIrHr (1.7)
for some r ζ I.

The condition (NH^ of Sec. 3a requires that the intersection of
any two vector subspaces of the form (1.7) be again a subspace of the
form (1.7). It is trivially satisfied if I is totally ordered. In the general
case, it insures the existence of ' 'sufficiently" many Hubert spaces Hr.

From (NHj) one can deduce [with the help of (NH2)] a dual state-
ment: The linear span of any two subspaces of the form (1.7) is again a
subspace of the form (1.7). These and related statements are proved in
Section 3 b by an adaptation of methods of L. SCHWARTZ [1].
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Let Hτ be a nested Hubert space. What is a suitable definition of
an operator in Hj ?

A natural answer would be: An operator in Hj is a linear mapping
defined on a union of subspaces of the form (1.7) and mapping each of
these subspace into a subspace of the same form.

For example, convolution by exp(|#|) is an operator in the nested
Hubert space of Example 1.1. The differentiation and the multiplication
by δ(x) δ(y) are operators in the nested Hubert space of Example 1.2.
Notice, incidentally, that the first two of these three operators are
defined on all of HΣ and that the last two are not operators in the "wrong"
nested Hubert space.

The above definition is not quite complete; another natural require-
ment is that the domain of an operator should not be ,,artificially
restricted". It is technically convenient to insure simultaneously the
validity of all these requirements by defining an operator as an element
of a suitable algebraic inductive limit of Banach spaces of bounded
operators between Hubert spaces (Section 4 a). It follows from this
definition that the domain of a sum of operators may well be larger than
the intersection of the domains of the summands.

Every operator in a nested Hubert space has unique adjoint which
is an operator in the same space (Section 4 c). The correspondence
A «-* A* between an operator and its adjoint is antilinear, involutory
and bijective; everything is happening as if A were a bounded operator
in an ordinary Hubert space. In the examples above, the first and the
third operator is selfadjoint.

Actually the sections 4 a to 4 e do not deal with operators in a nested
Hubert space but, more generally, with operators between nested
Hubert spaces. This generality is needed in the applications. For
example, one obtains a theorem on the representation of linear func-
tionals (analogous to the classical Riesz-Frechet theorem) by letting
one of the spaces to be the set of complex numbers (Section 4e). Products
of operators are studied in Section 4d. Again, the domain of a product
may be larger than the domains of the factors.

A class of examples of nested Hubert spaces is studied in Sections 5 a
to 5 c.

The upshot of all this is a Dirac notation supplemented by the
systematic use of the sets J(h) and J(A). This machinery will be applied
to concrete problems in later papers; its utility will of course always
depend on a judicious choice of the space Hτ.

Some of the results of this paper have been stated without proof in a
previous publication [2] which is concerned with a particular nested
Hubert space. The definition given in [2] assumes / to be totally ordered
and is thus less general than the one given here.
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In a rigged Hubert space of GEL'FAΊSΓD and VILENKIN [3], the set /
consists of all the integers, and the mappings Esr are required to satisfy
some additional conditions. There is not much overlap between the
present paper and [3] because we stress the analogy to Hubert space
and avoid the theory of topological vector spaces.

2. Preliminaries

a) Hubert spaces

For the terminology, see e. g. RIESZ [4] or DUNFORD-SCHWARTZ [5].

Several Hubert spaces will be considered simultaneously and denoted
by Hr, Hs, . . . . Elements of Hr are denoted by fr, gr, . . . . A bounded
linear operator from Hr into Hs is denoted e. g. by Asr. The adjoint of Asr

is the bounded linear operator from Hs into Hrf denoted by (Asr)*s and
defined by

(gr,(Asr)*Js)=(Asrgr,fs) (2.1)

for every grζHr and every fs£Hs. On the 1. h. s. of (2.1) the scalar
product is in Hr; on the r. h. s. it is in Hs. There is no need to indicate
this by ( , )r or ( , )s since the subscripts are carried by the vectors and
the operators. The scalar product (/r, gr) is linear in gr and antilinear in fr.

Similar conventions are adopted for norms: ||/r|| is the norm in Hr,
and \\A8r\\ the bound norm of Asr (with respect to the norms in Hr and Hs).

b) Polar decomposition

2.1 Proposition: Let Asr be any bounded operator from Hr into Hs.
Denote by [-4sr]rr the operator

[Λ.r]rr=[(A,r)*tAtrγ/* (2.2)

(positive square root). Then Asr can be decomposed into a product

Asr=Wsτ[Asrlr (2-3)

where Wsr is an isometric correspondence between the closure of the
range of [^4sr]rr and the closure of the range of Asr.

Proof: For every fr ζ Hr the equation (2.2) gives

([^srJrr /r? L^srJrr fr) ~ \^sr fry ^sr fr)

I e. \\[A8r]rrfr\\ = \\A8rfr\\. If A r = [Asr]rrfr and gs = Asrfr, write gs

— Wsrhr and extend by closure. Then gs= Wsrhr = Wsr[Asr]rrfr

= Asrfr gives (2.3).

c) Nesting

2.2 Definition: A linear transformation Esr from a Hubert space Hr

into a Hubert space Hs is called a nesting if the three conditions below
hold:
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(Ns^) Esr is bounded (and defined on all of Hr).
(Ns2)Esr is injective. (Injective means one-to-one into; bijective

one-to-one onto.)
(Nsz) The range of Esr is dense in Hs.
2.3 Proposition: If Esr is a nesting then its adjoint {Esr)*s is also a

nesting.
Proof: (a) (Ear)f8 is injeetive: Let (Esr)*8fs = 0. Then (gr, (Esr)*sfs)

= 0 for every gr £ Hr. Since the range of Esr is dense, it follows that /s = 0.
(b) The range of (Esr)*s is dense: Let gτ be such that (c/r, (Esr)*s fs) = 0

for every /s ζ H8. Then {Esr gr9 /,) = 0 for every /, ζ # s so that Esr gr = 0.
Since Esr is injective, it follows that gr = 0. This proves the proposition.

2.4 Proposition: Let i£ s r be a bounded linear transformation from Hr

into i7s. Let
(2.4)

be the polar decomposition of Esr. Then i£ s r is a nesting if and only if Usr

is unitary and [Esr]rr is injective.
Proof: (a) If i£ s r is a nesting, then [Esr]rr is injective: Indeed,

([Esr]rr fr, [Esr]rr fr) = (U7sr /„ J? s r /f) so that [Esr]rr fr = 0 gives £ s r /r = 0
i. e. /r = 0.

(b) If [Esr]rr is injective, then the range of [Esr]rr is dense in Hr:
Indeed, if (gr, [Esr]rr fr) = 0 for all /f ζ Hr then ( [ ^ s r ] r r ^ r5 /r) = 0 so that
[ # s r ] r r gr = 0 i. e. gr - 0 .

(c) If Esr is a nesting, then Usr is unitary: Follows from (b) and from
Proposition 2.1.

(d) If Usr is unitary and [Esr]rr injective, then Esr is a nesting.
Direct verification.

2.5 Proposition: If Esr and Eks are nestings then the product Eks Esr

is a nesting from i? r into Hk.
Proof: {NS-L) and (^52) are immediate. In order to prove (Ns3),

let fh ζ Hk be such that (fk, Eks Esr gr) = 0 for all gr ζ ffr. Then {(Eks)*k fk,
Esr gr) = 0. So (Ejcs)*^ fk — 0 since j ^ s r jffr is dense in £ΓS. By proposition
2.3 it follows that fk — 0. This proves the assertion.

d) Nesting and bilinear functionals

Let Hr and ZΓS be Hubert spaces. A bilinear functional on Hr and Hs

is a complex-valued function jδ (/r, ^s) (/r ζ £?,., gs ζ J3"s) which is linear
in the argument gs and antilinear in the argument fr. A bilinear functional
B is called nondegenerate if (a) for every fr £ J7r there exists at least one
gs ζ JζΓs such that B (fr, gs) Φ 0 and (b) for every gs £ Hs there exists at least
one fr ζ Hr such that B(fr, gs) φ 0.

