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Abstract. A certain class of non semi-simple Lie groups I8L(n, C) based on
SL(n9 C) is investigated. Its Lie algebra and invariants are determined. The connec-
tion between ISL(2, G) and the Poincare group is discussed.

Introduction

In recent time much attention has been paid to the problem of
extending relativistically the SU(6) supermultiplet theory which has been
proposed independently by many authors [1—3]. Such an extension
should have the property that the resulting invariance group contains
the Poincare group & as a subgroup and SU(6) as a "little group". The
latter assumption is motivated by the fact that SU(6) is supposed to
describe the spin as well as the S £7(3) internal degrees of freedom of the
elementary system.

One such relativistic extension** is the "inhomogeneous SL(6, (7)"
group [hereafter denoted I8L(6, C)]. It is built in complete analogy with
ISL(2, C) which is isomorphic to the covering group of the Poincare
group 0*. The group ISL(2, C) contains as a subgroup 8L{2, C) — the
group of 2 x 2 complex matrices with determinant 1 — which is iso-
morphic to the covering group of the proper Lorentz group. It contains
also an invariant Abelian subgroup, the translation group, which is the
additive group of 2 x 2 Hermitian matrices. Correspondingly the
ISL(6, C) group contains as a subgroup SL(6, C), the group of 6 x 6
complex matrices with determinant 1, which constitutes the "homo-
geneous part" of ISL(6, C). It also contains as an invariant Abelian
subgroup the 36 dimensional additive group of 6 x 6 Hermitian matrices.

* On leave from Universite de Marseille, Institut de Physique Theorique.
** The ISL(6, C) group has been proposed independently by B. SAKITA [1],

L. MICHEL (private communication), T. FULTON and J. WESS [4], and H. BACRY [5].
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Despite difficulties of interpretation, the 8UQ theory has had con-
siderable success, not only in classifying the baryons and mesons, but
also in relating form factors*. Moreover, many attractive results have
been derived from the I8L(6, G) group [7] and it should be interesting
to investigate it from a mathematical point of view.

In order to find the irreducible unitary representations of I8L(6, G)
one can either use global methods in analogy with WIGNEB/S procedure
for the Poincare group, or on can use purely infinitesimal methods, i.e.,
look for the Hermitian irreducible representations of the Lie algebra.
It is the purpose of this paper to give a suitable realization of the Lie
algebra of I8L(6, G) or, more generally, of I8L(n, G). Having given the
elements of the Lie algebra with their commutation relations, we deter-
mine all invariants of the group. This is done by generalizing the Pauli-
Lubansky vector W^ which for the Poincare group is the covariant spin
operator. In fact all invariants of I8L(n, G) are built from this generalized
spin operator and the generalized translation operator. Just as for the
Poincare group, the components of the generalized spin operator generate
the little groups. For I8L(6, G) there are 16 distinct little groups, one of
which of course is 8Ue. Although we mainly consider I8L(n, G) we
shall find some results also for IGL{n, G), i.e., the group where 8L(n, G)
is replaced by the full linear group GL(n, G). The cases I8L(6, G) and
I8L(2, G) are also considered in more detail.

1. Definition of the groups IGL(n, C) and ISL(n, C)
and their Lie algebras

The group IGL(n, C) is defined as follows: an element of IGL(n, G)
is a pair (A, b) where A is a non-singular n x n complex matrix and b is
a n x n Hermitian matrix. The multiplication law is

(Av bj (A2, b2) = (A,A2, \ + A,b2At) (1)

where A+ denotes the Hermitian conjugate of A. The group I8L(n, G)
is a subgroup of IGL(n, G) and is obtained by restricting the /l's to
unimodular matrices.

It readily follows from Eq. (1) that the matrices b form an invariant
Abelian subgroup (under addition). Its order is n2. The homogeneous parts
GL(n, G) and 8L(n9 G) are subgroups of order 2n2 and 2n2 — 2, respec-
tively.

Each matrix A can be put in an exponential form, namely

A = exp \Z (<4m + ifiEfi] (2)
U J

where oib
a and $\ are real coefficients and E% is the n x n matrix all

elements of which are zero except one; this element equals 1 and belongs

* See, for instance, [6]. This paper also contains references to other papers.
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to the aih row and the 6th column. The matrices E% and %E% generate
GL(n, C). The SL(n, C) group is generated by

fy% (3)
and by iE'b

a which are traceless matrices.
The unitary subgroup U(n) of GL(n, C) is generated by a set of n2

antihermitian matrices £a, for instance E% — E\ and i(Ef + Eb
a). Eq. (2)

can be written in the form

^ = exP \Z tt"L« + */*"£

where Aa and fia are real. The matrices Lx obey

L+ = -Lx. (5)

Correspondingly, the unimodular unitary group 8 U (n) is generated
by a set of n2 — 1 antihermitian traceless matrices Li} for instance

Let us examine the irreducible representations of 8L(n, C). Let Vn

be an n dimensional complex vector space and f a vector in Vn. An in-
finitesimal transformation

