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Abstract. The usual investigations of the connection of spin and statistics start
with the hypothesis that there exist only fields either commuting or anti-commuting
for spacelike separations. Starting from local rings of measurements we want to
show that this hypothesis can be added without loss of generality.

I. Introduction

When the concept of quantum fields was introduced in the late
twenties, it was an immediate generalization from systems of finite
degrees of freedom that one has to introduce commutation relations for
fields describing bosons. The problem of how to incorporate Pauli's
exclusion principle in such a theory was solved by P. JORDAN and E.
WIGNER [1], The answer was simple and consisted in replacing the com-
mutator by the anti-commutator*. The connection of spin and statistics
came, at that stage, as a phenomenological input into the theory.

In the late thirties, however, it was realized that we cannot quantize
a given particle, say of spin 1/2, with the rules belonging to Bose sta-
tistics if we want at the same time to have positive energy [3]. This
meant there was a connection between the three hypotheses,

1) The fields transform in a well denned manner under the inhomo-
geneous Lorentz transformation.

2) The energy is positive.
3) The fields are quantized with respect either to the rules of Bose

statistics or to the rules of Fermi statistics.
A more satisfactory understanding of the connection of the assump-

tions 1)—3) followed the discovery of the CPT-theorem**.
Postulate 3) says something about the modes of quantization which

we admit in our theory. The question arises whether these are the only
possible modes or if there exist others. This question has partly been
answered by giving examples where one has other commutation relations
[5] (see also references in [5]).

* See e.g. [2] for a more detailed account of this part of history.
** The reader will find more information on this subject, with references, in [4],
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For measurable quantities, however, it is plausible and generally
accepted that they have to commute for spacelike separations. There-
fore quantities which are quantized with anticommutation or other
strange commutation relations are non-measurable. So it might be
possible that one has some freedom in the choice of the commutation
relations for such quantities.

In this paper we start only from measurable quantities and want to
show that it is always sufficient to take commutation or anticommuta-
tion relations for non-measurable fields. In other words, the assumption 3)
which is used for the investigations of the connection of spin with
statistics can be added without loss of generality.

We do not want to study here the question under what conditions
we can introduce strange commutation relations. Our investigation seems
to indicate that this is only the case when the theory has incidentally
a higher symmetry than we can derive from our assumptions. In the
examples of free ,,parafields" this symmetry is a mass-degeneracy [6].

In our investigation we only use the translation in variance of the
theory and the spectrum condition. It is questionable whether these
assumptions are already sufficient to derive the CTP-theorem. But we
will show that these assumptions allow us to derive one of the main
conclusions of the CTP-theorem, namely that the masses of the particles
and anti-particles are the same.

II. Assumptions

Assume we have assigned to every open bounded region 0 in the
Minkowski space a (7*-algebra 21 (0) with the properties

Al) 2l(0)isaO*-algebra.
A 2) Let 0x C &2 then 21 (0X) C 21 (02).
A 3) If two regions Θ1 and 02 are spacelike separated, then the al-

gebras 21 (0J and 21 (02) commute.
A 4) If {0n} is any covering of the Minkowski space by bounded open

regions, then the smallest (7*-algebra 2t(^#) is independent of the cover-
ing.

A 5) 21 {Jί) contains no central elements.
Furthermore, we want to consider the translation group and we assume
T 1) To every element a of the translation group there exists an

automorphism φ(a) of the algebra 2t(^).
T2) 21(0) and 21(0+ α) are related by φ(a) 21(0) - 21(0+ a) for

every bounded open region 0.
In addition to these purely algebraic assumptions we want to con-

sider representations of this algebra:
R 1) We have N different representations Di9 i = 1 . . . N of the

algebra 2ί (Λ) in the Hubert space § t .



Local Rings and the Connection of Spin with Statistics 283

R2) Each representation 1)̂ (21 MO) is weakly dense in £(§*), the
ring of all bounded operators in ί)^

R 3) The translations φ(a) are unitarily implementable.
If &£ 21 MO, then

R 4) The representations (^ίi (a) in § t of the translation group fulfil
the spectrum condition.

R 5) None of the Hubert space contains a vacuum state.
In an earlier paper [7] we showed that to each representation D

of 21 MO fulfilling the requirements R 1) to R 5) there is associated in
a canonical way a representation Do in a Hubert space with vacuum.
This representation is locally unitarily equivalent to the given re-
presentation. We want to assume

R 6) The representations Dίo associated with D{ coincide.
Since we have assumed that all the representations are locally uni-

tarily equivalent, the topology on the rings 21(0) for bounded open re-
gions is completely irrelevant. This means we are allowed to assume

R 7) For every representation D^ and all bounded open regions 0
the algebra 1^(21(0)) is a von Neumann algebra.

This assumption will simplify our investigations. We have to make
one more assumption which is the weakest form of the duality assump-
tion:

R 8) For every bounded open region 0 and every representation
we have

is dense in

in the weak operator topology.
We believe that R 8) is already a consequence of the other assump-

tions, but, up to now, we have not found the proof for it.

III. Some Lemmas

III — 1. Lemma. Let D be the representation fulfilling our assumptions.
Assume Do is the vacuum representation associated with D in a canonical

way. Denote by φ the map Ώ -> Do. Then for every bounded open
region 0 there exists an isomorphism ψ mapping

0 ( 2 1 ( 0 ) ) ' ^ 2

such that φ = ψ on D(2l(0))'nl> (21 MO) Furthermore, the map ψ
is unitarily implementable.

Proof. In Theorem 13 of [7] we proved that for every subalgebra
21C 21 MO, there exists an 0 with D(2l(0))C-£>(2l)' having the property
that the map φ : D (21) > DQ (21) is continuous in the ultrastrong topo-

19*
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logy and normal. Although we did not state it in this way it is easy to
check that the proof is also valid in this situation. Hence the mapping

n

extends to the corresponding von Neumann algebra and is normal.
Let us call ψ the extension to the von Neumann algebra then we have
by assumption R 8) that the mapping

exists and is normal. By Corollary 20 of [7] it follows that ψ is unitarily
implement able, q.e.d.

Ill — 2. Lemma. Let us denote by F (Θ) the set of all unitary opera-
tors F establishing the map ψ from D(2l(0))' -^U Do(2l(0))'; this
means

)' V-1.

Then V-LV^Γ1 resp. V^V^ runs through all unitary operators of D0(Θ)
= 2>o(2l(0)) resp. D{Θ) = Z>(21(0)) when Vx and F 2 run through F(Θ).

