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Divergence of Perturbation Theory for Bosons
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Abstract. Perturbation theory is studied in two dimensional space-time. There
all non-derivative boson self-interactions are renormalizable and in each order of
perturbation theory there are no divergences, that is all renormalizations are finite
in perturbation theory. Thus the unrenormalized perturbation series may be

oo

studied and it is shown that any interaction of the general form H2 (x) = A £ a5 X
?' = 3

X : (p {x)j:, a$ ^ 0 leads to Green's functions which are not analytic in A at A = 0. This
result holds in momentum space at a large set of points, enough to show that the
Green's functions are not distributions in the momenta which are analytic in A at
A = 0. Furthermore the proper self energy and the two-particle scattering amplitude
are shown not to be analytic in A at A = 0 for certain momenta on or below the bare
mass shell. In the course of this analysis we use the integral representations for
Feynman graphs to derive a minorization of the form \I(pl9. . ., pe)\ > A Bnior the
contribution from all nth order connected graphs in a theory with an interaction of

the form Hj(x) = A £ a^\ <p(x)j:. Then the constants A and B depend only on
? = 3

the momenta pi9 and not on the structure of a particular graph.

I. Introduction

It is interesting to study perturbation theory for self interacting
bosons to discover whether it can be used as a tool to prove the existence
of solutions to the field equations. The problem is to expand as a power
series in the coupling constant either the vacuum expectation values of
the (time-ordered) Heisenberg fields, the ^-matrix elements, or the
kernels which occur in the numerator and denominator of the Green's
functions or ^-matrix elements, and then to determine whether the
expansion in question defines an analytic function of the coupling
constant at zero coupling. If the answer is no, then some approximation
scheme more sophisticated than perturbation theory must be used to
investigate solutions of the field equations.

In order to work in the interaction picture and remain completely
within a Hilbert space formalism, Haag's theorem tells us that it is
necessary to study an approximate theory. This follows from the fact
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that we want to write the interaction Hamiltonian Hj as the integral
of an energy density Hi (x) so that

xQ = 0

where Hj(x) is a local function of a free field. It then follows that Hj
cannot be an operator in the Fock representation unless it annihilates
the no-particle state @0. Since H£ given above is invariant under space
translations, and since <P0 is also translation invariant, we see that

But Hj 0O 4= 0 for all interactions which are normally studied, for
instance HT(x) — X: cp (#)4:, so we see that Hx cannot be applied to the
Fock vacuum. Hence we can use the interaction representation legitimate-
ly only if we study an approximate HT which is not translation invariant.
By the same argument, each term in the sum

•fdyl9...,i

is infinite, and this is the so-called "self energy of the bare vacuum".
On the other hand, if we try to use the above Hi and make a formal

expansion in X, then the vacuum self energy occurs as a multiplicative
factor in both the numerator and the denominator of the formal expan-
sion for the time-ordered vacuum expectation values of the Heisenberg
fields. (It also factors from the $-matrix elements which are related to the
expectation values of the fields by L. S. Z.) In fact the formal Gell-Mann-
Low expansions [1]

) , . . . , (p{xe)ip0)

y»...fdyn (1)f
j , TH1 (yt),. . ., #/(s/n) $) dyt, . . ., dyn

can be expressed by a formal division of the denominator and then by
truncation as

, . . ., <p(x6)ipo)
T = JT \ x

rc = o n' (2)

5£0, T q>!(xj)9..., (p!(x6) HjiyJ,..., Hj(yn) &0)
T dyl9..., dyn .

We will take the expansion (2) as a starting point and ask whether it
defines a function of X which is analytic at X = 0.

Even though expansion (2) was heuristically derived, if the sum does
converge, it is a good candidate for a field theory. In fact in every order
of perturbation theory, it satisfies Lorentz invariance and locality, and
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the time-ordered two point function satisfies the spectral condition. The
last statement means that the Fourier transform is an analytic function in
momentum space for all p2 < m2. (This follows as an immediate conse-
quence of the fact that in (A.5), V > 0 for p2 < m2.) The corresponding
result for the w-point Green's function cannot be proved since "anomalous
thresholds" occur.

This fact that the two point function satisfies the spectral condition
in each order of perturbation theory can be turned round to make
plausible the fact that the perturbation expansion does not converge.
This argument is reminiscent of, but different from, an argument of
DYSON [2]. We use the fact that BAYM [3] has shown that the X q?
theory can have no state of lowest energy, and hence does not satisfy the
spectral condition. In two dimensional space-time it is straightforward
to extend Baym's proof to any self interaction of degree three, or higher,
which formally is unbounded below. That is, no theory with an inter-
action X <p2k + 3 for h ^ 0, or X cp2k for k ^ 2 and X < 0 will satisfy the
spectral condition. Thus in general no theory with an interaction of
degree three or more and with a negative coupling constant will satisfy
the spectral condition. However, we noted that the two point function
satisfies the spectral condition in every order of perturbation theory.
Hence, if we use the perturbation expansion for an arbitrarily small
negative value of X, we are trying to approximate a solution which will
not obey the spectral condition by an approximate solution which does
obey the spectral condition in every order. This makes it reasonable that
the perturbation expansion (2) will never converge for X < 0 and thus
will never be analytic at zero coupling for an interaction of degree three
or higher*.