A= 1 + KLi+ 114*1,* (6)
transforms | into

f a = (ilf)a = Ia + #(L,)gf* + iitfrM? . (7)
Such a transformation defines the representation denoted D(n,\) which
is irreducible with respect to the subgroup SU(n). Three other represen-
tations of dimension n can be defined, namely

D(l,»): i'=(A+)-1i= i + VLtS-iptLtS (8)

whose vector components are written £̂ ,

D(n, 1): r - {AT)~H = f + A'if I + </*'Lf f (9)

with vector components £o,

D(l,»): r = yl*{=f + A'Xff-» /»
<£f| (10)

with vector components | a . Such a notation makes apparent the 8U(n)
structure. With respect to this subgroup D(n, 1) and D(l, n) are equi-
valent to the representation {n} of SU(n) and D(n, 1) and D(l,n) are
equivalent to the conjugate representation {n}. As it has been shown
elsewhere*, all irreducible representations of 8L(n, C) can be labelled by
two irreducible representations {p} and {q} of 8U(n) in the form D(p, q).
Moreover, one has the following rules

D(p, q) ® D{p', q') = D(p ®p',q® qf) .

* It is a simple generalization of what is done in the case of SL(6, C) in [8].
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For 8U(n), D(p, q) reduces to {p} ® {q}, the usual direct product of the
irreducible representations {p} and {q} of 8U(n).

In the special case of 8L(29 C) the numbers p and q are usually
replaced by the spin eigenvalues j and?'' with p = 2j + 1 and q = 2? + 1.
The vector space F2 is the well-known two-dimensional Weyl spinor space
corresponding to the representation D\ = D (2,1). By taking the direct

sum D\ © D i we set the four-dimensional Dirac spinor space.

It will appear useful to generalize the Dirac representation to the
8L (n, G) case. It is built from the sum of the two representations D(n, 1)
and D(l,n). From Eq. (6) and definition (8) the generators of 8L(n, C)
can be written in such a reducible representation in the form of 2n x2n
matrices

M4

L(

Ls

(11)

As it is well known, the generators of SL(n, C) belong to the adjoint
representation, namely D(n2 — 1, 1) © Z)(l, n2— 1) where {n2 — 1}
denotes the adjoint representation of SU(n) according to the rule

{n}®{n} = {l}®{n*-l}. (12)

It can easily be shown* that the I8L(n9 C) group has a very simple 2n
dimensional representation obtained by adding to the matrices (11)
the matrices representing the translation operators, namely

P =

where Lx are for instance those of Eq. (4). The Pa's generate obviously
an invariant Abelian subgroup and they belong to the {n} ® {n} represen-
tation of 8U(n) and to the D(n, n) representation of 8L(n, 0). It can
also readily be verified that the matrices Mi9 Nt and Pa generate
I8L(n, C). Obviously we could have chosen the representation D(n, n)
instead of D (n, n) for the translation operators Pa , a choice which is
actually suggested by Eq. (1).

The 2 n - dimensional representation that we have just defined suggests
the following choice of generators for IGL(n,C). The generators of the

* This was shown for n = 2 and n = 6 in [9].
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homogeneous group are E%, defined as before, and E^ where the dots mean
that we have to find the only non-vanishing element 1 in the 6th row and
ath column of the right-lower n xn matrix. Those of the translation group
can be denoted Pa^ whose non-vanishing element belongs to the ath

column and bth row of the left-lower n xn matrix. We get the following
commutation rules for IOL{n, C)

(13a)

(13b)

[< = 0 (13 c)

[m,Pei\ = -%Pi,i (13d)

[ 4 , Pc J = da
dPei (13e)

[P»i, Pcil = 0 • (13f)

If we are interested in the subgroup, ISL(n, C), we have to suppose

that 2J $a a n d 2J ̂ a a r e zero, but the commutation relations (13) are
a a

still valid.
In SL (n, C) there exists an invariant antisymmetric form of nth order

which is the well-known Levi-Civita-Ricci tensor eab'--f. Moreover, given
a set of n vectors belonging to the D (n, n) representation ( X ^ ^ , (X2)b^...
{Xn)fi we can define the following symmetric form

lt X 2 ) . . . Xn) = ^ • • • ^ • • • ; ( X 1 U ( X 2 ) i / j . . .{Xn)fr. (14)

Such a form will allow us to build the invariants of the group ISL(n, C).

2. The Poincare group

The Poincare group is well known to physicists in the form where the
transformations are realized on the four-dimensional space-time. Its Lie
algebra is spanned by the ten generators JM^", P^ (//, v = 0, 1, 2, 3) with
the commutation relations

r g M )
(15)

[M»v, Pe] = i{gveP» — g^Pv)

where </00= — g11^ — gr22= — ̂ 3 3= 1. It is also well known that this
Lie algebra has two invariants

p2 ^ pup
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where Wp = -^-sfire^MeXPv and eo l 23= 1- The vector W^, which is

generally called the Pauli-Lubansky polarization vector, is orthogonal
to PP;

W»Pfl = 0. (17)

Let us now see what is the correspondence between the elements

Mf", P" and the elements Ea
b, E\, Pa-b of the algebra of ISL{2, C) as de-

fined in Section 1. I t is easy to verify that we obtain the commutation
relations (15) by making the identifications

P3_ p . p .

