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Abstract. The mathematical formalism describing the Bose gas at zero tempera-
ture is analysed with the aid of methods that have recently been successful in rela-
tivistic quantum field theory. First the spectrum conditions for an infinitely extended
system are given and the algebra of observables and the algebra of field operators
are defined. General properties of states over these algebras are discussed and
theorems are given which connect the linked cluster property, translation invariance
and the purity of the states. It is proved that pure states over the algebra of ob-
servables have the property of 'factorisable off-diagonal long range order'. The class
of 'quasi free states' is defined and of these states those which are translation in-
variant and possess the linked cluster property are analysed. It is shown that this
class of states contains a subclass of pure states of the Bogoliubov type and a sub-
class of states which are mixtures of non-translationally invariant pure states. The
applications of these 'quasi free states' to the interacting Bose gas are summarized.

1. Introduction

The problem of finding the ground state and excitation spectrum of
the interacting Bose gas at zero temperature may be considered to be the
question of choosing an appropriate representation of the canonical
commutation relations corresponding to a given form of the energy and
particle density operators. If the problem is phrased in this manner the
most convenient method of procedure appears to be with the aid of
Wightman functions rather than the more usual Green's functions.
This approach is aided if one makes at the outset the idealization that the
system is infinitely extended; this idealization will be made throughout
the present paper. Consideration of an infinite system can of course lead
to mathematical difficulties due to the non-existence of certain operators
which would be well defined in the case of a finite system but we will avoid
such difficulties.

The aim of this paper is twofold. Firstly we wish to discuss possible
properties of the states of a Bose system and present a number of general
results which describe the connections between translational invariance,
the linked cluster property and the purity of the states. In this connection
a careful distinction is made between states over the algebra of observ-
ables and states over the field algebra. A proof is given that all pure states
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over the algebra of observables have the property of "factorisable off-
diagonal long range order". Secondly we wish to illustrate some of these
general results by consideration of "quasi free states". I t is shown that
this class of states contains BOGOLIUBOV [1] states along with other
states which are mixtures of non-translationally invariant states of the
type considered by GROSS [2]. We also give a summary of the applications
that these states have found for the interacting Bose system. A number
of the results stated in this paper are already known in other contexts but
they are collected here to show their possible relevance to investigations
of the Bose gas.

In Sec. 2 we collect the definitions and formalism necessary for the
further sections. Sec. 3 contains a discussion of theorems concerning the
properties of states of a Bose system. In Sec. 4 the "quasi free states" are
defined and the representations corresponding to these states are con-
structed. In Sec. 5 a discussion of the applications of the "quasi free
states" is given. Sec. 6 comprises a summary and conclusion.

2. General formulation

The Bose system is defined in terms of a field operator op (x) and its
Hermitian conjugate q>+(x) which satisfy the canonical commutation
relations

[<p{x)9 (p
+(y)] = d(x — y)

and
[9>(*),9>(y)] = 0 . (1)

The variables x and y refer to points in three dimensional space. The two
mathematical quantities which are of interest are the algebra of field
operators 21^- and the sub-algebra of observables 2l#; 2ljsr is the algebra
generated from the field operators by the processes of addition, multi-
plication, multiplication with complex numbers and conjugation; 2l# is
the algebra of elements chosen from 21^- with the property that they are
invariant under the transformation

cp(x) -> <p' (x) = <p(x)eioc

<p+(y)-+<p+'(y) = <p+(y)e-ix (2)
where a is a real constant. We omit the details involved in giving a
precise mathematical definition of the algebras 21^ and 2l#. There are
essentially two difficulties to be avoided; the first is due to the distribu-
tion character of the operators <p (x) and (p+ (x) and this may be circum-
vented by appropriate smearing of the operators; the second is due to the
unboundedness of the operators and may be avoided by working with the
algebra of associated bounded operators (see for instance [3]).