In this note we will show that this plausibility argument is in fact
borne out. We will see how to generalize the classic results of HTJBST,

THIRBXNG and PETERMANN [4—6] to deal with an extremely large class of
interactions in two-dimensional space-time. Furthermore, we will see
how to analyze the complete set of Green's functions off the mass shell,
and it will turn out that none of the Green's functions define distributions
in the momenta which are analytic in the coupling constant X at X = 0.
In the case of the two point function for the X cp3 theory, this proof will
essentially reduce to the proof in Reference [5] which capitalizes on the
fact that for certain momenta the contributions from all graphs of a
given order add coherently. In order to deal with the general case, we

* Indeed a quadratic Lagrangian will or will not have a lowest energy state
depending on whether or not the mass matrix (including the bare mass terms) is
positive. It is just at the value of the coupling constant which changes positivity of
the mass matrix that the exact solution is singular as a function of the coupling
constant.

9*
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use the integral representations for FEYNMAN graphs [22—30] which
were not mechanized at the time when HURST and THIRRING undertook
their original investigations.

II. Basic approach

In order to study the perturbation theory in a concrete case, we must
further specify the interaction Hi and the mass of the interaction picture
field cpx which appear in expansion (2). Aside from the particular choice
of a theory (degree of interaction) one must choose between using the
unrenormalized or the renormalized perturbation theory. Since in two
dimensional space-time all renormalizations are finite in every order of
perturbation theory, either of these two methods might be considered.

1. Unrenormalized theory

If we are interested, for example, in an interaction of the form X : <pk :,
then we would set

H0(x) = ~ : <fi(x) m2 + (V Vl(x)f + (30 cptfix): ,

where cpz is a free field of mass m, the bare mass, and X is the bare
coupling constant. Then each Feynman graph will occur with the mass m
on each line and the power series expansion is made in X. The two point
function will have a delta function at the mass pt(X) which defines the
renormalized (physical) mass. Then we set

ju2(X)^m2+ dm2{X)

and denote ft2 (X) and d m2 (X) functions of X. If the time ordered two
point function of cp is denoted 0 (p2) and the free field time ordered two
point function of cpj is denoted G0(p

2), then we define the "proper self
energy" IT by the equation

G (p2). (3)

It then follows that on the physical mass shell where p2 = [JL2 (X), we have

); X) = ^f- (p* - m») = ^f- d m*{X). (4)

2. Renormalized theory

In the renormalized theory of the same interaction we take the
physical mass ^ a s a given constant, independent of X. That is we require
that the two point function have a delta function at p2 = /^2. The Hamil-
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tonian is then taken to be [7]

Hj(x) = g(\ -L): <P\:-\A : cpj: +±B : (V 9lf + (do9l)* +

+ / M
2(<p I)

2 : H0(x) = i - : p* tf + (V <ptf + (90 cptf : ,

where cpT is a free field of mass ^. Then each Feynman graph will occur
with a mass /bt on every line, and the power series expansion is made in g.
In order to ensure that the delta function occurs at p2 = /u2, A is chosen
as a function of g so that it just compensates the mass shift made by the
other interaction terms. Two other conditions are given to determine L
and B order by order as functions of g.

Hence if we denote by IIR the proper self energy which is calculated in
the renormalized theory, we have by definition that on the physical mass
shell p2 = ft2, in place of (4)

nB(f) = o. (5)

In this case the bare mass is regarded as depending on the coupling
constant, and we have the relation

(i2 = m2(g) + dm2(g) . (6)

If dm2 is infinite, then only the renormalized perturbation theory can
be used for calculations. Even though dm2 might be finite, if it is infinite
in any order of perturbation theory, we must also use the renormalized
expansion. However, in two dimensional space-time, dm2 is finite in
every order of perturbation theory. Thus both methods may be tried. On
the other hand, there is no closed expression known at present for the nth

order term in the renormalized expansion which includes the development
of the renormalization constants in g. Hence in most of what follows we
will discuss the unrenormalized expansion. A few comments about the
renormalized expansion appear in Section VI.

III. Review of previous papers

A number of authors have studied the convergence of perturbation
series in approximate field theories of various forms.