A bilinear functional B is said to be bounded if there exists a constant
γ > 0 such that \B(fr, g.)\ < γ \\fr\\ \\gs\\ for all fr ζHr, gs £H$.
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2.6 Proposition: If Esr is a nesting from Hs into Hr then the cor-
respondence

is a bounded nondegenerate bilinear functional on Hr and Hs. Conversely,
given any bounded nondegenerate bilinear functional B on Hr and Hs,
the operator Esr defined by the above equality is a nesting.

The proof is easy and may be omitted, since the proposition will not be
used.

e) Ordered sets (see e. g. BOTJRBAKΊ [6])

By order we mean "partial order" (not all pairs of elements have to be
comparable). An order-reversing involution in an ordered set P is a
bijective correspondence r <-> r in P such that p g r if and only if p ^ r
and that r = r.

If D Q P is such that r ζ D, p ^ r entails p £ D then D is called an
initial subset of P . Same terminology for final subsets.

An ordered set P is directed to the right (left) if any two elements r,
q £ P have at least one common successor s ^ r, q (predecessor p ^ r, g).

By / or by /', I"', . . . we shall denote throughout this paper a set
which satisfies the following conditions:

(Ix) / is directed to the right.
(12) In I there is defined an order-reversing involution r <-> F.

(Consequently, I is also directed to the left.)
(13) There exists an element o ζ I such that δ = 0.
Let / and Γ be two sets that satisfy the above conditions. In the set

/ x / ' of pairs {r, r'} (r ζ /, r' ζ /') we shall consider two order relations:

fr <r'\ < -ΓQ <?r\ ifF r < <? nnrl r ' < Q' ^9 ^1
S / , / f ^ j | θ j o j 111 / ^ o d/ULl / ^ o y<u.Of

fr rf\ <" /<? Q'\ ifF r >> Q αr»rl r ' <C a' (9 f{\
\'j ' j ^ 2 \ ' / — clllUL / ^ o . ^Λ.Uy

Denote by (/ x JΓ'̂  the set I x I' endowed with the order (2.5) and
by (I x / ' ) 2 the same set endowed with the order (2.6).

2.7 Proposition: If / and / ' satisfy the conditions (Ix), (I2), (I3) then
(J x Γ)-^ and (J x Γ)% also satisfy the same conditions.

Proof: (a) If s ^ r, q and p ^ r, q and s' ^ r', q' then {«s, .s'} ^

(b) The order-reversing involution is defined, in both (/ x Γ^ and
(/ x Γ)2, as

(c) Define ox — o2 = {o, o'}. Then δ1 = (>! and ό2 = o2. This proves
the proposition.
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If 8 is a subset of I, then 8 denotes the set of elements r (r ζ $ ) .
If A is a subset of / x / ' then A* denotes the set of elements {r'} r}

({r, r'} ζ A). I t is a subset of Γ x /.

f) Algebraic inductive limit

I t will prove convenient to define inductive limits in a way a little
more restrictive than is customary (see e. g. BOURBAKI [7]).

Let P be an ordered set directed to the right. For every p ζ P let Vp

be a vector space. For every p ζ P and every q ̂  p let Eqp be an
ίnjective linear mapping from VP into VQ. Assume:

(Indj) EPP is the identity in VP for every p ξ P.
(Ind2) If q ̂  r ^ p then EQP = Eqr Erp.
In the disjoint union U V' p define an equivalence relation by writing

ίv ~ fr (where fp ζ VP, fr ζ Vr) if and only if there exists a s ̂  p, r such that
Esp j v — Esr fr. The set of classes has a natural structure of vector space
which will be denoted by VP and called the algebraic inductive limit of
the family Vv with respect to the mappings EQV and the set P. This is
written as

rP=[V,;Sβ,;F]. (2.7)

The word "algebraic" is a reminder that topology is not involved.
For every p ζP the natural embedding of Vp into VP is denoted

by EPp. I t is easy to show that EPv is linear and injective. Furthermore,
if s ^ r then

EPr = EPsEsr. (2.8)

If / ζVP and if f = EIpfpy then fP is called the representative of /
in Vp. If fP is the representative of / in VP, if /s is the representative of /
in Vs and if s ^ p, then

ίs = Esv fv

For every / £ VP denote by /(/) the set of all r ζ P such that fζEIrVr

(i. e. such that / has a representative in F r). This /(/) is a non-empty
final subset of P. I t is easy to verify that

J(0) = P (0 the zero vector of VP).
J(λf) = J{f) (λ a non zero complex number, / ζ VP).
J(f + g)2J(f)nJ(g).
If s ^ r, then

EPsVs2EPrVr

by (2.8).

g) Nestings between LW-spaces

For the terminology on measures, see e. g. HALMOS [8].
2.8 Theorem: Let μ and μ' be two totally σ-finite positive measures

over a set X. Assume that μ and μ' are equivalent, so that both Radon-
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Nikodym derivatives dμ\dμr and dμf\dμ exist. Assume furthermore
that dμ'jdμ is essentially bounded (with respect to μ). Then

(i) LV){X;μ)QLV)(X;μ').
(ii) The natural embedding of L^{X\μ) into LM(X;μ') in a

nesting.
Proof: (a) The fact that dμ'/dμ is essentially bounded gives, for

every f

f \f{x)\»dμ' = / |/(*)|24~- dμ < const/ \f{x)ψdμ

which proves (i) and (iV^).
(b) If / = 0 in LW(X μ') then f(x) = 0 almost everywhere with

respect to //.By the equivalence of μ and of μ\ /(#) — 0 almost every-
where with respect to μ; so / = 0 in LW(X; μ) which verifies (Ns2).

(c) Every simple function on X that belongs to LW(X; μ) belongs
also to LW (X; μ'). These functions are dense in LW (X; μf) so that (Ns3)
holds. This proves the theorem.

Consider in particular the case where X is the set N of positive
integers. Write W (μ) for U2) (N; μ).

Let {λk} and {λ%} (k = 1, 2,...) be two sequences of positive numbers.
Define the measures μ and μ' on N by

/«*=(**)-• and μ'k=(λ'k)-*. (2.9)

Then ί<2) (μ) and U2) (μf) consist of the sequences zk of complex numbers
such that

Σ*W^h)-2<™ and ΣIC\ZJC\HK)-2<™

respectively.
2.9 Proposition: Let λk and λ^ be two sequences of positive numbers

such that λkjλ
fjc is bounded. Define the measures μ and μ' by (2.9). Then

the natural embedding of U2) (μ) into Z<2> {μ') is a nesting.

Proof: The assertion is a special case of Theorem 2.8.

3. Nested Hubert spaces

a) Definitions

Let I be a set satisfying the conditions (ij), (72), (73) of Section 2f.
For every r ζl let Hr be a Hubert space. For every r ζI and every
s ^ r let J57sr be a nesting (Section 2 c) of Hr into Hs. Assume that the
conditions (Inda), (Ind2) of Section 2f hold so that the algebraic inductive
limit

Hj=[Hr;Esr;I]

is defined. This vector space will be called a nested Hubert space if the
following conditions are satisfied:
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Ij) If r, q are any two elements of / then there exists a p ^ r, q
such that EIp HP is the intersection of EIr Hr and of EIq Hq. That is:

Notice that (NH2) is trivially satisfied if I is totally ordered. In that
case p is the smaller of the elements r, q.

(NH2) For every q ξ I there exists a unitary mapping Uq Q from Hq

onto Hq such that

^ o o = l (3.2a)

(Esr)*s = ur-rEf-8u8S (3.2b)

( r ζ / s ^ r ) .
Notice that

urf u-rr = 1

for every r ζ /. [Take r = s in (3.2b) and use (Ind-J of Section 2f.]