We now wish to formulate the mathematical description of the in-
finite Bose gas in the following manner. Assuming that interaction of the
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Bose particles is mediated by a two-body potential V(x), we take the
energy density operator to have the form

+(x)(p+(y) V(x-y)cp(x)<p(y) (3)

and the particle number density operator to have the form
jr(x) = <p+{x)cp{x). (4)

The infinite Bose gas is then described in terms of a representation of the
algebra 21$, in a Hilbert space H, chosen such that the operator K,
defined by

K = fd*x {3P(x) —[tjr(x) - c} (5)

is a positive semi-definite operator i.e. such that

(ip, Kip) ^ 0 for all y> £ H . (6)

The constant ju is the chemical potential and the constant c is chosen so
that the lowest eigenvalue of K is equal to zero; the corresponding eigen-
state is then interpreted as the ground state of the system. Condition (6)
is a reflection of the fact that for a finite system the spectrum of the
Hamiltonian should be bounded from below; the introduction of the
second term in (6) ensures that the particle density in the ground state
may assume a finite value whilst the third term is necessary to make the
eigenvalues of K finite. It would also be possible to consider an alter-
native formulation whereby the second term in (6) is omitted and the
mean particle density is prescribed by an auxiliary condition but we
prefer the above.

It will, of course, only be possible to satisfy condition (6) for certain
values of /u and a certain class of potentials V (x) and then only in parti-
cular representations of 2l#. It would indeed be hoped that for reasonable
values of ju and V(x) at most one representation of $l0 would be com-
patible with (6). In this representation the mean density operator

would then be a multiple of the identity. (The volume V is considered
here to be a sub-volume of the system.) This last remark is a consequence
of the assumed uniqueness, or irreducibility, of the representation and
the Lemma due to HAAG [4]. Although no proof is a yet available that
the energy and particle number densities determine uniquely a represen-
tation of %l(f), in. the manner described above, it does appear to be reason-
able from experience of quantum field theory. In an analogous problem
in field theory one finds that each representation of the appropriate
algebra determines a particular form for the interaction Hamiltonian,
and conversely [5, 6], That a similar property is true for the many body
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problem is made unclear however by the counterexample of the free
Bose gas. In this case V(x) is identically zero and K is positive semi-
definite if, and only if, JU < 0. Further, for each value of /u < 0 there is
just one representation of 21$ compatible with (6), namely the vacuum
representation with mean particle density zero, and for ju = 0 there are
an infinite number of representations, each corresponding to a different
finite mean density. The general belief is that an interaction between the
particles has the effect of making the chemical potential a one-to-one
function of the mean density and although this would not yet imply the
irreducibility of any representation of 21$ compatible with (6) for fixed JU
and V (x) it would imply that the operator Q is a multiple of the identity
in all such representations.

I t now appears appropriate to consider the representations of the
algebra 21$. The standard mathematical procedure used in studying the
representations of an algebra 21 is to consider all positive linear functionals
W(Q) over 21 i.e. functionals W{Q) defined for all Q £ 21 having the two
properties

a) W^xGx + A2Q2) = 1XW(ft) + KW(Q2) ,
where A1? A2 are constants and Qv Q2 £ 21, and

b) W(Q+Q) ^ 0 for all Q £ 21. (7)

This procedure is used because of a well known theorem (see for instance
[7]) that concludes that corresponding to every such functional there
exists a cyclic representation of 21 in a Hilbert space H. This theorem is
the basis of the Wightman approach to relativistic field theory where the
identification

is made and | 0} is understood to be the vacuum state. We will make a
similar identification in studying the representations of 21$ but interpret
I 0) as the ground state of the Bose gas. Mathematically functionals
W(Q) satisfying the above conditions are termed "states" and this
terminology will be adopted in the following. No confusion should arise
with the use of the word state to describe a vector in Hilbert space.
Corresponding to the normalization of the cyclic state in Hilbert space
it is possible to normalize the states W(Q) by requiring

where 1 is the unit element in 21. In the following we consider only nor-
malized states. The reducibility of the representation constructed from
knowledge of W(Q) can be characterized by the following property of
the state. If W(Q) may be decomposed into a convex sum of two other
states W1{Q) and W2(Q), i.e. if we have the decomposition

W(Q) = XWX(Q) + (1 - X ) W2(Q) where 0 < I < 1
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for all Q £ 21, then the corresponding representation is reducible and if
such a decomposition is not possible the representation is irreducible;
in the former case W (Q) is called a mixed state and in the latter a pure
state, a terminology corresponding to that used in statistical mechanics.
The most general decomposition of a mixed state W (Q) in terms of pure
states Wk (Q) is given by

W(Q) = fd/i(h)Wt(Q) (8)

where fx (k) is a positive measure. If all states involved are normalized we
must then require that

Jdft(k) = l . (9)

In the next section we use the above formalism to discuss the restraints
placed upon the states of 21$ and 2ljr by various general physical require-
ments and the interconnection of these restraints.