1. The classical equation ( • + m2) cp = —X <pk has been treated by
JORGENS, BROWDER and SEGAL [8—11]. In two and three dimensional
space-time, the perturbation theory converges and global existence
theorems are given for X ^ 0 and h = 2n. In four dimensional space-time,
this result follows for X ^ 0, k = 4. In two and four dimensions these just
correspond to what in the quantum case would be the renormalizable
theories with positive energy. However, in three dimensional space-time,
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Dyson's criteria for renormalizability [12, 13] imply that only for k ^ 6
is X (pk renormalizable. On the other hand Segal's proof holds for all X cp2k.

2. Other authors have considered approximate, but quantized
theories [14—17]. The approximations are introduced either to make the
Hamiltonian an operator in the Fock representation [14—17] or to make
integrations over time converge [15—17]. After the introduction of these
approximations (including time switching of the interaction) it is not
possible to show that expansion (1) factors to give (2). This factorization
is assumed in the non-local interaction [14]. EDWARDS [15] worked in the
Schwinger functional formulation and introduced the Gaussian transform
to analyze the analyticity of the two point function at X = 0. While
much of this argument is heuristic, this method was utilized by FRANK

[16] in his study of the vacuum-vacuum matrix element of the 8-matrix,
S00(X). He showed that for an approximate trilinear interaction, S00(X) is
not analytic at X = 0. CAIANIELLO et al. [17] study the functions which
appear in both the numerator and denominator of (1), again in an
approximate X <p4 theory. However, once the approximation is introduced,
it is not possible to show that the non-analytic behavior of the expansion
does not factor out of the physical ratio which appears in (1). Moreover,
it is possible that when the approximations are removed, the higher order
graphs decrease in size fast enough to restore analyticity.

3. That this is not the case for the two point function in the fully
relativistic expansion of the X cpz theory was shown in the classical work
of HURST, THIRRHSTG and PETERMANN [4—6]. They demonstrated that
the two point function was not analytic in the coupling constant at zero
coupling. However, since they worked in four dimensional space-time it
was necessary to carry out the field strength and mass renormalizations.
All the counter-terms were not included in THIRRING'S work, and an
explicit form for the nth order term in the fully renormalized expansion
has not yet been given.

IV. Unrenormalized theory

Let us introduce the following notation:

= / exp UJj pj xA (ip0, T 99 fo), . . ., cp(xe) y)0)
T dxv . . ., dx

where we take for (ip0, T (p{x^), . . ., <p(xe) ipo)
T the Gell-Mann-Low

expansion (2) for the truncated vacuum expectation values of a product
of time-ordered Heisenberg picture fields. Note that in perturbation
theory truncation just corresponds to taking the connected part of an
amplitude, that is to summing connected graphs.
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In momentum space this gives

connected
graphs

where I is normalized as in Appendix A.
Note that I(pv . . ., pe) will always stand for a contribution which

arises from a Feynman graph as opposed to the more common Feynman
diagrams. The difference between a graph and a diagram is that a graph
has internal vertices which are labeled in a particular way. A diagram is
the sum of all graphs with different internal labelings which correspond
to the same physical process. The contribution from a diagram is related
to that from a corresponding graph by a numerical factor. For nth order
connected diagrams this factor is just n\ A direct expansion of the inte-
grand in (2) gives rise to a sum of contributions from graphs. Expressed

in terms of diagrams, this would just cancel the —j- factor in front of the
integral in (2). We will, however, stick with graphs throughout.

We will consider Hamiltonians in which all the terms enter with the
same sign. Thus

HI(x) = x£aj:(p(xy:, a,^0. (8)

We start the sum at j = 3 to exclude any mass renormalization (; = 2
term) from the equation. Thus any such term is put in the bare mass. The
absence of a j — 1 term insures us that the current J(x) derived from
HI(x) has zero vacuum expectation value. In certain cases we will want
to insist that HT(x) include some non-zero term for j ^ 4. In this case
we say the Hamiltonian is of the form (8').

In three or more dimensional space-time, Hj(x) will define a local
field only if the sum over j is finite [18]. However, in two dimensional
space-time infinite sums are allowed, and we can consider any Hj(x)
which corresponds to a set of % such that

defines an entire function of exponential type. Thus the interaction can
be an entire function of the free field [19].

Definition-. A set of e vectors {pv . . ., pe} has property 8 if

i l
2) The sum of any proper subset of the p i is a space-like vector.
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Remarks:
1) By general arguments, if G(pv . . ., pe\ X) exists at a momentum

point with property 8, then for fixed X it is analytic there in the momenta.
2) There are many points with property 8, since if pv . . ., pe-± is a

e-l

Jost point, then {pv . . ., ^ - i » — £ Pj} h a s property 8. {pv . . ., pe^}
? = i
e - l / e-l \ 2

is a Jost point if for all ^ ^ 0, 27 % + 0, I £ ai Pi I < 0. In other
t = l U = l /

words, the convex cone spanned by the vectors pv . . ., pe~x is a space-like
region.