Proof. Is U an unitary operator from DQ(Θ), then with F in F(Θ)
we have also U V in F{Θ). Hence

UV V~ι=U

is in D0(Φ). This means (F{Θ) ^ F-1{Φ))/f ^DQ(Θ). Let now Vx and F 2

be from F{Θ)\ then

F 2 FΓ 1 D0(0)' Vt Fi"1 = F a

whence Vτ VΐιCD0{Θ). This means

(F(Θ) F

In the similar manner we can show

(F-i ψ) F (Θ))" = D(Φ), q.e.d.

IV. Introduction of one charged field

In this section we assume there is given only one representation D^
We want to show that we can introduce a " charged field" ψ such that
Do resp. D1 appears as the representation of 21 (~#) in the "charge sector"
zero resp. one.

Let us assign to every F ζF(Θ) an abstract element ψ (F) and denote
by 33 the free algebra generated by all elements of Qi(^£), all ψ(V) and
all ψ*(V). Let us define a functional on 93 by the following procedure:



Local Rings and the Connection of Spin with Statistics 285

1) Let M be a monomial and N(ψ) be the number of ψ's and N(ψ*)
the number of ^*'s in M. Then we define

ω(Jf) = 0 it N(ψ)-N(ψ*)*0.

2) If M is an element of 21 (u?), we put ω(M) = (β, D0(M) Ω),
where DQ is the representation of 21 (~#) in the vacuum sector and Ω is
the vacuum state.

3) If N(ψ) — N (ip*) = 0, then we want to identify M with an element
in 21. We do this in the following manner: We replace every element
a £2l(c^f) by its representative DQ(a), every ψ{V) by V φ'1 and every
ψ*(V) by φ F" 1 . Here φ is the isomorphism mapping the representation
D ̂ iμ) onto the representation D0(a).

4) We define ω(ΣM<) = Σω(M€).
We have to show that this procedure is well defined.
IV — 1. Lemma. Let M be a monomial with N(ψ) — N(ψ*) = 0,

then the substitution defined in 3) maps M onto an element of D0(2l).
Proof. By induction with respect to N(ψ). For N(ψ) = 0 the asser-

tion is trivial. Let us assume we have proved if for N(ψ) = n. We have
to prove it for N(ψ) = n -f 1. But -M"w+1 can have only one of the follow-
ing three forms:

α) Mn+1 = Mk Jf ( n + 1.Λ ) l ^ h ^ n

β) Mn+1==

γ) Mn+1 =

Let # be the substitution operator then we have in case α)

S(Mn+1) = D0{Mh) D0{Mn+1_h) ζD0(Ql)

and in case β)

8(Mn+1) = D 0 K ) F 2 ζί-1 D0(Jfn) ^ F3-1 ΰ , K )

= Po^) F2 ψ-HD0(Mn)) Fs-^oK)

If now D^Mn) ίD^Θ) and F 2 ζf((9 2 ) and F g ζ ί 1 ^ ) then, we find
as a consequence of Lemma III — 2 that F2DX (Mn) F3"1 is an element of
D0{Θ\J Θ2\J ΘΆ). Hence

8(Mn+1)ζD0(a).
Now the case γ):

8(Mn+1) = ΰ o ( α i ) I F ^ 1 P0(Jfn) F 3 ^-1 ΰ 0 K )

= 2)0(0,) ^{Fi"12>0(Jfn) F3} D0(α4) .

If now again D0(Mn) £D0(Θ), F 2 6-^(^2) and V3ζF(Θ3), then we have
again

F ^ 1 2>0(Jfn) F 3 ζ A (<P w ^ w ΘΛ) .
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Hence φ{V^D0(Mn) F3} is from D o(0 w 0 2 w 03), which means
8(Mn+1) ζ D0(2l), and the lemma is proved. This shows that ω is defined
on all elements of the free algebra 33.

IV — 2. Theorem. The functional ω is a one-valued linear positive
functional.

Proof, ω is by definition a linear functional. We have to show that
it is one-valued. Since the product between elements of 21, ψ, ψ* is
free, a relation Σ -^ί — 0 c a n o n t y occur because of relations within 2ί.
But the substitution-rules 3) preserve all relations in 21; hence Σ ^i = 0
implies 27 # ( ^ Q == 0 and this means JΓ co ($Q = 0.

We now have to demonstrate that co is a positive functional. This
means for any element X ζ 33 we have to show

ω(X*X) ^ 0.

Now X is a sum over monomials Mό. To every Mό we consider the number
nj = N(ψ) — iV(^*). So we can write

Jc tij — h h

It is now sufficient to show that all expressions of the form ω(Xf Xk)
are non-negative. We do this by showing that the substitution rule 3)
maps positive elements onto positive elements.

First let Mo be a monomial with N(ψ) = N(ψ*) = 0. We have

8(Mi) = D0(Mξ) = X>*(Jf0) = S*(M0) .

Assume we have proved the relation S (ilf*) = $* (M) for N(ψ) = N (ip*) = k
then we have for 2V(^) = N(ψ*) = k-\- 1 again the three possibilities
α)j β)y y) °ί ^ n e proof of Lemma IV — 1. In the case α we have

iSf^JfxJfa)*) - S(Mf) fif(Jff) - ^ ( i ^ J f g ) .

In the case β):

0 = D0(af) F 3 ^- 1 D0(Mf) ^ Vϊ1 D0(aξ)

) F 3 F ^ 1 F,JDf (Jf») Fi"

F 3 V'ζ1 is unitary element of some Do(@) and its adjoint is F 2 F^"1. Since
F 2 i s a unitary operator we have V2Df{Mk) F ^ 1 - {V^D^M^ F^"1)*.
Hence we find

) F , i)(if f c) F 2 -! F 2 F3-i 2)β(α4))*

In a similar manner, we get the proof for the case γ). So we have for
any monomial with N(ψ) = N(ψ*) the relation
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But this implies
ω{X$X0) ^ 0.

Assume we have proved that the substitution S maps expressions of the
form X*Xk onto positive elements for k = 0, 1, . . ., n. The general
monomial of the form Xn+1 can be written as XnψX0. This means

s (Σ n* ψj* nnψ**i\=Σ J W ) ̂  A(*
The finite number of elements X*o must be in some D0(Φ). Take now an
Θ1 which is spacelike separated from Θ and a V ζF(Θ1). Then we have

ιXn+1) = Σ Do(2$) V V-1 V'DΛXζX*) F*-* V V-*
it

By Lemma III - 2, Y~Λ-Ύi are elements αJ* in some Dx{&) and hence

s(x*+1xn+1) =

Since /Sf (ZJ* X^) is positive φ^SiXl* X^) is positive and hence # (X* +1 x
x Xn+1) is a positive element. This means ω(X | + 1 X n 4 1 ) ^ 0. The

proof goes in an analogous way for negative n. This then implies
OJ(X*X)^ 0 q.e.d.