3. Possible properties of the states

The first property we wish to consider concerns behaviour at large
distances and to aid the discussion we first recall the usual definition of the
linked cluster property. Consider an algebra 21 generated by certain
elements Qt{x) £ 21, e.g. 21^ is generated by <p(x) and <p+(x), 21$ is gene-
rated by cp+{x) cp(x + y), and consider also a state W(Q) over 21. From
W(Q) we construct a "truncated" state WT (Q) with the aid of the re-
cursive definition

W(Q1(x1) • . • QnM) = E WT(QiMJ • • • ) • • • W*(... Q^Xi)); (10)
the sum is over all possible partitions of the Q{ {x^ and the order in each
partition is taken over from the left hand side. The linked cluster pro-
perty is then expressed by the statement that

lim |F(« 1 ( i 1 ) . . . (3 f f l (xJ) | = 0 . (11)
\Xi—Xj\->oo

Let us now restrict the algebra 21 to be an algebra of quasilocal ele-
ments, i.e. we require that for each pair Q, Q' £ 21 that

lim [£(*), Q'] = 0
\X\—» oo

where Q (x) is understood to be Q translated to the point x. We note that
both the algebra 2($ and the algebra 2lj?r have this property of quasi-
locality as a result of the commutation relations (1) and the fact that
general elements of these algebras are constructed from fields smeared
out with test functions which decrease for large distances. We next have
the result of BORCHERS, HAAG and SCHROER [8];

Theorem 1. All pure states W(Q) over an algebra 21 of quasilocal
elements have the linked cluster property.

The above authors deduce this result by proving what is in essence a
generalization of SCHUR'S lemma. They prove, if a sequence of operators
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Qn £ 21 has the property that

lim [Qn, A] = 0 for all J. £ 2t
ft—> OO

then for every vector ip in an irreducible representation of St.

lim
n-

(v>9 Aw)
V(w,w)

f\

Details of the proof are given in the reference quoted [8].

Thus it is possible to conclude from Theorem 1 that pure states over
31$ and 21^ have the linked cluster property. Let us consider in more detail
the consequences of the linked cluster property for a state W<r>(Q) over
Sl0. For this purpose we consider the value of W&(Q) for a particular

Q1 = cp+ fa) cp+ {x2) cp {x2) cp (xA) .

If the sets of points (xv xs) and (x2, x^) are moved far apart the observable
Q1 factors into the product of two observables, i.e. elements of 31$, and if
Wo {Q) has the linked cluster property we then find that

lim I W(g (cp+ (Xj) <p+ (x2 + x)q> {x%) cp (x^ + x)) —

-Wv((P
+(x1)<p(x3))WC)((p

+(x2 + x)(p(xt-{-x))\==0.

Similarly we may conclude that

lirn^ \WQ(<p+(x^ cp+(x2 + x) cp(x3 + x) (p{x^) —

- Weiy+ixJ q>(xj) W(9{cp+{x2 + x) <p(xz + x))\ - 0 .

However in the case that the sets of points (xv x2) and (xz, x±) are moved
far apart it is not possible to conclude, that

lirn^ IWofo+iXi) cp+(x2) (p(xs + a;) cp{x± + x)) —

- W^cp+ixJ <p+(x2)) W0(<p(xz + x) (p(a?4 + x))\ = 0

because W® (Q) is only defined for Q £ 31$ and neither cp+ (x^ cp+ (x2) nor
<p(xz) <p(x4) i s a n element of this algebra. There is also no reason, in
general, to believe that

^lim^ IWoifp+iz,) <p+(x2) <p(xs + x) <p(xi + x))\ = 0

and YANG [9] has called states for which this latter limit is non-zero
states with 'off-diagonal long range order'. We now wish to prove that
pure states W@ (Q) over 21$ have in general this property of off-diagonal
long range order and an additional factorization property. This latter
property ensures that a function f(xv x2), which is in general non-zero,
exists such that