Theorem 1: Let{p1,. . ., pe} have property 8 and consider G(pv . . ., pe\X)
in a theory with an interaction of the form (8). Then G(ph . . ., pe; X)
defined by expansion (7) is not analytic in Xat A = 0.

Remark: In the unrenormalized series, we recall that all renormaliza-
tions are finite in every order of perturbation theory.

Definition: Let 5) (0) be infinitely differentiable functions with support
inO.

Theorem 2: Let S denote the set of points with property 8. Let / > 0,
/£§>(#)• Then
{O d) (/, X) = / G(Pv . . ., pe; X) f (Pl, . . ., pe) 8 (Pl + • • • + pe) dPl... dpe

is not analytic in Xat X — 0. Hence G 8 is not a distribution in® (8)' analytic
in X at X — 0.

Outline of Proof of Theorems 1 and 2: We study G(p1, . . ., pe; X) at-
momenta (pv . . ., pe) which have property S. Then we find,

1. In a given order of perturbation theory, that is for a fixed number
n of internal vertices, and for an interaction of type (8), all graphs con-
tribute to G with the same phase. Hence it is sufficient to consider graphs
from only one term in the interaction, X (pk for k ^ 3.

2. We give a generous lower bound on the number of connected (in
fact one particle irreducible) graphs in nih order. For n greater than e this
number is greater than

nl(n — e+l)\l.
3. We give a lower bound on the magnitude of the contribution from

any connected graph, in the form of the following lemma.
Critical Lemma: Let I{pv . . ., pe) be the integral corresponding to a

connected Feynman graph in a theory given by

Let pl9 . . ., pe have property 8. Then there exist strictly positive constants A
and B which depend only on pv . . ., pe and such that

\I(p1,..,pe)\>AB»,
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where n is the order of the graph (number of internal vertices). As the
momenta vary over a compact set of points with property 8, A and B vary
over compact intervals on the positive real line.

Note that this is a stronger statement than what is needed to prove
the theorems, where it is sufficient to know the critical lemma in the case
that only one % 4= 0, f ^ 3. However, we get the same type of uniform
minorization of Q non-zero interaction terms.

Proof of Theorem 1.
We now combine steps 1, 2 and 3 to show that for momenta with

property 8 the Gell-Mann-Low expansion (2) does not define an analytic
function of X at X = 0. We can write (7) as

G{pv . . , ^ ; 2 ) = D ^ ^ani
n = 0

where

D = D(Pv . . . , p.) = n -j^r y , _ m 2 + . £

and

wth order
connected

graphs

Then for momenta with property 8 and n> ewe know that

\an\ > n\ (n — e + 1)!! ABn

from 1, 2 and 3 above. If G defines a function analytic in X at X = 0,
then in some neighborhood of X = 0 the series converges absolutely, that

< oo. Howeveri* Z n\

S n\ A ZJ \XB\n(n-e+ 1)!!.

which diverges for all X 4= 0. Thus G is not analytic at X = 0.
We now proceed to prove 1—3.
1. This follows from the specific form of the Feynman integrals. Note

that the contribution I(pv . . ., pe) from a particular graph has been
normalized in (7) so that all phase factors are included in I(pv . . ., pe).
From the integral representation (A.5) for / and the fact that D > 0,
V > 0 for momenta pv . . ., pe with property 8 we see that / has a phase

_ i ( _ l ) n - i ( i ) . 77 (sgnA,),
internal
vertices

where Xj is the coupling constant at vertex j . Since for all interactions
of type (8), Xj = Xa5 and a^ ^ 0, we see that (i7sgn Xj) = (sgn X)n.
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Hence this is constant in a given order. Thus for fixed n and e, interactions
of type 8 yield contributions to 0 from / which have constant phase.

2. We want to give a lower bound on the number of terms in the
Hafnian expansion of

Fig. 1. Arrangement of in-
ternal vertices

(#0> T <Pl(Xl) ' ' • <Pl(xe) Hl(Vl) ' • • #/(&») ^o)^ >

where Hj — h: <pj : and & 2̂  3. Such a lower bound then clearly gives a
lower bound on the number of graphs from any Hjoi type (8). In fact we
will not only give a bound on the number of connected graphs, but we

will give an estimate on the number of graphs
without one particle singularities. Each graph can
be represented by n internal vertices to each of
which k 2̂  3 lines are attached, and e external ver-
tices to each of which exactly one line is attached.
No lines start and end at the same vertex since
the interaction is Wick ordered.

Let n > e and arrange the internal vertices
on a circle. There are (n — 1)! ways to permute
the points on the circle. Use two lines from each
interaction vertex to form the ring (see Fig. 1).