We have defined on the algebra 95 a positive linear functional.
If we restrict this functional ω to the sub algebra 21, then ω coincides
with the vacuum-expectation value of the representation Do (2t). Hence ω
is an extension of the vacuum functional defined on Qί to the algebra 93.
If we consider a fixed ψ then the expressions of the form ω(ψaψ*) are
of the form (V~1Ωy D1(a) V~1Ω). This is again a positive functional
on 21 and coincides with the expectation value of the representation
D1(2l) with respect to the vector V~~1Ω. Since every positive linear
functional on a star algebra defines a representation [8] of this algebra,
we have a representation of 93. This representation restricted to 21 will
be reducible and it wiP contain the given representations Do and Dx

as irreducible subrepresentations.
We will denote the representations of a again by a and those of ψ

again by ψ. We denote the set of all ψ(V) such that V is contained in

V. Properties of the field ψ

Y — 1. Proposition. For every ψ we have ψ*ψ = ψψ* = 1.
Proof. Since the representation is defined by a positive functiona),

it is sufficient to show for all X, X' ζ 33 the relations

ω(Xψ*ψX') = ω{XX') resp. oj(Xψψ*Xf) = ω(XXf) .
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But this is an immediate consequence of the substitution rule which
defines ω.

V — 2. Proposition. Let ψ± and ψ2 be elements of &(@); then ψ*ψ2

and ψ2ψ* a r e elements of 01 (Θ).
Proof. Let ψτ = ip{V^) and y 2 = ^ ( F 2 ) . Then, by Lemma III — 2 there
exists u resp. v from 21(0) such that

^ F , = A(«) resp. F 2 Ff 1 = D o (»)

Then, for every X, X' from 93 we have

ω(Σψf ψ2X') = (β, £(Z) 0 Ff1 F2 ^ 8{X') Ω)

= (Ω,8(X)φ(D1(u))8(Xf)Ω)

= (β, S(Z) D0(w) ^(ZO β) = ω(XuX') .

In a similar way, we get

Since this holds for all X and X' we have

ψfψ2 = u and ^2^i = v J q.e.d.

V — 3. Proposition. Let ^ and Θ2 be two spacelike separated regions.

Assume ψ ζ 5(^i) a n ( ^ α 6 2t(^2) 5 ^ n e n w e have ^ α = aψ.
Proof. Let ^ = ψ(V)

ω(XψaX') - (β, 8{X) V φ~ι D0{a) 8{X') Ω)

= (β, iS (Z) F JDJ (α) ^ - ! S {X') Ω)

= (β, fiί(Z) JD0(α) F ^-i iSίZ') β )

= ω (XaψX') q.e.d.

Y — 4. Lemma. Let ^ and P̂3 be two spacelike separated regions.

Assume ψv ψ2 ζ 5 ($i) a n ( i ^ ( 5 (̂ 3) then ψ3 commutes with the

products ^ ^ 2 a n < ^ ψiψ*-
Proof. Assume first we have three different regions Θ{ which are

spacelike separated from each other and ψ{ ξ:^{^i); then we have

i) (ψs)

= (ψz) (Ψ2Ψ*)

= (ψd) Ψl(ψ2ψ*)

We have used the fact that ψψ* = y)*tp = 1, and that

5(0.) u 5 ( ί y c P s υ <Ps) resp. 5(ί>8) vj 5«P8)c
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This implies that we can use the propositions V — 2 and V — 3. Under
the same assumption we find

Ψ1Ψ2Ψ3 = ψ*ψsψΐ = ψsψϊψ*

If now Φ1 = Φ2, we choose an arbitrary region Θ± which is spacelike

separated to Θx as well as to Θz. Let ψA ζ 5 ( ^ ) Then we have

In the same manner we get

ψfψzψs = Ψ*ΨMΨ*ΨS = ψϊψiψzψtψ*

= ΨsψΐψMψ* = Ψsψΐψ*
In both cases we could make one commutation because we had already
proved Lemma V — 4 for this special situation and the other one be-
cause of Propositions V — 2 and V — 3. This proves Lemma V — 4.

We now have to consider the commutation relations of ψ with itself.
Y — 5. Theorem. Let Θλ and Θ2 be two spacelike separated regions.

Assume ψ1 ζ 5(^i) a n ( ^ Ψ2 £ \$(®2)'> t n e n t n e following relations hold

Ψ1Ψ2 ~ styzWi with ε = + 1 or — 1 .

ΨiΨ* = εψ*Ψi

ε is independent of special choice of the ψ's and the two regions.
Proof. Let us consider besides Φ1 and Φ2 two other regions, Θz and

ΦA, such that all four regions are spacelike separated from each other.
Let ψ3 ζ $((93) and ψ^ ζ ^(tf4). Then we get

ΨiΨ* = WzWfwMwM = Ψs(ψ*Ψi) Ψ*(ψM)

= Ψzψ*(ψ*ψi) (ψM) = (Ψsψ*) ψ*(ψiψύ Ψ*
^ 3 ^ * =

We multipJy now both sides from the left with ψ* ψ2 and get

From proposition V — 2 it follows that this expression is an element of
the algebra 21. From proposition V — 3 we find that the lefthand side
commutes with all elements of 21 which commute with ^Ά{Θ1\j Θ2)\
the righthand side commutes with all elements of 21 which commute
with 21 (03 \J 04). Choosing all possible situations for the four regions
Φi we see that this expression commutes with all elements of 21. Hence
it is an element of the center of 21. By assumption 21 has only a trivial
center. Hence we get

Ψi VWi Ψ2 = t

Taking the adjoint of this equation we see ε* = ε, and, since the γ>'s are
unitary operators we find ε = + l or — 1 . This proves our theorem.
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VI. On the structure of the representation

In this section, we want to investigate the structure of the represen-
tation of the algebra 93.

Before we can investigate the translations, we have to define them
as automorphisms on the algebra 93. To this end, we remark that we have
representations U0(a) and U^a) in the representation spaces § 0 resp.
$)v And, on the algebra 21C 93 we have already assigned to every trans-
lation an automorphism φ0 (a) mapping 21 into 2t.

VI — 1. Definition. To every translation a we define an automorphism
of the algebra 93 by the folowing transformation:

If b is an element of 21 we define

φ(a)b = φo{a)b .
If ψ = ψ(V) we define

and φ(a) ψ* = (φ(a)ψ)*.
With this definition we get :
VI — 2. Lemma. The positive functional ω on 93 which is defined in

Section IV is translation-invariant. This means for all X ζ 93 we have

ω(φ(a)X)=:ω(X).