3.1 Proposition: Given the spaces Hr (r ζ I) and the nestings Esr(s ^ r),
there can exist at most one family uqq of unitary operators such that
(3.2a) and (3.2b) hold.

Proof: (a) Let q g o. Then, by (3.2a) and (3.2b),

This determines ί ί ^ o n Eq0 Ho which is dense in Hq by (Ns3) of Section 2.
Since Uq q is unitary, it is thus unambiguously defined.

(b) Let q be arbitrary. Let p be a common predecessor of q and of o.
[Such a p exists by (Ij) and (I2), Section 2e.] Then w^ is determined by
(a). Furthermore, by (3.2b)

Since u^E^q is injective, this determines uξQ. So the proposition is
proved.

b) The spaces H(r Q) and H[r α]

In order to exploit the conditions (NHj) and (NH2), it is technically
convenient to introduce some auxialiary spaces which will be studied in
this section. The notations and assumptions of Section 3 a will be used
without specific reference.

Let r, q be any two elements of /. Denote by Hr Θ HQ the Hubert
direct sum of the Hubert spaces Hr and HQ. Elements of Hr φ HQ are

pairs (fr) (fr £ Hr, gQ ζ Hq). The scalar product in Hr Θ Hq of Γj and of

is the number (/r, hr) + (gQ, hQ).

Consider in Hr Θ HQ the set H[r ff] consisting of pairs I r j having

the following property: There exists a t ζEjHr r\ EIq Hq such that
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fr — tr and gq = —tq. In words: fr is the representative of t in Hτ and —gq

is the representative of t in HQ.

3.2 Proposition: #[ r f f ] is a closed subspace of £Γr φ # Q .

__[ (n)l be a

convergent sequence of elements of H[rqy Then the sequences Esr t^
and E8qt^ converge, since i£ s r and i£s<z are continuous, and Esr ^

( li
- l i

belongs to H[r q] and so proves the proposition.
So: The set H[rq], endowed with the scalar product inherited from

Hr φ HQi is a Hubert space.
Denote by H(r g) the orthogonal complement of Hίr 5] in i/ r φ iTa.

That is: H(r q) consists of pairs I f ) such that (/r, tr) = (̂ rg, ία) for every

t ξ jδ7jr Hr r\EIq Hq. With the scalar product inherited from Hr φ JEΓβ,
it is a Hubert space.

Let z be any common successor of r and of q. That is: z ^ r, q.
Consider the mapping Ez(rq) from i / ^ into HZ9 defined by:

Ez(r q) \JJ = ^sr fr + ^zq 9q

3.3 Proposition: ^< r f f ) is a nesting.

Proof: (a) Ez(rq) is clearly continuous.

(b) # 2 ( r < z ) is injective: If ^ , r fr + Ezqgq = 0, then ^ r /r = -Ezqgq

shows that fr and —gq are the r and g representatives, respectively, of

some t £ J? I r Hrr\EIq Hq. So Q 6 ff[r β ] . This gives /r = 0 and gq = 0

since # [ r 0] is the orthogonal complement of i ϊ( r β).

(c) Let ( ) be any element of Hr φ Hq. Then there exists a ( ,) ζ H(rq\
\9g/ t \9q/

such that Ez(rq) ( ,) = Ezrfr + Ezggq. Indeed, Γ) is the sum of its

projections on H(rq) and o n ^ [ r s ] :

Now J5βr /;' + Ezq g'q' - 0 by the definition of H[rq]; So Ezr fr + Ezqgq

= ^ 2 r /y + ^ 2 ί grj which verifies (c). The element ( , I is unique by (b).
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(d) The range of Ez(rq) is dense in Hz: Notice that EzrHr is dense

in Hz. If fr is any vector in Hr, then there exists, by (c), a vector ( r, I ζ

£ H{rg) such that Ez{rq) (>ί) = 2?zr /r. [Take gq = 0 in (c).]

This completes the proof of Proposition 3.3.
Let α 5̂  r, q be any common predecessor of r and of q. Consider a

mapping E[rg]a of i/o into # [ r Q ] , defined by

It is clear that E[rQ]a is continuous. A simple calculation shows that the
adjoint (E[rq]a)*[rQ] of E[rqU is given by

Let UγT and UqQ be the operators defined by (NH2). Consider the

operator I '^_ \ which is clearly a unitary mapping from Hr φ HQ onto

HΨ Θ HΆ. The adjoint (and inverse) of (QΓ^_^_ ) is \^r__u )

3.4 Proposition: The image of H(,rq) under w![_ _) is -^[rg]. The

image of # [ r c ] under ( ^ _ u_J is £Γ(ϊ;δ).

Proof: I t is enough to prove the second assertion since i?(rQ) is the

orthogonal complement of H^ray Let ! r I be any element of H^rqy

and ί \_\ any element of H^q]- Then the scalar product of (AΓ1_ _ )

(_̂ r J and of (_5.) is(A f,w?rί r)-(Aδ,ttδβg.

Let ί? g r, q be such that J^/r Hrr\EIqHQ = EIv Hv [see
Then tr = ^ r 3 ) ^ and ίβ = ^ f f 2 ) ^ .

So:
(AJ;, % f ^ r 3 ) ίj,) — {hq, u-q q Eqv y

So the image of ί __f ) belongs to JΪ(F q).

Conversely, let \^J belong to Hifq) then (/f, hψ) = (grδ, Aδ) for every
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Let S ̂  r, q be such that EIfHf r\ EIq Hq = En H~s.

Then /^ = Eψg h-s and As = Eu Ίι-8. So

(/,,i^s)=fei^^), i.e.

(/r> WfrC#βr)?β ^sβ *β) = (9q> uaq(E'sα)*β us~s h)

or
( # s r ^ f¥, u8-8 h-s) = {Esgugq g-q, us-s A,)

for every h8^H8. This means that

i. e. that %^ /̂  = ίr, wβ5 grδ = tq with ί ζ J^Jr Hr r\ EIq HQ. So

\0 —UaS

which means that

This completes the proof of Proposition 3.4.
lu- 0\

Denote by u^q) [ r β] the restriction of I *[_ I to Hy Qj and by U[ψq] (r Q)
X^ Q Q I

the restriction of \^r__ ) to H(rq).

3.5 Proposition: Let a be any common predecessor of r and of q,
so that a is a common successor of r and of g. Then

•®a{rq) = uaa(^[r q]a)a [r q] u[r q] (rq) (3-5)

Proof: Let ί̂ _) be any element of H^q). Then E^q) (f[ ) = EdΨfΫ +

+ Eάq gq. On the other hand, by (3.4) and (3.2b)

uάa(E[rq]a)a[rq]u[rq](rq) I ' I

= Uάa(β[rq]a)t [r q] [_^_^_j

which proves the assertion.
Corollary: E^rq^a is a nesting.
Indeed, this assertion follows from Propositions 2.3 and 2.5.
3.6 Proposition: E[rq]a is bijective if and only if Eairq) * s bijective.
Indeed, a nesting is bijective if and only if its adjoint is bijective;

this can e. g. be seen from the polar decomposition, Proposition 2.4.
So the assertion follows from Eq. (3.5).

3.7 Proposition: Let z be some common successor of r and of q.
Then Ez(rq) is bijective if and only if EIz Hz = EIr Hr + EIq Hq> i. e.
if EJz Hz is the linear span in HΣ of EIr Hr and of EIa HQ.
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Proof: (a) Assume that Ez(rq) is bijective. This means that every

hz ζ Hz can be written as Ezrfr+ Ezq gq, where Γ J ζ H(r q) . So EIz Hz Q
Q EIr Hr + Ejq Hq.

On the other hand, EIzHz^EIrHr and EIzHz2EIqHq since
z ^ r, q. So EJz Hz 2 EIr Hr-\- EIq Hq since EIz Hz is a vector space.
Consequently EIz Hz = EIr Hr + EIq Hq.