Attach the external lines to e distinct vertices. These can be chosen in

( j ways. This leaves (n — e) internal vertices with at least one more
unconnected line. These can be connected in (n — e + 1)!! ways. Thus
there are more than (n — 1)! I I (n — e + 1)!! > n\ (n — e + 1)!!

one particle irreducible graphs in nth order.
3. Proof of the Critical LemTna: The proof of the lemma is based on

three estimates:
3.1. We take the external momenta to have specially chosen Eucli-

dean values, so we can use the Nakanishi path theorem (see Appendix A.8).
This gives an absolute upper bound on the terms 2J -—- which occur in

h u

V of the Nakanishi form of the integral representation (A.6).
3.2. We take the external momenta to have property 8. Then it is

possible to use the estimate 3.1 to show that there are positive constants
Cx and Dx such that

1
L y * fcJ

so this factor can be taken outside the integral. Furthermore, Ct and
Dx remain strictly positive as pv . . ., pe varies over a compact set of
momenta with property 8.

3.3. Now by going back to the Symanzik form of the representation
and using the connection of D (a) with the skeleton of the graph, we can
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estimate the remaining integral by the lower bound

.doc\ 6(1 — 27I/a) C2D%
~a~) D(cc) > n\ '

for positive constants C2, D2.
3.4. Combining estimates 3.2 and 3.3 with formula (A.6) gives the

minorization

\HPi,...,P.)\ >(n-2)\CsD$ min

6(1— 27I/a)

n\

>ABn.

which is the desired result. Thus we need only derive 3.1—3.3.

3.1. Let ̂ = y z T T ' w n e r e P2 = !>*= 1,2, . . . , e —1 and let £>e = — rap.

Then ^ are Euclidean, parallel, and satisfy -— m - ̂  ( 2J Pi\ = m 2 -
(e —-1) I proper I

x subset '
x subset

Hence by the Nakanishi path theorem (Appendix A.8) we deduce that
V ^ 0 and hence

since T^ ̂  0, and U ̂  0*.
3.2. If the momenta ^ have property 8, then

It then follows that
i£h

m2< F<m2- | -

and L varies over a compact set as pt varies over a compact set of points
with property 8.

Thus
n-l

where Cv Dx depend on p{ but vary over a compact interval as pi varies
over a compact set with property S.

* It is possible to avoid using the Nakanishi path theorem at this point by
1

giving a direct estimate on
V — is min

when the parameters a are restricted to the

subregion 2N < oc{ < 3N, i = 2, 3, . . . , N. Then this estimate would be combined
with 3.3. However, it seems necessary to employ the theorem later to pass to the
mass shell. Hence to avoid making these separate types of estimates we will now
introduce the path theorem.
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3.3. We wish to estimate

2N

Now we use the fact that D(a) caD be expressed as the sum of the a-
products corresponding to all skeletons of the graph, each counted
once (see Appendix A). There are at most Q™'1 skeletons in an nth order
connected graph, and each skeleton contains exactly (n — 1) lines. Thus
we have an upper bound onD(a) in the region

2N<<xi <3iV i = 2, 3, . . . , # .

In this region I < GC1<2 and

D(oc)<

1
or

Hence
oo

c
D(oc)

Since N and nn~x < c en n!, we have

OO

J LZ
This completes the proof of the Critical Lemma and Theorem 1.

Proof of Theorem 2. In order to prove Theorem 2, we note that in the
proof of the Critical Lemma, only the constants Oj and D1 depend on the
external momenta. Furthermore, as pt vary over the compact set{supp/}
of points with property 8, then G^ and D1 vary over a compact interval of
the positive real line. Hence take for Cx and Dt their minimum values on
this interval so that

\Hp1,...,pt)\>AB"

for all {pi} £ supp/, and all n.
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Hence

I{pv...,pe)dp1...dpe.
conn, n^

order graphs

Since / ^ 0 and pf < m2 in supp/, we have for

/

e

f(Pv • • <> *>•) &(Pi + • • ' + Pa) g - ( 2

x i 7 I(pv...,pe)dp1...dpe,
conn, n^ order

that
1

supp /
]•[/ f(Pl,--->Pe)d(Pl+

Hence
Xnan

n\ > E

x ABn{n-e+l)\\n\, if n>e,

Xnan

n\ diverges for all 1 4= 0.

This completes the proof of Theorem 2.