Proof. This is an immediate consequence of the substitution rules
which define the functional. Since ω is an invariant functional, the trans-
lations will be represented by unitary operators in the representation
Hubert space § of ω.

VI — 3. Definition. Let Ω be the cyclic vector defined by the re-
presentation of ω. We define S)k to be the smallest closed subspace
containing all vectors of the form

XΩ, X£93 with N{ψ*) - N(ψ) =• k Jfc = 0 ± l , . . .

VI — 4. Remarks. By definition of the functional ω we have that § f c

is orthogonal to §^ for i =j= k and § is the direct sum over all § f c :

By definition of £jfc we have also for a ζ 21,

This means every § f c reduces the representation of the algebra 21. We
denote this subrepresentation by Dfc(2l).

In the same manner we see that the representation U(X) of the
translation group leaves each space § f c invariant:
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From the fact that the ψ's are unitary operators and the definition of
$)k, it follows immediately

YI — 5. Theorem. The weak closure of Dk(9l) in ξ)k coincides with
), the space of all bounded linear operators in § / c.

Proof, Suppose Dk (21) is not irreducible then there exists a vector /,
0 φ / ( ξ)k> such that Dfc(2l)/ is not dense in $)k. Let now 921 be the ortho-
gonal complement of Dk($l) /. Let us denote by 921̂  the subspace (ψ)k$ϊi
in § 0 . Since 921 is invariant under the action of Dk (21) we find

(Vί)*9R' = 93};s = 911'.

Here we have used that (ψ*)k (ip^)k is a unitary element in 21 which
therefore maps 921 onto 921.

The independence of the definition of 92c' from ψ implies that 921'
is invariant under the action of Do(2l(0)) for all open bounded regions Θ.
Hence, 921' is invariant under Z>0(2l). Since DO{%1) is irreducible we have
921' is either ξ>0 or 0. Therefore 921 is either $)k or 0. But this contradicts
the assumption that Dk($l) is reducible.

VII. On the spectrum of the translations

In this section, we want to show that the unitary representation of
the translation group fulfils the spectrum condition. We also want to
compare the spectra of the translations in the spaces § f c and §_/c.

We remark that all fjfc are invariant under the translations and we
denote by Uk(X) the restriction of U(X) to ξ)k. We need a wellknown
lemma (see [7], Lemma 9).

YΠ — 1. Lemma. If the spectrum of the representation ϋk(X) is
contained in the closed forward lightcone ir+

i then the smallest convex
closed cone containing this spectrum coincides with the forward light
cone.

VII — 2. Lemma. The cluster decomposition property for the vacuum
expectation value holds, provided the two clusters are neutral, i.e
N(ψ) — N(ψ*) = 0 for both clusters.

Proof. Let b be any element of the algebra 23; then we denote:
b(X)= U(X)bU"1{Z).

Let us consider matrix elements of the form

(Ω,b1bt(K)bΛ...bi(K)...biΩ).

If all b are products of elements of 21(0), 5(^)> 5*(^) ^OΓ s o m e open
bounded region Θ, then we have

lim (Ω, bτb2(X) δ 3δ 4(X)β) - ε lim (β, 6 ^ . . . fta(X) bA(Ω) . . . Ω)
X—>oo X—>oo
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where ε is the number + 1 or — 1. Let us denote by P o the projection
onto the Hubert space S)o. If now b± b3 . . . and δ2 64 . . . are both
neutral, i.e. elements of 21, then we have

(Ω b, • b3 . . . 62(X) 64(X) ...Ω) = (Ω,b1-b,...P0 62(X) 64(X) . . . Ω)

Since we know that in £j0 the cluster decomposition property holds [9],
we get:

lim (Ω 6 Λ ( X ) &A(X) ...Ω) = ε(Ω9 \bz. . . Ω) (Ω, b2b^ . . . Ω)
X—>oo

This result will also hold if we replace b (X) by expressions / f(X — Y) x
x 6(7) dY where / is a strongly decreasing function.

VII — 3. Lemma [10]. Let us denote by 8k the spectrum of the re-
presentation of UfriX) in $)k. Then we have the following additivity
property

8t+ 8kc8i + k ί, k = 0 , 1 , ± 2 . . .

Proof. Let £> be a point in the spectrum of # t . Then, there exists a ^
and a strongly decreasing function / whose Fourier transform has support
in a small neighbourhood of p such that

/ ϋ(X) (y>*)* £7-i (X) f(X) dx s y;«

does not annihilate the vacuum. In the same way, we find ψ*k, where g
has support in a small neighbourhood of a point q ζ Sk. Now

(β(V**) (ψfψ (X) ψfHX) V **β)

converges for X -> σo to

ε(fl, (V**)* y*kΩ) (Ω, (ψfψ ψf*Ω) ,

which is not equal to zero. Hence

cannot be zero for a ) l l . Hence in Si + h there exists a point in every
neighbourhood of p + g. This then implies p-\- q ζSi + k q.e.d.

VII — 4. Theorem. The spectrum of J7(X) is contained in the forward
light cone.

Proof. The proof will be by induction.
We know the representations ^(X) and U0(X) of the translations

coincide with the two given representations which fulfil the spectrum
condition by assumption. Now assume all representations U{ (X) fulfil the
spectrum-condition for i = n, n — 1 , . . . , — n -\- 1. We have to show
that this is also true for i = n + 1 and — n. From the additivity of the
spectrum it follows that for — n

sn+s,ncs0.
From this it follows that 8_n is contained in a region 0 which is bounded
below in energy and which coincides asymptotically for high energies
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with the light cone. Assume now there is a point p outside the forward
light cone which is contained in $_n; then p + 80 must also be in $_n

(since $0-f $_ n C$- n ) ^ u ^ ^ n i s *s impossible because p -f 80 is not
asymptotically contained in the light cone. Hence such points do not
exist and we have 8_nC V+.

By the same argument, with the relation

we will find Sn+1 C V+. This proves the theorem. We now want to study
the spectra in greater detail.

VII — 5. Proposition. Let f(z, p) be an entire function in z £ C4 with
values in the set of Lorentz-invariant measures on Minkowski space.
Let us define 8{f) to be the support of f(p, p). Then 8(f) is a Lorentz-
variant set.