(b) Assume that Elz Hz = EIr Hr-{- EIq Hq.
This means that every h = 22^ 7̂  ξ JSJZ Hz can be written as a sum

h-f + 9, f = EIrfrζEIrHr and g = EIqgq£EIqHq. So JSJβ Λa

= ^i* ^ r /r + ̂ i* EzQgQ which means that Az = Ezr fr + Ezqgq. Con-
sider the vector I ) ζHrφ Hq and the projection ( ,1 of I I on H{rQ).

\y0.1 \ί/ff/ \y0.1

Then Ez(rq) (',) = Ezrfr + EZQgQ = hz [see part (c) in the proof of

Proposition 3.3]. Consequently Ez(rq) is bijective. This proves the
proposition.

3.8 Proposition: Let a be some common predecessor of r and of q.
Then E[rq}a is bijective if and only if EIaEa = i2 J r jffr A EϊqEq.

Proof: (a) Assume that ^ [ r g ] α is bijective. Then every ( ' )(:H[rq]

—E w ) ̂ k*s m e a n s : Given any t ζ EIr Hrr\EIq Hq,

there exists &w^EIawa£EIaHa such that ίr = Era wa, tq = Eqa wa;

consequently t = EIr Erawa = EIawa£EIa Ha. So jE?Jr Hrr\EIqHqg

QEIa Ha. On the other hand EIr Hr r\ EIqHq2EIaHa, since α ̂  r, g.

So EIr Hr ΓΛ EIq Hq = ̂ J α Jϊ β .

(b) Conversely, let EIaHa = EIr Hr r\ EIqHq. This means that

every t ζEIrHr r\EIqHq can be written as t = EIata. Then every

_^t I ζ H[rqj is of the form i β \ ) i e. is in the range of E[rq]a. This

shows that Jξ/[r<z]α is bijective and so proves the proposition.
Summarizing, we have

3.9 Theorem: Let Hj be a nested Hubert spaces and let r, q be any
two elements of /. Let s ^ r, q be a common successor of /• and of q.
Then the following four conditions are equivalent:

(i) EIs Hs = EIr Hr-\- EIqHq.

(ii) EjsH-^Et-rH-rfΛE^H,.

(in) Es(rQ) is bijective.

(iv) E[nΓs is bijective.

c) Scalar product

If h is any vector in a nested Hubert space HIf then the final subset
J(h)Ql is directed to the left. Indeed, let r ζ J (A) and g £ J (A). By
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there exists a p^r,q such t h a t EIvHJ)=^ EIr Hr r\ ElQHq. Then
p ζJ(h) which verifies the assertion.

Denote by J(h) the set of all r ζ I such that r ζJ(h). So J(h)Ql is an
initial subset, directed to the right.

3.10 Theorem: Let / ζ Eτ and g ζ Hj be such that J(f) r\ J(g) is not
empty. Then the number (urψ f^, gr) = (/̂ , u^r gr) is independent of the
choice of r ζ J(f) r\ J (g).

Proof: (a) The intersection J(f) r\ J(g) is directed to the right and
to the left.

(b) Let r ζ J(f) r\ J(g) and q ζ J(f) r\ J(g). Let p ζ J(f) r\ J(g) and
z 6 J(f) r\ J(Q) ^ 6 such that p ^ r, q ^ z. Then z ^ r, q ^ p and
consequently, by (3.2b),

= {{Ezr)fz uz-z fz) ErΊ) gv) = (uzz fzy EZΊ> gj

= (uzz /«» 9z)

Similarly
(/β»^ββ^α) = (uzzfz>9z) ,

which proves the theorem.
Notice that the directedness of J(/) n J(g) was necessary to insure

the existence of the representatives fz and gv.

3.11 Definition: If / and g are vectors in Eτ such that J(f) r\ J(g)
is not empty, then the number (urΫ fc, gr) (r ζ J(/) π J(^)) will be called
the scalar product of / and of g. It will be denoted by <(/|</).

TΛe scalar product is not defined for all pairs of vectors but precisely
for pairs such that J(f) r\ J(g) is not empty.

If o ζJ(f) and o ζJ(g) then {/|<7) = (/0, ô)- S° the scalar product in
Hj is an extension of the scalar product in Ho.

It is now necessary to show that the existence of (f\g) and of {f\h}
implies the existence of (j\g + K).

For every / ζ Hl9 denote by Hj(f) the union

3.12 Proposition: H-j^) is a vector subspace of Hj.

Proof: Let gζHj(f) and hζHj^). This means that there exists a
r ζ J(/) such that g £EIY HΨ, and that there exists a qζ.J{f) such that
hζEjqHq. Let p^r,q be such that EIvHv = EIqHq r\ EIr Hr.
Then pζJ(/) and pζJ(/). Notice that E^H-V=- EIqHq + EΓrH-ri

by Theorem 3.9. So A + # ζ i ^ #p £ #»/(/) which proves the assertion.
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If (/|^) is defined, then {<7|/) is also defined since J(g) r\ J(f) consists
of all elements r such that r ζJ(f) ΓΛ J(g). Furthermore (#1/) is the
complex conjugate of (j\g} since

(uΨr gτ, fΨ)* = {gr, urf fc)* = (urΫ fa gr) .
Let f, g, hζ Hχ be such that {/|#) and (j\Jι) are defined. Let λ and μ

be arbitrary complex numbers. Then (j\λg + μK) is defined and

Also, <λgr + μA|/) is defined and

These assertions follow from Proposition 3.12.

3.13 Proposition: Assume that the set / has the following property:
(I4) If s ζ I is comparable to s, then s is comparable to o.
Let / £ Hτ be such that / Φ 0 and that </(/> is defined. Then </|/> > 0.
Proof: The assumption that (/|/> is defined means that /(/) r\ J(f)

is not empty. Let r be any element of J(f) n J(f). Then r £ J(f) r\ J(f),
since J(f)r\J(f) is symmetric with respect to the involution r*-*r.
Let s ζJ(f) r\ J(f) be a common successor of r and of r. Such an 5 exists
since J(f) r\ J(f) is directed to the right. Then s is a common predecessor
of r and of f consequently s ^ s. By the assumption (I4), then, s is
comparable to o and £ 5j o ^ «§. Since J(/) Γ\ J(f) is the intersection of
a final and an initial subset of /, it follows that o ζJ(f) r\«/(/). Conse-
quently </|/> = (/0, /0) > 0, q. e. d.

4. Operators

a) Definitions

Let # j = : [Hr;Esr; I] and jF r = [î V; # s V ; Γ] be nested Hubert
spaces. Let (/ x / ' ) 2 be the ordered set defined by (2.6).

For every pair {r, /} ζ (I x I')2, let L(r;r')be the Banach space of all
bounded linear operators from Hr into Fr'. If {̂ , s'} ^ 2 {r, r'} then the
correspondence

Ez(8,8';r9r'): Ar,τ-> EΛ,Ψ. Aτ,rErs (4.1)

is an injective linear mapping from L(r; r') into L(s; s').
In order to verify that E2 (s, s' r, rf) is injective, let E8>r* Ar>r Ers = 0.

This means J57S/̂  u4r'r Ersfs= 0 for every fsζHs. Since i£ s' r' is injective,
it follows that Ar>rEτsfs = 0 for every fs^Hs. So ErsHs has to be
contained in the null-space of ^4r'r which is a closed subspace of Hr

since J. r ' f is continuous. Now Ers Hs is dense in Hr so that the null-space
of Ar'r is all of Hr. This means Ar>r — 0.

T h e f a m i l y E 2 ( s , s' r, r') ({r, r'} ζ ( I x 1% {s, s'} ^ 2 {r, r'}) s a t i s f i e s
the conditions (Indx), (Ind2) of Section 2f.

Commun. math, Phys., Vol. 2 2
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4.1 Definition: Denote by L{Hχ\FΓ) the algebraic inductive limit
of the vector spaces L(r; rf) with respect to the mappings E2(s, s'; r, r').