V. Passage to the mass shell and the scattering amplitude

The quantities of interest on the mass shell are the amputated vacuum
expectation values of time-ordered products of field operators. That is,
they are the Green's functions with the external lines removed. The
momenta we considered in the last section were all points {p^ with
property S. This implies that each momentum variable pt is space-like

e

and so all these points lie off the mass shell defined by 2J Pi = 0>

The difficulty in generalizing the above results comes from the
possibility that thresholds can occur in the momentum variables. These
singularities correspond to the production of real intermediate states.
Such thresholds can destroy the coherence of terms which contribute to
the nth order amplitude and thus rule out the possibility of summing
the minorizations of individual graphs to find a total minorization of the
nth order amplitude. In order to pass to the mass shell and preserve the
essential features in the proof of Theorems 1 and 2, we consider partial
amplitudes in which the threshold singularities do not occur on the mass
sheU.
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1. Proper self energy part

The proper self energy part II(p) is just the one particle irreducible
contribution to the two-point function. It is related to the propagator G
and the free-particle propagator Go by the unrenormalized equation (3).
Since intermediate states in 77 have at least two particles, we will be able
to apply the path theorem to these graphs with threshold (2 m)2 to derive

Theorem 3: LetII(pv p2, X) be the proper self energy part in any theory
of type 8. Let the external momenta satisfy

Pi + P2=0
pi < 4m2. (9)

Thzn II {pv 2>2> ty is not analytic in I at X •=. 0.
// f(pv p2) is a positive test function with compact support in the set

of momenta satisfying (9), then

F(f, X) = fll (pv p2i X) d(Pl + p2) dPl dp2

is not analytic at X = 0. In other words, II d is not a distribution in any
region below the two particle threshold., which is analytic at X = 0.

Proof: We just extend to proof of Theorems 1 and 2. First we note
that we will see that for momenta satisfying px + p2= 0 and pf < 4 m2

we have V > 0. Hence in a given order all graphs contribute coherently.
Secondly, we note that the number of graphs estimated in the proof of
Theorem 1 actually gave a lower bound on the number of one particle
irreducible graphs. Hence this estimate can be used for the proper self
energy part to show that there are more than

nl(n-l)\\
graphs in ntli order. Thirdly, we now extend the Critical Lemma to hold
for the external momenta in question in the case of proper self energy
graphs. Let p1 = 2p, p2 = —2p, p* = m2. Then pi = pi = (2m)2, px +
-f p2 = 0. Since the momenta are parallel, Euclidean and satisfy the
threshold condition for two particle intermediate states, we can apply the
Nakanishi path theorem (Appendix A.8) to deduce that

F > 0 .

Hence -JJ- < ~r independently of the momenta. There is no sum over h
since only one partition of proper self energy graphs can be made. From
this we see that w i,

F = m 2 - ^ l r ^ 1 ) 2 > m 2 ^ T ^ ,

or V > 0 if pi < 4 m2. Furthermore if pi < 0 we know the theorem is
true as a special case of the Critical Lemma. For pi > 0 we have V < m2 or

1 n-l i n

T > m 2 "^ •
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will be sufficient to complete the proof of the

Critical Lemma. The proof of the theorem now follows exactly the proofs
of Theorems 1 and 2.

2. Two particle scattering amplitude

The four momenta pv . . ., p± involved in the two particle scattering
amplitude are restricted on the mass shell by

S Pi = o
* = * (10)

p% — <m2.

The second condition implies \(pi9 p$)\ ^ m2 which in turn leads to
either

fe + ^ ) 2 ^ 4 m 2 or (Pi + p^^O. (11)

We say that a point lies on or below the mass shell if in (10) the relation
p% — m2 is replaced by p% ̂  m2.

Let us consider the subset 31 of points which satisfy:

9

This includes a certain subset of the mass shell. The two particle scatter-
ing amplitude M will be defined as

M(Pl,. .., Pi; X) = £ - £ £ I(Pl, p2> pB, Pi), (12)
n = 0 * nfa order

connected
graphs

and let MW(pv . . ., p±\ X) be the two particle irreducible contribution
to M(pv . . ., £>4; A). One would then expect that MW(p; X) for fixed
A is analytic in the momenta at points with property 3Z. This in fact
does follow in each order of perturbation theory so we can prove

Theorem 4: Consider MW(ply p2, pSJ p±\ X) in any theory of type (8')
with the momenta pt satisfying property 91. Then M@l is not analytic
in A at A = 0. If f(pv . . ., p^ is a positive test function with compact
in ©(2Z)' support in the set of points with property 9Z, then

(M(2)d)(f,X) = jMm(Pn,...,Pi)dfa + • • • + Pi)f(Pl,...,Pi)dPl... dPi

is not analytic at A = 0. Hence (M(2> 6) does not define a distribution
in §> (91)' which is analytic in A at A = 0.
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Proof: We wish to extend the proofs of Theorems 1—2 to cover the
case of the external momenta with property 21. To do this we must give a
lower bound on the number of two particle irreducible graphs in the nth

oredr. Secondly, we must get bounds for V to show that it does not
vanish in the range of integration of the Feynman parameters. Hence all
graphs in a given order will be coherent. Lastly we will show how to get a
bound on F to prove the Critical Lemma for this case.