Proof. By definition is 8(f) a closed set. Now let q be a point in the
complement of 8 (/) then there exists a certain neighbourhood of q which
is in the complement oί8(f). Hence there exist certain subneighbourhoods
Nx, N2 such that f(X, p) = 0 for X ζ Nt and p ζ N2. Since N± is open,
we find by analytic combination f(X, p) — 0 for all X and pζN2.
But f(X, p) is Lorentz-invariant in p. Hence, f(X, Λp) = 0 for all X,
all Lorentz transformations A and p ζ JV2. But this implies the comple-
ment of 8 (/) is Lorentz invariant hence 8 (/) itself is Lorentz invariant
q.e.d.

VII — 6. Proposition. The same assumptions as in VII — 5.
Let f(z,p) = fs(z,p) 4- fc(z,p) be the splitting of f(z, p) into its

singular part and the part which is continuous with respect to theLebesgue
measure. Then fs and fc are analytic functions in z with values in the set
of Lorentz-invariant measures.

Proof. The basis for this decomposition is the Lebesgue decomposi-
tion theorem (e.g. [11]). Thus, for every Lebesgue null-function g we
get that

is an entire holomorphic function in z. From this it follows in particular
that if EλcE2 are two sets of Lebesgue measure zero and if for one z

I \HP,Z)\<

then this is true for almost all z, since for any g with support in E2 —

f g(p) f (p, 2 )φO for one z implies

that this is true for almost aU z. Hence

/ \f(Piz)\>® for almost all 2 .
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Let N be the set of Lebesgue zero sets. We have a semiordering

E1<E2 if EτC E2

and

/I/(J>,2)I</I/(2>.2)I
Ex E2

for almost all z. Now the usual argument shows that there exists a
maximal element Eo in N and one defines

Since i?0 is independent of z we have that fs and fc = f — fs fulfil all
requirements of Prop, 6.

VII — 7. Theorem. Denote by Sk the spectrum of the translation group
in the Hubert space ξ)k. Denote by 8% the singular part with respect
to the Lebesgue measure of 8k. Then we have

1) the supports of 8ki 8% and 8k — S% are Lorentz invariant sets.

2) support 8k = support 8_ k

support 8% = support $5L&

support 8k — 8^ = support 8_k — 8^% .

Physically speaking, this means the masses of particles and anti-
particles are the same.

Proof. We remark first: let ψv . . ., ψκ ζ ^(0).
Then, the vectors of the form ψ* ψξ . . . ψ% Ω form a total set in $)k.

This follows from the Reeh- Schlieder theorem.
Let us consider the commutator

(Ω, ψiψz. . . ψn U(X) ψ*+! . . . ψξnΩ) - εn* x

X (fl, φ*+1 ... ψinU(-X) Ψl . . .ψnΩ) = f(X)

for ψt ζ 5(^) Sin c e ® is bounded, this commutator vanishes in a region
which is spacelike with respect to some double-cone |X°| — |X| < M.
By the spectrum condition the Fourier transform of the first term has
support in the forward light cone and the second has term support in the
backward light cone. Hence by DYSON'S representation [12] f(X) is of
the form

/(*)= / dUε(X*)φ((X-ϋ)*,ϋ).
* | H β | U |

This implies for the Fourier transform

where φ (p2, z) is an entire analytic function in z. Now propositions
VIII — 5 and 6 give the desired result.
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YIΠ. The case of many fields

The introduction of many fields will be treated by an induction
procedure. Assume we have introduced already k "charged fields"
ψ1, . . ., ψk. The algebra generated by the k fields and by 21 will be
denoted by 33fc and its vacuum-representation by DQ (93fc). Let now Dk+1 (21
be the given representation of 21. Then we have to extend this represen-
tation to a representation Dx (23fc) of 33*. To every operator Vk+1 ζFk+1 (0)
which maps jDfc+1(2l Γ\ 21(0)') onto the corresponding ring in the va-
cuum-representation D0(2t) of 21 we construct an operator W(Vk+1)
which maps the representation space of D1('35h) onto 2)0(23fc) such that
W~λ restricted to the vacuum sector coincides with {^Vk+1)~1 and such
that W(Ff + 1) W-1(V% + 1) is an element of the form D0{a) with a £ 21.
Having constructed the W's we can proceed as in Section IV and get a
representation of the algebra 93fe + 1 generated by 21 and k + 1 charged
fields.

VIII — 1. Proposition. Let 33fc be an algebra containing 21 and k
charged fields ψk such that every neutral element of 23^ is contained in 2t.

Let D fc+1(2ί) be a given representation of 21 described in Section I I ;
then there exists an extension of the representation Dk+1 of 21 to a
representation D1(

<^8k) of the algebra (33&).
Proof. Denote by Ϋ)k+1 resp. §o ^ n e representation spaces of Dk+1(Ql)

resp. D0(2ί), and denote by φk+1 the isomorphism

Let / ζ §fc+1; we define a positive linear functional on 93Λ by

ρ φ) = 0 if b is a non-neutral monomial of 23&

and
ρ (5) = (/, φk+1 D0(b) f) if b is neutral and hence b ζ 21.

This functional is clearly linear und since the neutral part of every
positive element in 93& is also positive, we see that ρ is a positive func-
tional. If we denote the representation of ρ by D1(

!χ8k) we see that
Z λ ^ ^ ) is an extension of D fc+1(2l) q.e.d.

If we restrict the representation D0(23fc) resp. ^(93^) to the algebra
2ί, then these representations split into different subrepresentations
which are characterized by a ^-dimensional vector with integral com-
ponents. We denote these Hubert spaces by §(o,a)

 r e s P D(i,a) a n ( ^ ^ n e

corresponding representations by Dφ)SL) resp. -^(i>a) What we have
called D o becomes now D(o,o) a n ( ^ -^k+i becomes -D(ito) To every
V (:Fk+1(Φ) we want to construct an operator W(V) which maps the
representation space of D0(23fc) onto the representation space of D1(

<^8k).
VIII ~ 2. Definition. Let V ξ:Fk+1 (Θ) and Θx be spacelike with respect

to Θ. We define W(V) as an operator mapping §(o,a) onto §(i,a) It
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W(V)
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Ψl
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0,a

the form

j } = α(a) $ s
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* " f tC jrC

5 fc(^i), where ψ

. . . ψz'ψl1?)^0'^, |α(a)| = 1

denotes the representative

of ψ in the representation 1^(33^).
YIΠ — 3. Lemma. The operators W (V) are unitary.
Furthermore, their definition is independent of the special choice of

ψ's. For Vl9 V2ζFk + 1(Θ) we get

resp.