An element of .£(#/; F^) will be called an operator from Hj into Fr.
This name will be justified in Section 4b.

4.2 Notation: The natural embedding of L{r\ r') into L{E1\ FΓ) will
be denoted by E2{I x Γ; r, / ) .

The representative of A ^L{Hj\Fr) in L(r,r') will be denoted
by Λ v

The set of pairs {r, r'} such that A has a representative in L(r, r')
is denoted by J(A) in accordance with the conventions of Section 2f.
It is a final subset of (/ x I')2.

It is convenient to introduce the sets

= prIJ(A), (4.2)

= prΓJ(A). (4.3)

That is: D(A) is the initial subset of / consisting of elements r such
that {r, r'} ζJ(A) for at least one rr ζ Γ.

B(A) is the final subset of Γ consisting of elements r' such that
{r, r'} ζJ(A) for at least one r ζ I.

b) The vector A h

4.3 Proposition: Let A (ZL{HI\ FΓ) and let hζHjbe such that

D(A)r\J(h)Φφ. (4.4)

[i. e. that the intersection of the initial subset D(A) Ql and of the final
subset J(h) g I is not empty.] Then the vector EΓr> Ar>r hr is independent
of the choice of rζD(A)r\J(h) and of the choice of {r, r'} ζ J{A).

Proof: Let {r, /} ζ J(A), {q,qf} ζJ{A), rζJ{h) and qζJ(h). Since
J(h) is directed to the left there exists a common predecessor p of r
and of q in J(h). Let sf be any common successor of r' and of q'. Then
{p, s'} ζ J(A) and A^9 - # s V Λ v ^ r , = ̂ β ' AqfqEQΊ).

Consequently Es<r Ar..r hr = Es,r> Ar,r Erv hp = Aj9 hp = ̂  Q>Aq,qhg

which proves the assertion.
The vector EVr> Ar>r hr will be denoted by Ah and called the image

of h under A.
So: Ah is defined if and only if D(A) r\ J(h) is not empty.
We have to verify now that the set J{A) has properties analogous

to those established in Section 3 c.
Let r, qζl and r', q' ζ Γ be such that all four pairs {r, r'}, {r, q'},

{q, r'} and {q, q'} belong to J(A). Consider the bounded linear mapping
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from Hr Θ Hq into Fr> φ Fq>. The image of (fr) ζHrΘ Hq is

/ Ar,rfr + Ar,gga \ __ / (Af)rf + (Ag)r. \
\-Aq,rfr-Aa,a gj \-{Af)a,-(Ag)J ^

where / = EIr fr and g = EIq gq. Notice that the range of (4.5) is contain-
ed in F[r'q>] and that the image of any vector in H[rq] is zero; indeed,

if I ) £ϋΓ [ r α], then / = — g. So: The image, under (4.5), of any vector

ί ) ζ Hγ Θ Hq is the image of the orthogonal projection of ί j on H(rq) .

Denote by Ay q'](rq) the restriction of (4.5) to H(rq).
Let s ^ r, q be such that Els Hs = EIr Hr + EIqHq. Let p ' g r', ^'

be such that Erv> Fv* = EΓr>Fr> r\ EIq>Fq'. Then the bounded map-
pings Es(rq) and ®[rv]2>' a r e bijective by Theorem 3.9. Consequently
they have bounded inverses (see e. g. [5], p. 57) which will be denoted

by (E8(rq))£jj8and (^'[r'β'])i?'J'ip'
We shall now verify that

•®rV(-^'α']»')ί7lr'ίΊ ^[r'β'](rβ)(^(rfl))(rί]ί -̂ sr = ^r'r (4.7a)

and that

Eq'v'{E{r'Q']v')p'[r'<l'} ^-[rfq'](rQ)(Es(rQ))^^8 ^sq = ^q'q' (4.7b)

Let hr be any vector in Hr. Then (- β̂(rα))(rg)β^sr ^r i s the pair I j 6

ζ J3r(rβ) such that J^βr fr + Esqgq=: Esr hr. Notice that ^ I r /r + EIqgq

= EIrhr. Consequently

Then

and finally Er^\Ah)^ = (^lA)r' = ̂ 4r'r Ar. This proves (4.7a). The proof
of (4.7 b) is the same.

So we have established
4.4 Proposition: Let A £L(HZ; Fr). Let r, g ξ J and r', #' ξ / ' be such

that all four pairs {r, r'}, {r, ̂ '}, {#, r'}, {q, q'} belong to J(A). Let
s ^ r,qhe such that EISHS = EIr Hr + EIq Hq and p' g r', g' such that
EΓv. F9. = JS?Γr, J^r, n ί/j' α' -Fα'. Then {s, <p'} ζJ(A). The representative
of A between Hs and F8* is

Here -4[r'β'](r ί) is the restriction of (4.5) to H(rq) and the mappings
Es(rq) and E^^^' are described in Theorem 3.9.

2*
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4.5 Corollary: For every A ζ L (Hj FΓ) the set D [A) has the following
property: If rζD(A), q^D(A) and if s^r,q is such that EIsHs

= EIrHr-\- EIqHQ, then sζD(A). In particular, D(A) is directed
to the right.

4.6 Proposition: If Ah and Ag are defined then A(h + g) is defined.
Indeed, let r ζ.D(A) n J(h), q ζD(A) r\ J(g). Let s ^ r, q be such

that EIsHs = EIrHr + EIqHQ. Then sζD(^4). On the other hand,
s ζj(h) r\ J(g) since J(Λ) and J(g) are final subsets. So s ζJ(h ~\- g)2
2 «/(A) Γ\ e/(̂ ) This proves that D(A) r\ J(h + g) is not empty.

In other words: The domain

of L̂ is a vector subspace of Hx.

4.7 Proposition: If Aζ_L(HI\FΓ), BζHH^Fr) and hξ:HI are
such that Ah and I?& are defined, then (A + B) h is defined.

Indeed, let r£D{A) r\J{h) and q £D(B) r\ J{h). Let p ^ r, g be
such that ElΊ) H^ = EIr Hr ΓΛ EIQHQ. Then p ζ J(h). On the other hand,
pζD(A)nD(B) since D(A) and D(B) are initial subsets of /. So
pζD(A + B) 2D(A) r\ D(B). Consequently the intersection J(h) r\
ΓΛD(A + B) is not empty, q. e. d. I t is clear that (ζA) h = A(ζ h)
— ζ{Ah) for every complex ζ. So the results of this section can be sum-
marized in the statement that A h is linear in A and in h.

c) Adjoint operators and matrix elements

Let AiL{Hx\FΓ) and let {r,r'}ζJ{A). Consider the bounded
operator (^4*)^ from Fr into Hψ defined by

(A*)ψr = ufr(Ar,r)*r,ur.r. (4.10)

Denote byE2 (Γ x / r',r) the natural embedding of L (r',r) intoL(FΓ Hj)
(see Section 4a. The roles of / and / ' are here interchanged).

4.8 Proposition: The operator A* = E2(Γ x / ; f, r) (A*)γr is
independent of the choice of {r, rf} ζ J(A) so the notation on the 1. h. s.
of (4.10) is justified.

Proof: Let {r, r'} ζ J{A) and {q, q'} ζJ(A). Let {5, s'} be any common
successor, in (/ x Γ)2, of {r, r'} and of {q, q'}. Then ^4Ŝ S = E8'r' Ar>r Ers

= J^s' β/ ^4α' β ^ g s . The adjoint of the last equality becomes, with the help
of (3.2b) and (4.10),

This proves the proposition.
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The operator A* ζL(FΓ] Hj) defined by Proposition 4.4 is called the
adjoint of the operator A ζL(Hj; FΓ).

The proof of Proposition 4.4 shows also that J(A*) ~2J*(A) where
J*(A) is defined as in Section 2e.