Take any graph of the form used in the proof of Theorem 1, but now
with four external lines and assume at least a four point interaction at
each vertex (Fig. 2 a).

i

w
(b)

Fig. 3 a and b. Partitions of the two partiel
scattering amplitude

Fig. 2 a and b. Certain two particle irreducible
contributions to the two particle scattering

amplitude

By making the connections shown in Fig. 2b, we end up with a two
particle irreducible graph. This does not involve any of the remaining
(n — 4) vertices so we still have more than

n\ (w —3)!!
two particle irreducible graphs in nth order if n > 4. In order to apply
the path theorem, we choose

Pi = 3m p, p2 = —3m p, p3 = p± = 0 , p* = 1 .

Then if W\ corresponds to a division of the graph in two parts as shown
in Fig. 3 a, and Wi3- corresponds to the division in Fig. 3 b, we have for
this choice of momenta

This gives

u
With all other choices of pairs of momenta we get similar bounds.
Adding these gives

U
or W1

U
2

= 9 *
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Hence for {p{} with property 91,

Hence V does not vanish in the range of integration and so the denomina-
tor has constant sign. Furthermore V ^ m2 + |£(^-)| so that

V = m H \L(Vi)\ >

and the rest of the proof of the Critical Lemma follows for all two particle
irreducible graphs contributing to the two particle scattering amplitude
evaluated on the mass shell.

This completes the proof of Theorem 4, since the remainder of the
proof just follows the proofs of Theorems 1 and 2.

VI. Mass renormalization

1. In the preceding sections we considered the unrenormalized theory.
That is we assumed that the field satisfies an equation of the form

( a + m2) tp(x) = x j(x),

where the bare mass m is a given constant. Equivalently the current J(x)
contains no terms linear in cp. We then take an interaction Hamiltonian
with interaction representation fields of mass m and expand (p in per-
turbation theory. For X = 0, the two point function of (p will have a delta
function in the spectral weight at pQ = (p2 + m2)1/2. However for X ={= 0
the interaction J(x) will shift the position of the delta function to
pQ = (]p2 _|_ ̂ 2 (X))1/2. Hence the interacting field will give rise to one-
particle states of mass /u(X), and this defines the physical (renormalized)
mass /Li. We can then consider the mass shift d m2 caused by the inter-
action

Furthermore, we saw in Section II that d m2 is related to the proper self
energy II by

dm2{X) = Cn(ii2{X),X), (4)
where

\ X) = II(pv p2, X) |P2 = P2 = ^(A) , and

C is a constant. Thus we can ask if it is possible to use Theorem 3 to
show that d m2(X) is not an analytic function of X at X = 0. This question
has not been resolved.

Commun. math. Phys., Vol. 1 10
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2. We can ask how the above discussion of non-analyticity in X could
be affected by renormalization. In order to discuss the X cpz theory in four
dimensional space-time, HURST, THIRRING, and PETERMANN had to
consider a renormalized theory. What THIRRING calculates [5] (neglecting
the field strength renormalization) is a perturbation expansion for the
proper self energy in which the mass [JL is put on each line and the expan-
sion made in g, and yet it resembles an unrenormalized expansion in the
g cpz theory. Then if this defines the function E{p2), he constructs "the
renormalized" S,

which has the desired property that each contribution to £R (p2) vanishes
for p2 = jbi2. However, as THIRRING points out, it is not necessarily the
correct IIR (p2). If, however, we take this definition of the renormalized
expansion, Theorem 3 can be generalized to the statement that in any
theory of type (8), ER{p2) is not analytic in X at X — 0 if p2 < JU,2.

The proof is immediate since we need only extend the Critical Lemma
to these subtracted integrals. Since

we have that

Hence for p2

1 n-1

1

V(p*)

1

n-1 1

n-1

n-1

1

y

and the Critical Lemma holds.
The problem of including all the graphs which arise from mass and

charge renormalization counter terms has been studied by PETERMANN

[6]. He claims that an arbitrary finite mass renormalization will not
affect the divergence of the perturbation series, while on the other hand
some particular choice of charge renormalization gauge might do this.
It has not been possible to extend the methods of this paper to cover the
cases in Petermann's discussion.

3. Sign of the mass renormalization. We note that under the assump-
tions that

a) the two point function of <p has a delta function at mass JLL2 and
a continum starting above this value,

b) the interacting field satisfies equal time commutation relations
(with possibibly an infinite field strength renormalization),

c) J (x) contains no terms linear in cp and has zero vacuum expecta-
tion value, it follows that d m2 < 0 [20, 21]. In unrenormalized perturba-
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tion theory we see from (A.6) that for interactions of even degree and
positive coupling constant every contribution to ill(p2) is positive if
p2 < 4tm2. Hence this is true in every order of perturbation theory for
interactions which formally satisfy the spectral condition.

Hence the physical mass shell lies below the bare mass shell for such
interactions, and the scattering amplitude on the physical mass shell is
evaluated at momenta covered by Theorem 4. However the implicit mass
shell dependence on A has not been accounted for. I t is open whether M<2>
is analytic when evaluated on the physical mass shell (with amputation
now of external lines of physical mass).