Proof. The unitarity of W{V) follows immediately from the unitarity
of V and the unitarity of the ψ's. We show now the independence of
W(V) from the special choice of the ψ'8. Let ψj9 \p] ζ %j{0-^\ then there
exists a unitary element U in 21 (Θ-^ such that

ψl*... ψΐ = D0(U) Wa

a*. . . ψ^ .
Hence we get

= α(a) ψ[*a>. . . ψ'k
a* D^U*) VD0(U) ψ'^ . .. ψ^ § ( 0 > a )

= «(a) ψ[^ . . . ψk*
a« D(lw0)(ϋ*) 7ΰ ( C , 0 ) ( ί/ ) ψ't

at • Ψia' S>l0>Λ)

= α(a) ψI*"'. . . ψk*
a!° V Ψk

a*. . . yΊ"1 §(o,a,

Here we have used that (9 and Θx are spacelike separated and consequently
the relation

FAo,o)(P) = A i , o ) ( P ) F
holds.

The relations

TΓ-1(F
and

are an immediate consequence of Lemma III — 3 q.e.d.
VIII — 4. Lemma. Let 6? and Θλ be two spacelike separated regions,

V ζ Fk+1 (0), α £ 31 (0j) then we have the relation

Furthermore, the numbers α(a) can be adjusted in such a way that we
have for ψk ζ $k (Θ^) the relations

μ h = l o r - l .
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Proof. Let 0 2 be a region spacelike separated from Θ and Θv and

ψj 6 ί?3 (̂ 2) ί "then we have with the notation y>x= ψf°. . . y>jj£:

W{V) D^x)(a) = α(x) yί- χ F y x D(o,x>(«)

This is equivalent to

Now we consider the expression

for a situation where V and ψk belong to spacelike separated regions.
Because of Lemma VIII — 3 this expression is independent of the special
choice of V and ψ:

W-HV) ψt* W(V') ψ'k = W-HV) ψh* W(V) D^UJ Ψk

This implies that this expression commutes with X>0 (2ί) and is hence
in each sector §(o,a) equal to a constant j8fc(a). We get

j9*(a) = (ψ-ΆΩ, W-HV) ψi W(V) ψkψ~*Ω)

= (W(V) ψ-*Ω, ψt W(V) Ψic ψ~*Ω)

= ά(a) α(a — lfc) (y;~a VΩ ip% ψk ψ~Ά VΩ) = ά(a) α(a — l f c ) .

Putting now α(a) = μ\x - μ£ . . . μlk we get

βk(&) = μk, q e d

Choosing now ^ f c = 1 we are back to the original situation of introducing
one field. This closes the induction procedure.

We have now introduced n different fields which commute with
one another. Making finally a Klein transformation (e.g. [13]) we get
the result.

VIII — 5. Theorem. Assume there are n different representations of a
local ringsystem fulfilling all assumptions of Section II . Then we can
introduce n charged fields ψi9 i = 1 . . . n, such that

1) Each ψi either commutes or anti-commutes for spacelike separations.
2) Between the different fields we have the normal commutation

relations.
3) The given representations appear as representations in super-

selection sectors.
Commun. math. Phys., Vol. 1 20
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IX. On the uniqueness of the imbedding procedure

This section is devoted to the uniqueness problem of the imbedding-
procedure. In particular, we want to show that we can replace the given
representations Dk, k = 0, 1, . . ., n, by unitarily equivalent represen-
tations. Furthermore, we want to show that the result of our construc-
tion is independent of the order of succession in the construction proce-
dure.

If we have two unitarily equivalent representations Ώλ and D2

of the algebra 21, we write

If we have a field theory containing n fields ψi9 we denote the different
super-selection sectors by a vector a whose components are integral.
In particular ξ>0 is the vacuum sector and

By DΆ we denote the representation of the original algebra in the sector § a .
IX — 1. Lemma. Let us take a representation D a , a φ 0, and the

representation DQ, and let us construct a field φ as described in Section
IV connecting the representations Do and D a . Then we get a string of
representations D\ such that

2>ί^Aa
Proof. Let us denote byF(0) the set of all F, mapping (D[ (Θ))' r\D[ (31)

onto (Z>ό (0))' r\ D'o (21).
Since D[ = D a and D'o = D o we find that

a , for Ψi

and P b the projection onto £)b, is an element of F(Θ). Hence

F(Θ) = { P 0 ^ a P aD a(C7); U ζ S ( 0 ) , *7 unitary} .

This implies that the vacuum functional ω on the algebra 93 = {21, F(Θ)}
coincides with the vacuum expectation values of the subalgebra 33a

of 93n which is the subalgebra generated by 21 and all fields of the form
ψΆ. 93 and 93a are in a natural manner isomorphic algebras. The cyclic

subspace of the algebra 93a is 2J ?>n&- Hence the representation of 93a

= — CO

restricted to this subspace is equivalent to the representation of 93, i.e.

Restricting to the representation of 2t we get the desired result.
IX — 2. Lemma. Assume that we have two pairs of representations

Dv Do and Ό'Ύi D'o such that D1 ^ D[, Do ^ D'o.
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Let us construct the fields ψ resp. ψ' connecting the representations
Do and Dτ resp. D'o and D[. Then we get two strings of representations
Di resp. Ώ\ for 21 such that D, ̂  Ώ\.

Moreover, if we denote by 23 resp. 93' the algebras generated by
{21 and F(Θ)} resp. {21 and F' (Θ)}f then we have a natural isomorphism
between 33 and 23', 93 = 0(93'), such that

Proof. Let Uo resp. U1 be the unitary operators

U0D0U^ = D'ϋ resp. ϋ, D1 C/f1 = D'i •

Let us denote be F(Θ) resp. F' (Θ) the family of operators F resp. V
establishing the local unitary equivalence. For V ζF1 (Θ) we get clearly

Uό1V'U1ξiF(Φ),
or in general

ϋ^F'ψ) U1 = F(Φ).

This establishes in a natural manner an isomorphism between the two
algebras 23 and 93'.

Let us denote by ψ resp. ψ' the two fields and let M be a neutral
monomia] M = M(ai9 ψ(Vi)).

We want to show that the relation

ΌoPoMPoϋ^ = P'QM'P'Q
holds. We do this by induction with respect to the number N(ψ) of ψ's
which are in M.

We have the three possibilities

Λffc Jfn+1_*
Mn+1 = alΨ(V2) Mn ψ*(V3) α4 1 ̂  h g n

a1ψ*{Vi)Mnψ{V^)aι.