The definition (4.10) gives immediately that

A** = A (4.11)

for every A ζL(HI; FΓ). [It is enough to verify the equality (4.11)
for one representative since an operator is determined by any one of
its representatives.] It follows that J(A**) = J(A)2 J* (A*). So J* (A) 2
2 J(A*) and finally

. (4.12)

In particular, taking the /-projections and /'-projections we obtain

D(A*) = R(A) (4.13)
and

(4.14)

4.9 Theorem: The correspondence A<r*A* between L(HI\Fr) and
L(Fj>; Hi) is antilinear, involutory and bijective.

Proof: (a) The antilinearity follows from the antilinearity of the
correspondence (4.10) between Ar>r and (A*)γψ, and from the linearity of
E2(ΓxI;r',r).

(b) The correspondence A <-> A* is involutory by (4.11).
(c) The correspondence A-+A* is injective: If (A*)fψ = 0, then

Ar'τ — 0 since the operators Uψr and ur>γ are unitary. The correspondence
A -> A* is bijective since every B ζL(FΓ Hj;) can be written as B = A*
with A = B*. This completes the proof of the theorem.

If h ζHj and f ζFΓ) then J(h) x J({) denotes the set of all pairs
{r, r'} such that r ζJ{h) and Ψ £ J(/). It is a non-empty initial subset of
(I x 1%

Let A ζ L{Hι\ Fγ), h ζ HI and / ζFχ* be such that the intersection
of J(A) and of J(h) x J(f) is not empty. This means that there exists a
{ r , r ; } ζ / x / ' such that r£J(h), rf £J(f) and {r,r'} ζ J(A). Then
r ζJ(h) r\ D(A) so that Ah is defined. Furthermore Ah = EΓr' Ar>r hr

so that r' ζJ(Ah). Consequently J(f) r\ J(Ah) is not empty so that the
scalar product (j\Ag} is defined (in Fj>). Denote this scalar product by
(j \A\ hy and call it the matrix element of A between h and /.

So: The matrix element (f \A \ h) is defined if and only if the initial
subset J(h) x /(/) Q(I x / ' ) 2 and the final subset J(A) Q(I x / ' ) 2 have a
non-empty intersection.

It is important to notice that there can exist pairs of vectors h ζ HI}

f ζFIy such that (f\Ahy is defined and that (/ \A\ hy is not defined. For
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example, let A and A be such that AA is defined and that Ah — 0. Then
(f\Ah) is defined for all / ζFr, since J(Ah) = J(0) = /'. On the other
hand, the matrix element (/ \A \ A) need not be defined for all / ζ Fγ
since the intersection of J(h) x J(f) and of J(A) may well be empty.

In general: If {r, r'} ζ J(A) then r' ζJ(Ah) for all hζEIrHr. This
ensures a common "goodness" of all vectors in AEIrHr. Individual
vectors Ah(hζ EIr Hr) may however have much larger J(Ah) than this
assured minimum. So J(h') 2 J(h) does not imply that J(Ah') 2 J(Ah).
Consequently, the existence of (j\Aliy does not imply the existence of
(j\Ahts) for all h' such that J(A') 2 J(h). On the other hand, the existence
of </ \A\ A) [i. e. the condition (J(A) x J(fj) Γ\ J(A) Φ φ], does imply
the existence of </' \A'\ h') for all /', A'', A' such that J{f')2J(f),
J(A') 2 J(4) and J(A') 2 J(A).

4.10 Proposition: If </ | 4 | A> is defined, then A* f and <^*/|A>
(scalar product in Hj) are defined. Furthermore (A* f\h) — (f \A\ h)
= <i\AK).

Proof: Let {r,r'} ζJ[A), rζJ(A), r'ζJ(f). Then {F ;,f}ζJ*μ)
- J(4*). So rr ζ D(J.*) n J(f) which shows that 4* / is defined. Further-
more r ξ J(A* f) which shows that J(A* f) r\ J{h) is not empty so that
(A* f\h) is defined. Finally, by (4.10)

= (Urψ UψriAs,)*,' Ur.γ fr, Ar)

which proves the assertion.
4.11 Proposition: If </ \A\ h) and </ \B\ A> are defined then </ |4 +

+ 5|A> is defined. If </ \A\ A>, </ | 4 | A#>, </' \A\ h) and </' | 4 | h') are
defined, then {/ + /' |̂ 41 A + A') is defined. The matrix element (/ \A \ A)
is linear in A, antilinear in / and linear in A. The complex conjugate of
</μ4|A>is<Aμι*|/>.

Proof: (a) Assume that («/(/) x J(h))r\J(A) and (J(/) x J(A)) n
n J(B) are not empty. Let {r, r'} ζ(J(A) x J(/)) n J ( i ) and {#, g'} ζ
ζ (J(A) x J(/)) n J(JB). Let ^ ^ r, q be such that £7Z3) Hv = EIr Hr r\
r\ElQHq and s'^:r',q' be such t h a t ErS>FS, = EϊΎF^ + •#/- α ' J V

Then {p, «s'} ζJ(A) x J(/) by the results of Section 3 c. Furthermore,
{p, s'} is a common successor, in (/ x /') 2, of {V, r'} and of {q, q'}. Since
J(A) and J(-B) are final subsets of (/ x J')2, it follows that {p, s'} ζ
i J{A) r\ J(B) Q J(A + B). So (J(h) x J(f)) r\ J(A + B) contains {p, s'}
and is consequently not empty. This means that (/ \A + B\ A) is defined.

(b) Assume that the sets (J(A) x J(f)) nJ(A),(J{h) x J(f')) r\J(A),
(J(hr) x J(f))r\J{A) and (J(A') x J(/')) π J ( 4 ) are all non-empty.
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Let {α, α'} £ (J(A) x /(/)) π J(A), {b, b'} ζ (J(Λ) x J(/')) n
{c, c'} ζ (J(A') x J(/)) r\ J μ ) and {d, d'} £ (J(A') x «/(/')) r\ J ( 4 ) . Let
r ^ α, b be such that EIrHr = EIa Ha r\ EIb Hb. Then r ζJ{h). Simi-
larly, let q^ c,dbe such that EIqHq = Elc Hc r\ EId Hd. Then g £ J (hf).
Let / ^ α'? c' be such that EIr> Fr, = EΓa> Fa> + EΓc, Fc>. Then
r' ζJ(f). Similarly, let q' ̂  6', d' be such that EΓq>Fq> = EΓh>Fh> +
+ Jfr d, jPd,. Then g' ξ J(/r). Furthermore, {r, r7} ̂ 2 {α, a'}; {r, q'} ^ 2

^2 {&, δ '}; fe '̂} ̂ 2 {c, c'} and {g, ̂ '} ̂  2 {ί, ί'}. Since J(A) is a final
subset of (/ x Γ)2, it follows that all four pairs {r, r'}, {̂ , ̂ '}> fe' r'} a n ( ^
{g, g'} belong to J(A). Consequently Proposition 4.4 applies:

If s ^ r, q is such that ^ / s # s = jE//r ̂ r + EIqHq, and if 2?' ^ r', g'
is such that Er^F^ = EΓr>Fr> r\EΓq'FQ,, then {5, p'} ζ J(^4). Notice
that s ζJ(h) r\ J(h') Q J(h -l- Λ-') since J(^) and J(^ ;) are final subsets.
Similarly p' 6 J(/) Λ /(/') ζ /(/ + /').

Consequently {5, p'} ζ(J{h + hf) x J(f + /')) π / ( 4 ) which shows
that </ + /' μi I A + A'> is defined.

(c) The assertions about linearity and complex conjugation can be
easily verified.

This concludes the proof of Proposition 4.11.

d) Product of operators

Let Hj = [Hr; Esr; I], FΓ = [Fr>; E,,; Γ] and Qr. = [ ^ ^ v , ;
I ; /] be nested Hubert spaces. Let A £L(H!\Fr) and J5 £ £(jPr Gr0

Assume that i? (-4) n D (B) is not empty (see Section 4a for notations).
Then

4.12 Proposition: The operator E2(I x /"; r,r") Br»r, Ar,r^L{Eτ\
GΓ') is independent of the choice of r' ζB(A) ΓλD(B)9 {r,r'} ζJ(A)
and {/,r/;}ζJ(B).