Another open question is the extension of the above results to an
arbitrary interaction which is an entire function of the free field. This
general class of interactions does not seem accessible by the method
discussed above.

VII. Conclusion
CO

We conclude that for a large class of interactions, Hj (x) = X 2J aj
7 = 3

: cp{x)j:, % ̂  0, the unrenormalized perturbation theory in two dimen-
sional space-time is finite in each order, but does not define Green's
functions which are analytic in A at A = 0. The explicit statements are
made in Theorems 1—4. In particular this is true for external momenta
with property 8.

The basic idea of the proof is to use the trick of HURST and THIRRING

[4, 5], who show that the contributions from all graphs of a given order
add coherently.

However, we here derive a simple and general lower bound for the
contribution from an arbitrary connected Feynman graph of order n,

\I{pl,...,Pt)\>AB»9

where A, B are constants depending only on pv ..., pe. Such an estimate
holds in two-dimensional space-time for interactions

# i ( s ) = A 2 > , :?>(*)':

1. At points (pv p2, . . ., pe) with property 8,
2. For the proper self energy parts of p2 < 4 m2,
3. For the two particle irreducible contribution to the two particle

scattering amplitude for points with property 31.
This set of points is large enough to show that perturbation series does

not define Green's functions which are distributions in (plf . . ., pe) and
which are analytic in the parameter A at X = 0.

We have not been able to include in this analysis the effects of
renormalization as discussed by PETERMANN [6],

10*



146 ARTHUR JAFFE :

Appendix A

Integral representations [22—30]

We use the following notation:
e = number of external lines
n = number of internal vertices
k = order of interaction
N = number of internal lines
I = number of loop variables (non-trivial integrations)
s = number of space dimensions
h = partition of the set of external momenta into two proper subsets.

It also may refer to the collection of momenta in one of these
two sets of momenta.

s(h) denotes the set of intermediate states which induce the division
h of the external momenta into two sets. An intermediate state
is a set of internal lines which when cut divide the graph in two
(Notation of NAKANISHI [27]).

Note that for a fixed degree k of interaction, Hz(x) = X: (pk :,

AT k n ~ 2

21 — 1 == (k — 2)n — e+ 1 .

For convenience we collect here some forms of the Chisholm-Nambu-
Symanzik-Nakanishi integral representation for amputated, connected
graphs in (s + 1) dimensional space time. The normalization of phase is
chosen to give formula (7).

Symanzik form [23]

Here A and B are positive constants which depend on s. The a's are
inverse Feynman parameters, and will be enumerated in two ways. Since
each internal line has a corresponding a, they may be indexed oct where
1 < i < N. On the other hand, if a corresponds to the Ith line connecting
vertex j of a graph to vertex k, then a might be denoted a^ where
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1 ^ h k ^ n and I = 1, 2, . . .. Use a^ = ofkj9 of.* = 0, 5,. =

Pik = E <$*> a n d

*<= i7 Pi-
all external momenta Pi

entering vertex i

Then M(oc) = 27 ~ ^ = ^ 2 m ^he equal mass case.
i = \ i

— & 2 — A s • • • — P m *

n

(A.3)

D (a) is the minor of C (a) corresponding to omitting some column and the
corresponding row. D(p, a) is the minor of G(p, a) corresponding to
omitting some column and the corresponding row, but not the first. The
derivation of these formulae is in TODOROV [29].

In two dimensional space time we have

! aAx
vertices I

\in graph /
/ * x (A.4)

N A \ <5(1 — 271/a,)
x / I 7 7 - ^ 1 - V < - i /

0

and in four dimensional space-time

•p . . . , pe) = —ii—l)71-1 (n — l — 2)\\
vertices
in graph

/ N

SYMANZIK [23] remarks that D (a) is the sum of all a-products correspond-
ing to all skeletons of the graph, each counted once. A skeleton is a
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simply connected subgraph of the original graph which contains all the
original vertices. The proof of this statement is in BOTT and MAYBERRY

[26].

Nakanishi form [27—28]

NAKANISHI uses the usual Feynman parameters x$ — — . Then the

integral representation becomes

vertices
in graph

(A.5)

D
o

which reduced in two dimensional space-time to

^tn 2)! ( lV*-1

I vertices
\in graph

whereD ^ Oand, U = \ IJx{) D (—) ^ 0 ,

(A.7)
i = l A U \t€A

Wh is a positive function of the Feynman parameters xi9 depending on h.

Nakanishi path theorem

If (I) ki are parallel', (2) kt are Euclidean; and (3) for all intermediate
states 8 in 8(h)

( \ 2 ( \ \ (A.8)
\i€h I \ieS

Then V ^ 0.
A set of vectors kt is Euclidean if for all real a{, (2J a>i k^)2 ^ 0.
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