The first case is trivial. Now the second:

U^M^Poϋo1 = UMaJ F.AίJfJ V^D0{an) ϋ^1

= D'Q (a,) ϋ0 F2 U^DΊ (Mn) Ύx V^ Ό^D, (α4)

The third case:

l7oPβJlfn+1poZ75-i= Uo

= D;K) UOPOΨ*(V2)Λfn

= D5 K ) Ϊ7O ̂  (Fi-i2)0 (Jfn) F,) t^o"1 -Do K )

= D'o (a,) Uoφ{ϋϊH U, FΓ1 U^DΌ (Mn) ϋ0 V3

Here φ denotes the isomorphism Όλ -> Do.
20*
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We have

Hence we get

E70PβJfn + 1Pβϊ75-i = DΌfa) D i ( V ' * ( 7 a ) M'nψ(V3)) D'0{a,)

— P0MnJrlP0 .

Since Uo maps the vacuum onto the vacuum, we see that the vacuum
expectation values coincide. Hence we get the desired equivalences.

IX — 3. Corollary. Assume we have given n -f 1 representations
D t (2ί), i = 0, 1, . . ., n, fulfilling the assumptions of Section II . DQ($V)
is the vacuum representation. Let us construct the n charged fields ψ{;
then the commutation relation of the field ιψi dependes only on the class
of representations equivalent to 2)^(21).

This is a trivial consequence of the two preceding lemmas.
IX — 4. Theorem. Assume we have n-\-\ pairs of representations

Di} D[, i = 0, 1, . . ., n, such that Z^ ̂  D[. Let us construct the fields ψi

resp. ψl connecting all these representations. Then we have a natural
isomorphism φi^δtn) = 93n between the two algebras 95n and 93%' such
that

In particular we get for 21 two sets of representations DΛ and D'Ά such
that

Proof. By induction: assume we have established the equivalence
for the algebra 23fc and we have found the isomorphism φk{^>'k) = 23fc.
Then we have

This means we have a unitary operator Uk such that

Let us denote by U1c+1 the operator

and by φk+ί resp. φ^ + i the isomorphismus Dk+1

 k+1> DQ resp.

•Ujc + i * -VQ.

We construct now, according to Proposition VIII — 1, a positive
functional on 23k by

ρ (p) = 0 if b is a non-neutral monomial of 23fc and

ρ (b) = (/, φςi χ D o (b) /) if b is a neutral element of 23fc.
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Here f ζ$)k+1, the representation space of D f c + 1(2ί). For neutral
elements, we have the following equations

ρ (b) = (/, Dt+1 (b) /) = (/, Όft 1D'k + 1 φ) Uk+1 /)

b is a neutral element and hence an element of 21. This means the element
b ζ 23& has to be identified with the element φ^ι(b) £ 23'*.

QΦ) - (Vk+1f, φ'Γ+\ (Doiφ-ib)) Uk+1f)=ρ'(φ^b)

Hence the representations

1^(23) and D{(ψ-1('3))

are unitarily equivalent:

Applying Lemma IX — 2, we get the desired result.
IX — 5. Lemma. Assume we have a field-theory containing n fields

then we have a set of representations for 21 labeled by an n-vector a
with integral components.

Let us pick k different representations

and the vacuum representation Z)o. Let us construct with these represen-
tations a field-theory containing k fields. Then we get for the algebra 21
a set of representations D^ labeled by a &-vector b such that

Proof. Let us denote the subalgebra of 93n which is generated by 21
and the fields ψa% i — 1 . . . k, by 93Λ. Then 33^ applied to the vacuum
generates the Hubert space ξ) = Σ $>nx ax + n2 a, + nh a*- Let us denote by

nx 'njt

933 the algebra generated by 21 to gether with the first j fields, by ί)j the

Hubert space ί^ = Σ ^>nx&x + -'-nia,j

 a n ( ^ ^y §;,i t n e Hubert space
nx-" Uj

$>u l ^ Σ §nx ax + -f % a, + αi+x $oan(^ §i, l a r Θ ^ ° ^ Hubert spaces which
% %

are invariant under the algebra 23*. The two representations of 233 are
clearly locally unitarily equivalent. This equivalence is established by
the operators

Es D(ϋ) ψa^ Ejt 1 = W where ? f f ^ ( ί ) , C7 ζ 2t(ί?)

and ^ resp. Jϋrίfl the projections onto $)j resp. ^ 5 ) 1 . Hence, by Lemma
IX — 1, the theory constructed by the two representations of 23? in
$)j resp. S)SΛ and the W's will be unitarily equivalent to the representation
of the algebra 93 j + 1 in the Hubert space S)j+1.
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Now, the Hubert space ί)Άj+1 is clearly a cyclic subspace of the
algebra 233' in f>jtl. Hence for every / in $)&jti and every neutral element
b ζ 33' we get

(/, Dx(b) f) = (/, D

Here D1$&i) denotes the representation of 233 in S^fl, and φj+1 the iso-
morphism

This means the representation D1(%$) is uniquely defined by the re-
presentation of 23 in $)j and the representation D&s+l of 21. From this
follows our lemma by induction.

We collect all the results of this section and get:
IX — 6. Theorem. If 8 is a given finite set of locally unitarily equi-

valent representations of 21 containing the vacuum representation,
then the imbedding procedure is uniquely defined up to unitary equi-
valence by the equivalence-classes of the given representations, and
is also independent of the numbering of the elements in 8.

X. Degeneracies and their reduction

Starting from n + 1 representations of the algebra 2ί we have con-
structed a field theory containing n fields ψit As a consequence of this,
we get a family of representations for 21 which are labeled by a vector a
with integral component. There is no reason to believe that in the general
case all representations of 21 we get by this construction must be different.
In this section, we want to study what happens if two oί these represen-
tations are equivalent. In particular, we want to show that in such a
situation our scheme can be reduced in such a way that all representa-
tions are different. We first investigate the degeneracies.

The first result is a simple consequence of Lemmas IX — 1, 2.
X — 1. Proposition. From DΆ^Db follows

^ a ^ D . b w = 0, ± 1 , ± 2 , . . . .

X — 2. Lemma. From D& ^ Dh follows

^na + » w l ) = D{n + m)a == ^(n + nι)b >

and in particular

-Da-b = -Do

Proof. Nowhere in our construction of charged fields did we use the fact
that the given representations of 21 are not equivalent. Hence we can
apply all results which we have obtained so far to our present situation.
Assume we have two fields such that



Local Rings and the Connection of Spin with Statistics 303

then there exist unitary operators Un such that

Let / ζ § 0 , n

 a n d 331 h e "khe algebra genrated by 21 and ψλ\ then we get
for every neutral element in 93X

(/, D(b) /) = (/, 2>0,n(δ) /) = (Unf, Dn>0(b) UJ) .