^ | ^ ( ^ ( ^ i ) 9>+(a?a) V(xz + x) V(»4 + x)) —

— f+(xv x2) f(x3 + x,xA + x)\ = 0
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and we call states with this property, states with 'factorisable off-
diagonal long range order'. A general characterization of such states is as
follows. Consider sets of points {xir} and elements Qr({xir}) of the algebra
Qljr constructed algebraically from field operators having the points of
the sets as arguments and such that

Then a state WQ{Q) over 21$ is defined to have 'factorisable off-diagonal
long range order' if functions fr({xir}) exist such that

Urn I W^Q, (K» .. . Qn(K») - h (K» . . . /„(Kj)| = 0 (13)
and such that

The limit is understood to be the product of any series of translations
which move the clusters infinitely far apart. With this definition we have

Theorem 2. Pure states W&(Q) over 2l# have the ̂ ro^erty of lfactorisable
off-diagonal long range order'.

The proof of this theorem may be constructed in the following manner.
Because the algebra 21$ is a sub-algebra of the algebra 2ljr a state W® (Q)
over 21$ may be extended to a state W$? (Q) over 21 ̂  and generally this
extension may be made in an infinite number of ways. However the
extension theorem [10] tells us that a pure state over 2($ may be extended
to a pure state over Ql^r i.e. if W&(Q) is a pure state over 21$ then there
exists at least one pure state W&-(Q) over 21^, defined for all Q ^Ql^r,
such that

WG{Q)=W^(Q) if Q£%. (15)

Now applying Theorem 1 we may conclude that W& (Q) has the linked
cluster property. Thus as an example

lim IW& (y+ (xx) cp+ (x2) <p (x3 + x)(p (#4 + x)) —
|iC|->OO

- ^ ( ^ + K ) ?+M) W^((p(xs + x) <p(xi + x))\ = 0
from which we may, with the help of (15), conclude the validity of (12)
and further make the identification

f(xv x2) = W

The general property (13) follows, in a similar manner, from the fact that
W$?(Q) has the linked cluster property and we have the identification

/*(K})=HV(G,(K}))
of which (14) is a special case.

I t is to be noted that the extension of the pure state Wo {Q) to the
pure state W'& (Q) is not unique; there is a one-parameter family of pure
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states Wj? (Q) over 21^ which are extensions of W(p(Q). This non-
oc

uniqueness is due to the invariance of 2(# under the gauge transformation
(2) which ensures that the functions fj({Xj}) defined by (13) are deter-
mined only up to a phase. Thus if Q £ 21&• and if under the gauge trans-
formation (2)

Q-+Q' = QX

then from one extension W#r{Q) we may define another extension
W&r (Q) by the identification

<x

These states are, in general, inequivalent [3, 4]. If we construct from the
Wj? (Q) a mixed state W' & (Q) over 2(^ through the prescription

a
2*

0

it is in some ways possible to identify this state with W@(Q). In fact

Wr(Q)=W0(Q) if Q^o
= 0 if Q $ SI*,.

Although Theorem 1 tells us that all pure states over an algebra 21 of
quasilocal elements have the linked cluster property the converse state-
ment is not true. A state with the linked cluster property is not necessarily
pure. However the class of mixed states with this property is restricted
by a number of conditions [11]. If we consider a mixed state, given
generally by (8), with the normalization condition (9), we find

= / d/t(k) {WAQ&ix)) - Wk(Qi) Wk(Q2(x))}

d[t(k)dfi(l){W]c(Q1)-Wl(Q1)} x

Now by definition the states WjdQ) are pure and therefore have the
linked cluster property. Thus in order that W(Q) may also have this
property it is necessary that

Jim \fdfi(k)dfi(l){Wle(Q1)-Wl(Q1)}{Wk(Q2(x))-Wl(Q,(x))}\ = 0. (16)
\X\ - > oo

This condition immediately rules out the possibility that all the states
Wk{Q) are translationally invariant, because translational invariance
requires that
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and then choosing Q1= Q^iri (16) we would get the contradiction

J - wm)}2 = o .
Thus we have, for instance,

Theorem 3. A mixed state over 21^ possessing the linked cluster property
must be a mixture of pure states some of which are not translationally
invariant.

It should be noted that the mixed state may be translationally in-
variant even if the component pure states are not. Analysis of condition
(16) appears, in general, to be difficult and not much progress has been
made toward the exact characterization of the class of mixed states with
the linked cluster property.