Proof: Let r'ζR(A) nD(B), q' £R{A) n D(JB), {r,r'}ζ/μ),
{g, £'} £ j μ ) , {r', r/;} ζ J(JB) and {3', g

x/} ζJ{B). Let 5' ̂  r', q' be such
that EΓ^F^ = Er^F^ + EIΎF^. Then {θ', r;/} ζ J(JS) and {sf, q"} ζ

by Proposition 4.4. If «" ^ r/r, gr/ and iί p ^ r, q, then

= ί7S" r" Bf"ϊ As>r ETV = B^v iί^j, .

Similarly J&β,v, J5^β/ A^q Eqp = i ϊ^v ^ / 3 } . So

28V'r" B / V 4 r / r J^r2) = E&» q» Bq» Q> AQ> a EQΊ>

which proves the proposition.
The operator defined by Proposition 4.12 will be denoted by BA

and called the product of B and of A.
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So: The product BA is defined if and only if the intersection of the final
subset R(A) Q Γ and of the initial subset D(B) Q Γ is not empty.

4.13 Proposition: If BA and CA are defined, then (B+CjA is
defined. If BA and BC are defined then B(A + C) is defined. The
product BA is linear in B and in A.

Proof: (a) Assume that E{A)r\D{B) and R(A)ΓΛD{C) are not
empty. Let r' ζR{A) r\ D{B) and q' ζR(A) r\ D(C). Let pf < / , q' be
such that EIv>Fv> = Err,Fr,n>Erq>Fq>. Then p' ζR{A) by (4.13),
by Theorem 3.9, and by the Corollary to Proposition 4.4. Furthermore
p' £D{B) r\D{C) since D(B) and D(C) are initial subsets of Γ. So
p' £D{B + C) 2D(B) r\D{C).

This proves that R(A) r\ D(B + C) is not empty i. e. that (B + C)A
is defined.

(b) Assume that R(A) r\D{B) and R{C)r\Ώ(B) are not empty.
Let r' ζ R(A) n D(B) and q' ζR(C) r\ D(B). Let s' ^ r', q' be such that
Ej'sFs^E^Fs + Eja'Ftf. Then s'ζD{B) by the corollary to
Proposition 4.4. Furthermore s' ξ. R(C) r\ R{A) g R(C + A) since i?((7)
and -R(-4) are final subsets of /'. So sf ζ jR(O + -4) ΓλD(B) which proves
that 5 (.4 + 0) is defined.

(c) The assertion about linearity is immediately verified. This
concludes the proof of the proposition.

4.14 Proposition: Let A£L(Hj\Fr) and BζL(FΓ;GΓ) be such
that BA is defined. Then A*B* is defined and

A*B*= {BA)* . (4.15)

Proof: Let {r, r'} £ J(A*) and {/, r"} ζ J(B). Then, by (4.12), {f/r, ?'} ζ
ξ j (5*) and {f',F}ζjU). So r ' ( 5 ( 5 * ) n l ) ( i l * ) which shows that
A* B* is defined. Furthermore, the representative of A* B* between
Gψ> and H¥ is

which proves the assertion.

e) Linear functionals and their adjoints

The set G of complex numbers, being a one-dimensional Hubert
space, can be considered as a nested Hubert space. If Hj is an arbitrary
nested Hubert space, then one can study the spaces L(C; Hj) and
L{HI\ C), defined as in Section 4 a.
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Consider first the space L(G;r) of linear maps from C into the Hubert
space Hr. If hr is any vector in Hr, denote by \hr) the map which associat-
es, to every ζ £ 0, the vector \hr) ζ = ζ hr ζ Hr. Clearly \hr)ζL{C; r).
Every element of L(C; r) can be written in the form |/ r), with a unique

If s ^ r (r ζ/) , then the correspondence (4.1) becomes

\hr)-+E8r\hr) . (4.16)

In the present discussion, the set / corresponds to the set / ' and also to
the set (/ x Γ)2 of Section 4a.

Notice that
Esr\hr)=\Esrhr). (4.17)

Indeed, for every ζ ζ C, one has Esr\hr) ζ = Esrζhr= ζ Esrhr

= \E.rhr)ζ.
Following Section 4 a, define L(C; Hχ) as the algebraic inductive

limit of the spaces L(C; r) with respect to the mappings (4.16). Denote
by E2(I; r) the natural embedding of L(C; r) into L(C; Hj).

4.15 Proposition: Let h ζ HI} and let r, q be elements of J(h). Then
E2(I; r)\hr) = E2(I; q)\hQ). In other words: The element E2(I; r)\hr) of
L(C; Hj) does not depend on the choice of r ζ_ J(h).

Proof: If hr and hq are representatives of h, then there exists an
s^ r, q such that Esrhr= ESQha. By (4.17), then, Esr\hr) = ESQ\hQ)
which proves the assertion.

For every h ζ Hl9 denote by \K) the element of L(C; Hj) defined by
Proposition 4.15.

4.16 Proposition: The correspondence between h and \K) is a linear
bijection between Hj and L(G\ Hj).

Proof: (a) I t is easy to verify that the correspondence h-> \Jι) is
linear and injective.

(b) Let A be any element of L(C; Hτ) and let Ar c be any one of its
representatives. Then there exists a hrζHr such that Arc = \hr), since
ArcζL(C;r). With the help of (4.17) one sees that A = EIrhr. This
proves the proposition.

Consider now the mapping ζ -> \Ίι)ζ9 defined as in Section 4b. I t is
given by

\h)ζ = ζh. (4.18)

Indeed, if \hr) is any representative of |&), then \Jι) ζ = E2(I;r) \hr) ζ

Notice also that
B(\h}) = J(h). (4.19)

Indeed, if r ζJ(h) and if hr is the representative of h in Hr, then \hr)
is the representative of |^) in L(O;r). Conversely if \hr) is a represent-
ative of \h} in L(C r), then hr is a representative of hinHr.
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The set D(|ft)) is trivial; it consists of a single element.
Denote by (Ίι\ the adjoint of \K) (see Section 4c). Then (h\ is an

element of L(Hj; C). It follows from Theorem 4.9 that every element of
L (Hj C) can be written in the form (h | in a unique way.

It follows from (4.13) that D((h\) = J(h) so that the domain of the
linear mapping g -> <A| g is Hj(h).

Let r ξ / and liT^Er. Then the (Hubert space) adjoint of the mapping
\hr) is the mapping (hr\ which associates, to every grζHr, the number
(hr, gr). From the definition 4.10 it follows that the representative of (h\
between Hψ and C is (hr\urγ.

So: If gr iHj(g), then

< % = < % > . (4.20)

The scalar product (h\gy is defined if and only if (h\g is defined.
These results can be put into a form which is reminiscent of the

classical Riesz-Frechet theorem on the representations of continuous
linear functionals in a Hubert space.

Let D Q I be an initial subset which has the following property:
(Dj) If r ζ D and q ξ D are arbitrary, then there exists an s ^ r, q

such that s ζ D and that EISHS = EIr Hr + EIq Hg.
It follows from (Dx) that HD = U EIr Hr is a vector subspace of Hj.

Define a regular linear functional in R1 as a complex-valued linear
mapping I which

(i) Is defined on a vector subspace of the form HD, where D is an
initial subset of / satisfying the condition (D2).