But the vector Unf ζ $)n,0. Hence, we get

Assume now Dlf0 ^ D a and D0Λ ^ Z>b; then we get the desired result.
X — 3. Proposition. Suppose we have the two representations Do, Dx

of 21. Assume moreover Do^ Dx-, then Dn ̂  DQ for all n.
Proof. If we interchange the role of DQ and Dv we get

Applying Proposition X — 1 to the pairs (Dk, Do) and (Dfc, D^) we find:

Dnic~ A+n(fe-l)

Combining both results, we get:

ΐ>nΊc~ D-n(k-l)

The application of Lemma X — 2 gives:

Aι(2fc-l) ~-^0

But n(2k — 1) runs through all the integers q.e.d.
X — 4. Lemma. From D a ̂  D o follows

A ^ ^ + ̂ a for all b and all n = 0, ± 1 , ± 2 ,

Proof. If we have a field theory with two fields such that

then there exist unitary operators Un such that

UnD0,nU-ι = D0>0.

Let f ζξ)0,n and 331 be the algebra generated by 21 and yjα; then we get
for every neutral element in 33j

(/, D(b) /) = (/, DOίn(b) /) = (UJ, DM(b) UJ) .

The vector Unf 6§(0,0) Hence

If we take in particular D W ) 0 = D b and D o α = D a we get

Db + n a ^ A ) , q.e.d.

X — 5. Theorem. Assume we have a field theory containing n fields
such that the representations of 2ί are characterized by a lattice £.
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Then there exists a maximal sublattice L±CL such that D a + ftχ ^ D a

for all a £ L and ax C £ 2 .
Every degeneracy which appears in L is of this form. In particular,

if there are no degeneracies in L we have 2/, = 0.
Proof. It is clear from Proposition X — 1 and Lemma X — 4 that

all representations which are equivalent to the representation Z)o form
a sublattice. Hence, by Lemma X — 4 the equation

holds for all a ζ L and ax ζLv Now Lemma X — 2 and 3 imply that
every degeneracy is of this form.

We want now to consider the case where Lx is not trivia]. From the
basis theorem for an Abelian group with a finite number of generators, it
follows that we can find n linearly independent elements ax . . .an such
that these generate L and moreover ^ a ^ &2a2, . . ., kn&n generate Lλ

(some of the &'s might be zero).
X — 6. Definition. We define χό to be the unitary operator which

maps $)h onto §b_& a. and which establishes the unitary equivalence
between the representations D^ and D^_k a .

χό restricted to ξ)h is uniquely defined up to a phase-factor.
X — 7. Lemma. The arbitrary phase-factors in the definition of χ^

can be adjusted such that χj commutes also with the fields ψii = 1 ... n.
Proof. Let us consider an expression of the form

Since ψ'k = D(U) ip* for U £ 21, we see that this expression is independent
of the special choice of ψ and hence commutes with every element of
Dh (21). This means it is equal to a number

λ(b, - k) with |λ| - 1 .
Now we get

ph ψ**> ψ*K χτl ψ*. φk. χ . ph = λ ( b > - kL - ll2)

= Pb y *. ψ**° z Γ l ψ^ %i χjl ψ^ Xl P , = λ(b - k1; - k2) λ(h - kx) .

This equation implies

λ(b, k) = A(O,b+ k)I(0, b ) .
Define now

χ;Ph = λ(0,h)χίPb;
then we get

P*Ψ*k XΓ1 Ψk Xi Pb = λ(09 b) 1(0, b - k) Ph ψ*« χj^ Ϋ Xi Ph

= λ(O,b) λ(0, b - k ) l ( b , - k ) = 1 .
This proves our Lemma.
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X — 8. Lemma. Let the operators χj be such that they commute with
all elements of 2ί and the ψ's then the χό commute with each other and
moreover χJ'1(ψΛήki is an element of 21 if we assume that the γ 's obey
the normal commutation relations.

Proof. We first prove the second statement. From the definition of
χό follows

Let now ψt £ fo(0) then we have for X ζ Dh (21(0))'

χrl{ψ*φ PhX = X χ^(ψ^ Ph .

Hence χf1^)** Ph = Σ>h(ϋh), with Uh £21(0).

Let now Θ1 be spacelike separated from Θ and \p[ ζ ^i{0^)\ then we
get

χ-i { ψ ^ p b ψ,i = ^

= e(M* 1) V'1 Xϊ1^'?' P*+ι =
On the other hand we have

But this implies

where

We consider now the case ψ'ι = (^r a^)^ then we get

U'b) Pb

On the other hand we get

i Uh)Ph.

From this follows ε(^ ay, ^a^ ) = 1, and since we have assumed normal
commutation relations we get ε (kj a3 , 1) = 1. Hence Uh is independent of b.

Now we get

= xiι(ψai)ki Xi = xT1 xΛψaj)hj,
and from this

This proves the lemma.
X — 9. Theorem. Assume we have given n + 1 representations Di

of 21. Let us denote by L the lattice of representations we get by the
normal way of construction. Assume there exists a sublattice LXQL of
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representations which are all equivalent to the vacuum representation Do.
Then there exist " charged fields" φ{i — 1, 2, . . ., m ̂  n and numbers k{

such that

1) φf 6 21.
2) All subrepresentations of 21 are labeled by elements of LjLx and

no two of these representations are equivalent.
3) To every representation in L there exists a representation in L\Lλ

which is equivalent to this representation.
Proof. We define operators φi by the relation

if Z<φl modfci
i f h^l m o d i , .

From this definition together with Lemma X — 8 follows φf ζ 21.
Let now Θx and 0 2 be spacelike separated and φi ζ £fi(^i)

); then we get
i f ^ Φ X m o d *iΣ li a , -

T1 DΣU

U at

if lj*==

From this follows

Now assume φi

and hence

If ^ = i we get

and hence

where

a n ( i f̂c ζ if A; ( w e

Φ 1 m o d ^

if h ̂  1 mod*,,
i f z i Ξ ι

Zrf s 1 ^

Z, φ 1 m o d k ,

if lj φ 1, 2 m o d ^

- 1 ψ'a* §Σιn*n if h Ξ ι moάkj

if IJΞΞΪ 2 m o d ^

^ ^J = ε (a,-, a^ ) ^ φ i ,

= ψ*ι* ψ** ψΆi

This means the new fields fulfil the same commutation relations as the
fields ψ&i.
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We apply now the algebra generated by D (21) and the φ's to the original
vacuum state. This is an invariant subspace and is of the form

+ oo JCj-l

l{ = — oo \ι = 0
ki = 0 kj = 0

This proves our theorem.
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