The discussion contained in this section has been quite general but we
now turn our attention to a class of states which concretely demonstrates
most of the properties and features mentioned above.

4. Quasi free states

Quasi free states are examples of states WX(Q) over 21^ and are
defined in terms of the truncated states W%(Q) given by (10).

If
Qnm = <P+(Xl) • • • <P+(xn) Vfrn+l) • • • (pfan + m)

then the states are defined by setting

W*(QnJ = 0 for n + m^ 3 . (17)

We restrict our attention to translationally invariant states and introduce
the parametrization

(x)) = eje<* W*(<p+ (x)) = Qj e-<*

fa) <p(x2)) = Q{x1 — x2) W^cpix^cpix^) = a(x1—x2).

The linked cluster property follows if we assume that

lim p (x), a (x) = 0 .

For simplicity we consider the case a = 0 only which corresponds to
chosing a particular gauge for the field cp (x); by a suitable gauge trans-
formation the general case a =1= 0 may be obtained from this special case.
The simplicity of the quasi free states is that they are completely described
in terms of @0, Q (X) and a (x). In a recent paper [12] it was shown that this
class of states is the only possible class having the simple property of
being determined by a finite number of functions. To proceed further we
must now analyse the restrictions placed upon £0, Q(X) and a(x) by the
condition of positive definiteness.
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If we define
Qj= / fflx fo>+(*)/(*) + <p{x)g{x)}

it is clearly necessary that
Wx(QLQt)^O. (18)

What is not quite so evident is that this condition alone is enough to
ensure positive definiteness of the state. This statement is independent of
such assumptions as translational invariance and the linked cluster
property. However, as the proof is not very enlightening we do not
include it here. The advantage of assuming translational invariance and
the linked cluster property is that under these circumstances condition
(18) can be easily analysed. In fact we find that (18) is equivalent to

\g(v)\Kl + e(-?)) +
g(p)J+(p)$(p) + g+(p)J(p)e+(p)} ^ o

where the tilde denotes the Fourier transform. The necessary and suf-
ficient conditions ensuring the validity of this latter inequality are

e(p) ^ o (19)
and

f (P)2 = §(p) (1 + §(-p)) - \<?(P)\2 ^ 0 . (20)
We next turn our attention to the construction of the representations

of 2lj?r corresponding to the above ansatz. The functions §(p) and a(p)
must of course satisfy inequalities (19) and (20) and it is found that the
nature of the representations depends critically upon the value of f (p).
We consider two classes; class I corresponds to f (p) = 0 and class II
contains representations for which f(p) 4= 0.

Class I representations
These representations are constructed in terms of the Fock represen-

tation of operators aF(p) and aF (p), which satisfy the canonical commu-
tation relations

[aF(p), a£ (q)] = d(p — q) etc.,

in a Hilbert space $)F. We denote by | 0)^ the vacuum state, defined by

aF (p) I 0yF = 0 for all p.

If a(p) is the Fourier transform of <p(x) i.e. if

a(p) = f ddxe~ipxcp(x)

we then construct the representations by the identification
i

a{p) = e<«(»)(}/! + §(p) aF(p) + yq{p) a}(—p)) + Q* ^
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and

where

We have used the fact that f(p) = 0 by setting

From the above identification we see immediately that | 0)^ is cyclic,
with respect to the algebra 21^, in $)F. It also follows directly from the
irreducibility of the Fock representation that this class of representations
of Ql^r is also irreducible.

Representations of the above type were first used by BOGOLIXJBOV [1]
in his early work on the Bose gas. Since then they have been applied
extensively by many authors. We now consider the second class of
representations given by the quasi free states.

Class II representations

These representations are slightly more complicated than the previous
ones and in order to construct them we need the Fock representations of
two sets of operators aFi(p), aFi (p) and aFt{p), aFz(p) each satisfying the
canonical commutation relations. If S)Fi and $)Fz are the Hilbert spaces
in which these operators are represented then the class II representations
are defined in the direct product Hilbert space §, given by

§ = S>Fx ® $>F% .