(ii) Is bounded in the following sense: If r ζ D, then there exists a
number γr > 0 such that

\l(EIrhr)\^γr\\hr\\ (4.21)

for every hrζHr. The dependence of γr on r ζ D is arbitrary.
(iii) Is maximal in the following sense: There exists no linear func-

tional I satisfying (i), (ii) and such that I is a proper restriction of L
Then
4.17 Proposition: For every h ξ Hj, the mapping

(4.22)

is a regular linear functional.
Conversely, if I is any regular linear functional in HI} then there exists

one and only one h ζHj such that I is the mapping (4.22).
The proof consists in showing that regular linear functionals are

precisely the ones given by L(C; Hχ). It will be omitted.
Let Hj and Fχ* be nested Hubert spaces. Let h £ Hj and / £ FΓ be

arbitrary. Then the product |/> (h\ ^L{Hτ\FΓ) is defined by the
criterion of Section 4b. Indeed B((h\) and D(|/» are the trivial one-
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element set that indexes C. If g ζ Hj(h), then |/) (h\g = (h\gy /. Notice
that e. g. D(\f} (h\) may contain (properly) D((h\) = Hj(h). This is the
case if / = 0 and J (h) =}= I.

5. Nested Hubert space associated to an orthonormal basis

We are given a separable Hubert space Ho and an orthonormal basis
{h^} (fc = 1, 2, . . .) in Ho. I t is shown below that there exists a nested
Hubert space around Ho which is, in a certain sense, naturally associated
to this basis. A suitable choice of HQ and of the basis {hf®} allows us to
construct nested Hubert spaces with desirable special properties. In
order to have the results in a form ready for applications, we shall
consider the case that the basis {tyj^} is given as an n-tuple sequence.

a) The set Kn)

Throughout this part of the paper, n will be a fixed integer such that
n Ξ> 1. Let

r(k) = r(kv . . ., kn) (kv jfc2, . . ., kn = 1 , 2 , . . . )

be an w-tuple sequence of strictly positive numbers (r(k) > 0). In the
set IW of all such sequences define an order relation by writing r ^ p
if and only if r(k) ^ p(k) for every k. There exists in J(n> an order-
reversing involution: If r £ /(n), then r is defined by r (k) = l/r(&). Notice
that the element o, defined by o (k) — 1 for every k, satisfies o = δ.
Furthermore, a common successor of r £ /(n) and of q ζ /<n) is max(r(&),
q(k)). So the set /(n) satisfies the conditions of Section 2e.

b) The Hiϊbert spaces Hr

Let Ho be a separable Hubert space and

= Hkl *">} iK • • K = 1, 2, 3 , . . .) (5.1)

an orthonormal basis of Ho. Denote by V the subset of Ho consisting of
the finite linear combinations of the vectors h(^\ Let r be any element
of /( n ) . Consider the prehilbert space obtained by defining the scalar
product of /0 £ V and of g0 ξ V as

(The sum contains only a finite number of non-zero terms.) Denote
by Hr the completion of this prehilbert space; it is a Hubert space.

5.1 Proposition: If s ^ r (r ζ /<*>) then Hs 2 Hr. The natural embedd-
ing of Hr into Hs is a nesting — to be denoted by Esr — which satisfies

\\EJ < 1. (5.3)
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The family of nestings Esr(r ζl^K s ^ r) satisfies the conditions
and (Ind2) of Section 2f.

Proof: Let r ζl^ be given. To every foζV associate the sequence
(ht®, /0) of complex numbers. The closure (in Hr) of this correspondence
is a unitary mapping from Hr onto Z<2) (μ) where μ is the discrete measure
given by μk = r~2(k). The assertions then follow from Propositions 2.9
and 2.5. (Every unitary mapping is a nesting.)

c) The nested Hubert space Hψ*

Let H^^ [Hr;Esr;K
n)] be the algebraic inductive limit of the

family Hr) considered in the preceding section, with respect to the
nestings Esr. The purpose of this section is to show that Hψ* is a nested
Hubert space. Denote by EIr the natural embedding of Hr into Hψ*.
Consider in Hψ* the vectors

A(*) = 2? I OA? ). (5.4)

Here {hff*} is the orthonormal basis (5.1). For every r £ /(n>, consider
also the vectors

Notice that

and that
||A?>|| - r - 1 ^ ) . (5.7)

By (5.2), the representatives e£r: ̂  form an orthonormal basis in Hr:

fe(r: ft) e(r: j)\ = ^ . .

Here ί Λ i = δkιh . . . δknjn.

I t follows from (5.4) and (5.5) that, for s Ξ> r,

β e(r ft) = Jϋί̂ Le(s;ft) β (5g\

Furthermore, by (5.7) and (5.8),

For every r ζ /(n>, define % r by

% r e(/;Jό) = e^ ; Λ ) , (5.10)

linear extension and closure. I t is clear that uΨr is a unitary mapping
from Hr onto H?.

5.2 Proposition: The family uψr satisfies the condition (NH2) of
Section 3 a.

Proof: (a) UQQ = 1 by (5.10), since δ = o.



Elementary Properties of Nested Hubert Spaces 29

(b) Remember that r(k) = l/r(Jfc). Then, by (5.10), (5.8) and (5.9),

7/ - E-- 11- p(s'>k) _ ηι _ JP__ JΊ',k)

r(k)

Since this is true for every k, the assertion of the proposition follows.
Let / ζ Hψ\ and r£J{f). Then, by (5.10) and (5.5)

\lr, Ir) — ZJ \\!r> er )\ ~ ZJ \\urr !r, arr er )\
k k

= Σ IK> fr, Φk))? = Σ r2(k)\{u-rr fr, h<j
k k

(5.11)
k

Let fζH^ and rζJ(f). Then the representative /r can be expanded
with respect to the basis {e(

r

r]k)}. This gives

fr=Σ (fr, 4 r ' ' *}) 4 r ' k) = Σ (Urr fr, U-rr Jf> *>) ̂  ^
k k

= Σ («f r /,, # ; W) 4 f : J ) = 2 ; («f r /r, 4^) ̂  (5-12)

where the sums are all strongly convergent in Hr.
Let fζH^, and r, qζJ(f)> Let α be any common predecessor of r

and of q. Then, with the help of (5.6) we obtain

= (fa, Uaa ^άr h) = (/α» uaά h)

Similarly (%ff /β, Aδ) - (/α, ̂ α« Ag), so t h a t

(uΨrfr>h-r) = (u-qqfQ)h-q). (5.13)

5.3 Proposition: Let r and ^ be any two elements of J(n). Define
p ζ IW by

(5.14)

That is: For every ^, ̂ )(^) is the smaller of the two numbers r{k), q(k).
Then p ^ ry q and

EJVH, = EIrHrr\EIqΠq. (5.15)

Proof: The only part of the statement that requires proof is Elp H^ 2
2 EIr Hrr\EIq HQ. We shall first prove the following assertion: Let
c (k) be an %-tuple sequence of numbers such that the series Σ c Φ) Kk^

k

and Σ c W hq** a r e strongly convergent, in Hr and Hq respectively.
k

Then the series Σ c (̂ ) ^ ^s strongly convergent in H9.
k
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Indeed, denote by Σ' the summation over a finite subset. Then,

by (5.7) and the orthogonality of the h(

r

k) (resp. the h(k)), we have

k

\\Σ' Φ) hff = Σ' \c(k)\*p-*(k) <: Σ' \c(k)\»(r*{k) + gr»(i))

k k

So: If the partial sums of Σ c(k) hirk) and of Σ c W Kk) a r e Cauchy
k k

sequences, then the partial sums of Σ c W hpk) are also Cauchy sequences.
*

Since Hv is complete, the series Σ c M ^ * s strongly convergent.

Now let / ζ EIr HrrsEIq HQ. Write c (k) = (uΨr fr) ψ) = (u-q Q fq, hf)

[see (5.13)]. Then, by (5.12), we have the strongly convergent expansion

t« Σ ( ) f
k

It follows that the series Σ c (&) ^ *s strongly convergent in Hp. Denote

its sum by f'p. Then k

ErJp^Σo (*) Erp hf = ΣΦ) Kk) = fr
k k

which shows t h a t fp should be denoted by fv and t h a t it is the represent-

ative of / in Hv. So / ζ EIv HP which proves the proposition.
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