In a unitary representation M^v and P** are Hermitian and therefore we

find the following hermiticity properties for Ebi Eb and Pab:

(<)+= 4

(4)+= < (19)
(Pab)+= Pba •

Now we want to construct the polarization vector Wab corresponding

to Wp. I t should be linear in the generators Eb, Eb and in Pab. Thus it
has the form

Wab=ocEC
aPcb+pElPa'c. (20)

By using the property that Wab commutes with Pc'd we find that a = fi
and we choose oc= (i = 1. The correspondence between W^ and Wab
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is the same as between P? and Pa\,, i.e.,

w2i
(21)

W=

What invariants can be built using the two vectors Po j and Wa j ? Since
they must be invariants with respect to SL(2, C) they must be sealars
for this group. The only scalar one can form from two vectors Aaj, and
Bcd is A {Aay ~Bea), according to Section 1. One easily verifies that

(22)

so that we get in this way all invariants of ISL(2, C) or 0> in a compact
form.

The little group belonging to a given momentum vector P^ is defined
as that subgroup of 0* which leaves P1* invariant. As is well known one
obtains four distinct little groups, namely SOZ if P" is timelike, the homo-
geneous Lorentz group L(l, 2) in case of spacelike P^, the two-dimensio-
nal Euclidean group E2 when P** is lightlike and finally L(l, 3) if P? is the
null vector. For the group ISL(29 C) we expect, of course, little groups
which should be the covering groups of 80z, L(l, 2) and E2. In fact the
little group belonging to the momentum matrix P == {Pa6*} is that
subgroup of 8L(2f C) which satisfies

=P. (23)

Since P is Hermitian it can be diagonalized and furthermore one can
always assume that the eigenvalues are ± m or 0 by applying a trans-
formation of SL(2, G). Therefore one sees that the little groups can be
classified with three numbers p, q, r, namely the number of eigenvalues + m,
—m and 0, respectively. Let us call the corresponding groups 8U(p>q;r).
Then one has the Table

det P

>o
<o

little group

8U(l,l;0) - £(1,2)
8U{19O;1)F*8U{O,1;1)~E%

SU(0,0;2)?*8L(2,C) ~ L(1,
Here ^ denotes isomorphic and ~ locally isomorphic.
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3. Invariants and little groups of ISL(n, C)

The generalization from I8L(2y C) to ISL(n, C) is straight-forward.
The vector

Wab = Ec
aPcb + E\pai (24)

commutes with all translation operators Ptd. Therefore, by forming
scalars of Wa& and Pcd we obviously obtain invariants of the whole group.
According to Section 1 we can construct n -f 1 scalars

A(Pab,Pci,...,Pgh)

A{Wah,Pci,...,Pgh)

A(Wab,Wa,Peh...,Pgh) (25)

A(Wab,Wcj,...,Wgh)

involving, respectively, n P's, (n — 1) P's and one W, . . . and so on up to
n W's. Due to the antisymmetry of the invariant tensor sab'"f and to the

constraints 2J Ea = 0, JJ Ba = 0 one finds that the second invariant in-
a a

volving one W is identically zero.
The little groups of ISL(n, C) are the subgroups of elements AP

which fulfil
ApPAt = P , (26)

where P is the matrix {Pab}- Ju s^ a s in t n e c a s e ISL(29 G) we may
assume that P is diagonal and that its eigenvalues are i m or 0. If P has
p eigenvalues +m, q eigenvalues — m and r eigenvalues 0 we denote the
corresponding little group by S U(p, q; r). For p — n, q — r — Q we get
8 U (n) as a little group. In this case we can check that the number n of
invariants equals the number of generators minus twice the number of
commuting operators which are not invariants*.

In the case of I8L(6, C) we get 16 non-isomorphic little groups.
Clearly 8U(6) corresponds to the case p= 6,q = r = Q. This can also be
seen in a formal way by replacing Pa-b by mdai in the commutation
relations for W^:

[Wob,W.i\=WebPai-WaiPeb. (27)

Then the W^ satisfy the commutation relations of SU(6) if dotted
indices are understood to be contravariant indices of this group.

A vector belonging to the representation D (6, 6) splits into {1} © {35}
with respect to $£7(6). Such a decomposition generalizes that of a four
vector into a scalar and a spatial vector in Minkowski space. I t might be
interesting to consider the usual space-time as embedded in a 36-dimen-

* This formula is implicitly given in Ref. [10], p. 52.
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sional space; in such a case, many questions arise: what is the topology
of the generalized light cone (which is now of the 6th order but reduces in
the "Minkowski subspace" to a quadratic cone) ?

Such an investigation could lead to a new definition of the 81/(6, C)
involving the Minkowski space and the eightfold way description of inter-
nal symmetry rather than one based on the covering group which is not
very familiar to physicists.
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