The field operator is represented as

a(p) = e ^ \

® e<«<*>v(p) (aF2 (p) + 4 a ( -p) ) + e | i 0 i

and a+ (p) is given by Hermitian conjugation. The functions £ n (p) and
v (p) appearing in this formula are defined by

and

- f t . ) -

respectively. Now if | 0)^^ and | 0yPa are the vacuum states of the two
Fock representations it is found that the state | 0) defined by

I o> = I o>,,® I o>,,
is cyclic, with respect to the algebra 21^, in the space §.
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Class II representations are, in contrast to those of class I, reducible.
This is clearly demonstrated by remarking that b(p), defined by

b(p) = v(p) (aFi(p) + a}t(-p)) ®1 + 1®

along with its Hermitian conjugate b+ (p) commute with all operators of
the algebra 21 *? but, nevertheless, are not multiples of the identity. (It
might be remarked that b (p) and b+ (p) also provide a representation of
the canonical commutation relations but the significance of this is un-
clear).

As the above representations have the linked cluster property but
nevertheless are reducible we may deduce from Theorem 3 that they
contain irreducible representations which are not translationally in-
variant. This feature is now borne out by explicit calculation. In order
to reduce out the representations it suffices to note that the components
of a(p), a+(p) in $)Fz are, up to a phase, both equal to %(p) where

X(p) = v(p) (aFt(p) + <4%{r-p)) .

If we chose a representation of aFz(p), aF2(p) such that %(p) is diagonal
the representation of 21^ is then given as a direct integral of irreducible
representations. In each of these representations we have

a(p) = ei«(v)(yi + QU(p)aFx(p) + j/gn(p) a+J-p)) + Qx(p).

The states | 0H} defined by
aFx(P) I °x>= ° for all p

are cyclic, with respect to 21^, in Fock spaces $)F . It is to be noted
that the breaking of translational invariance is contained solely in the
term

eK(a)=<0*Ms)|0K>;
the truncated two point functions are still functions of the difference
variable e.g.

Q11{X1 — x2) = (O^cp+ixjyixz)] ()„) .

This completes our discussion of Class II representations. ARAKI and
WOODS [3], in considering the infinite free Bose gas with fixed density
distribution, gave an example of such a representation, corresponding
to the case a{x) — 0. Their discussion is mathematically more refined than
the above and they consider a number of interesting mathematical pro-
perties of the representation, which are also valid for a(x) 4= 0, and which
we have not mentioned.

To conclude our discussion of the quasi free states we mention one
point of interest which arises from the positive definiteness conditions
(19). These conditions were derived under the assumption (17) that the
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higher truncated functions vanished and in this case they were necessary
and sufficient to ensure positive definiteness of the representation. In the
general case, where (17) is not assumed, these conditions are still neces-
sary and we note that if f (p) = 0 this has the consequence that (17) must
also hold. This follows from the existence of destruction operators linear
in cp (x) and (p+ (y). This feature might be useful in the discussion of more
general representations because one could use % (p) as a small parameter.

We now turn our attention to the applications of the quasi free states.

5. Applications of the quasi free states

We now consider the states WX(Q), over 21^, as a set of trial states
and apply a variational principle to select the most suitable state for the
approximate description of the ground state of the Bose system. Corre-
sponding to the minimization of the ground state energy density we must,
in the present formalism, minimize the value of c, defined by (6). From
the condition

Wa(K) = 0

we calculate c to be given by

c = f d*p !(P
2 -n + Q0?(p)) Q(P) + Q0V(J>) nea(p) +

1 ( 2 1 >

We have introduced the mean density Q as

The value of c must now be minimized with respect to £(#>), ^(p)!, oc(p)
and £0, taking into account the positive definiteness conditions. The most
practical method of ensuring the validity of these inequalities is to
minimize with respect to the alternative real variables ]/Q(P), f(p), oc(p)
and £0. Using these variables we find as conditions for a minimum

= 2

Re (a(p) (QoV(p) + f (Pgf (p - g)a+(<?)))} = 0

and
dc

Qof(p) + QV(0) + f

<?)))} = 0
(22)

? ) g + ( ? ) ) ) = ()

fd*qV(p-q)d+(q))) = 0

Q F(0) +Jd*pV(p) (e(p) + Reff(p)) = 0 .
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From these conditions we may deduce that the absolute minimum of c is
reached when

f(p) = 0, lma(p) = 0 and a(p) = - ]/q{p) (1 + §{p)) . (23)

Thus we conclude that of the translationally invariant states contained in
the quasi free states a pure state of Class I yields the minimal value of c.
GIRARDEATJ and ARNOWITT [13] have earlier performed a variational
calculation to find the ground state of the Bose system and they used as
trial states those states contained in Class I. Although our ansatz is more
general the above calculation leads us immediately to the Class I states
and further consideration of conditions (22) leads us to the specific state
given by GIRARDEATT and ARNOWITT. We omit further details of this
calculation.

It is unfortunate that the above minimization procedure leads to
Class I states for it is well known that certain physical properties of the
interacting Bose system are not reflected by these states. This may be
demonstrated by considering the liquid structure factor 8 (p) (see for in-
stance [14]). This form factor is defined as the Fourier transform of S(x)
where

8{x-y) = W(<p+(x)<p(x)<p+(y)<p(y))-W(<p+(x)<p(x)) W(<p+(y)<p(y)) .

If we evaluate §(p) for the state W^Q) and use conditions (23) we find
that

where

and

Q(q-p) + j/gta) (1 + §{q)) j / § t e -

Now §! (p) and S2 (p) are both positive and we must therefore conclude
that

£ 0 for all p.

There are however good reasons to believe that in the general problem

lim S(p) = 0. (24)
|p|-*o

This condition, which is related to the phonon structure of the ground
state of the Bose system, can therefore never be fulfilled in the states under
consideration.

It might be added for completeness that the early work of BOGOLIU-

BOV does not suffer from this unfortunate feature, although BOGOLIUBOV

only considers states of Class I. This is due to further approximations
based upon the assumptions of low density and weak interaction. Under
such assumptions it may be argued that it is consistent to approximate c,
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as given by (21), to first order in Q (p) andcr (p). These arguments which are
well known lead eventually to an expression for the ground state energy
density eBi where

f(p)) Q{V) + Q f(p) Ue5(p)} + y e2f(0).

Minimization of sB, with respect to §(p) and &(p), taking into account the
positive definiteness conditions leads to the choice

To the same degree of approximation S(p) is replaced by SB(p), where

Substituting the value of Q(P) given by (25) we find

a form which is in agreement with (24). Although this model is very useful
it does give a higher value for the ground state energy density than that
obtained by the minimization procedure described at the beginning of
this section.

Finally we note that although the conditions of minimization ruled
out the Class II states it is still possible that the non-translationally
invariant pure states contained in these mixed states might lead to lower
values of c than that obtained with the Class I states. Non-translationally
invariant states of the above type have been considered by GROSS [2].

6. Summary and conclusion

In this paper we have discussed the problem of the many body Boson
system with the aid of mathematical methods which have found great use
in relativistic field theory. The successes in the analysis of asymptotic
behaviour in field theory follow essentially from the use of the locality
condition in configuration space and the spectrum conditions in momen-
tum space. In the many body problem an analogue of the locality condi-
tion is provided by the canonical commutation relations which are ex-
plicitly given. The spectrum conditions are however only given implicitly
and it therefore appears at the moment to be more difficult to analyse
long distance behaviour in the many body problem.

The information which one might hope to derive for the asymptotic
behaviour is firstly the validity of the linked cluster property and secondly
the rate in which the limits (11) defined by this property go to zero. The
question of the validity of the linked cluster property for observables is
closely related to the nature of the ground state of the system. We have
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pointed out that this property would hold if the representation of 21$
selected by the spectrum condition (6) were irreducible, but we also have
mentioned that irreducibility is not necessary to obtain this result. The
rate in which the limits (11) go to zero is related to the properties of the
low lying energy spectrum of the system and is less accessible to analysis.
One interesting feature which results for irreducible representations of
is the property of "factorisable off-diagonal long range order". This latter
property has previously found use [15] in approximate calculations of
supernuid and superconducting properties.

The only states characterisable by a finite number of functions which
are available for analysis of the many body problem are the quasi free
states. We have given the general definition of these states, summarized
their applications to the Bose system, and mentioned the difficulties
encountered in such applications. In contrast to the Fermi system, it
appears to be impossible to find a quasi free state which satisfactorily
reproduces the low lying spectrum of the interacting Bose system except
in the low density limit.

The author is indebted to Prof. R. HAAG for much helpful advice and many
critical discussions concerning the subject matter of this paper and to Prof. N. Hu-
GENHOLTZ for a number of informative discussions.
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