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The C*-Algebras of a Free Boson Field

I. Discussion of the Basic Facts
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Abstract. We give a systematic description of several (7*-algebras associated with
a free Boson field. In this first part the structure of the one-particle space enters
only through its symplectic form σ and a directed absorbing set of finite-dimensional
subspaces on which σ is non-degenerate. The Banach *-algebras ££x ((£, σ) and~#x ((£, σ)
of absolutely continuous resp. bounded measures on a finite-dimensional symplectic
space ((£:, σ), with their "twisted convolution product" stemming from WeyΓs
commutation relations, are studied as the analogues of the £PX resp. JHX algebras
of a locally compact group. The fundamental "vacuum idempotent" Ω determines
their (unique) Schrodinger representation, Schrόdinger Jl*-norm and Sclirodinger
C*-completions JS?i((£, or) and J(x{^i σ). After a study of these one proceeds to a
construction as an inductive limit of the algebras ~^i(§, σ) and ^ x ( § , a) for an
infinite-dimensional symplectic space (§, or). The "Γock representations" (with the
corresponding "field operators") are presented as the infinite-dimensional gene-
ralization of the Schrodinger representation. The paper ends with a discussion of
several possible choices for the "free Boson <7*-algebra".

§ 1. Introduction

The present paper is the first part of a study of different 0*-algebras

associated with the free Bose field. Our aim is to investigate on the example

of the free reiativistic Bose field a number of questions which arise in

HAAG'S approach to field theory based on "local rings" [1—5] — par-

ticularly in the version of this approach based on (7*-algebras [6, 7].

Some of the questions we have in view are the following:

1) Amongst the different, more or less "rich" (7*-algebras which

can be associated with the reiativistic free Bose field, which one should

be chosen as the "quasi-local algebra" ?

2) What is the relation between the space-time structure and the

algebraic structure ("diamond theorem" . . . etc.) %

3) Does HAAG'S conjecture that local factors are of Type I [8]

hold for some adequately chosen faithful representation of the quasi-

local algebra (it has been shown not to hold for the standard Fock re-

presentation by ARAKI [9]) % This question leads to formulating the

following conjecture: for adequately chosen "commuting" space-time
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domains 8$ and 38' {&' is the set of points lying space-like to all points

of 38 and conversely) the whole quasi-local algebra 21 can be written as

the "C-*teτιsor product" 21 = Sl(^) ® 21 ($")* . If this conjecture holds

true for free fields one would be tempted to take i t as an axiom for coupled

fields and to a t t e m p t a construction of the quasi-local algebra as an

infinite (7*-tensor product [10].

Technically this work is an amplification of Von Neumann's fundamen-

tal paper on the uniqueness of representation of the commutation relations

for finite systems [11]. Our approach, paralleling the theory of the group

algebras of a locally compact group is tailored to afford the maximum

flexibility for the choice of the quasi-local algebra about which we want

to remain open-minded in view of question 1). I n t h a t respect our pre-

sentation should help to unify the different standpoints of previous

related works: VAN H O V E [12], COOK [13], F R I E D R I C H S [14], GARDING

and W I G H T M A N [ 1 5 ] , H A A G [16,17], SEGAL [18], CoESTERand HAAG [19],

A R A K I [20, 21], L E W [22], F U K U T O M E [23], G E L F A N D and V I L E N K I N [24],

BARGMANN [25], SHALE [28], KLATJDER [29], M C K E N N A and K L A U D E R

[30].

I n this first part we treat only some of the possible algebras (see

discussion of § 7). To motivate their abstract synthetic construction

presented in the sections to follow we devote the rest of this introduction

to a heuristic analytic comment.

Let us start from the free scalar boson field operator

A(f) = ff(x)A(x)dx

smeared out with a test function /. A (/) operates on Fock space and is
equal to

A (/) = A{ψ} = a+{ψ} + a~{ψ} ,

creator
a±ίw\ being the ., ._ of a particle with the wave function

^TJ anmhilator

* The concept of C*-tensor product 2lx ® Qi2 of two C*-algebras 2ίx and 5l2

has been developed by T. TURUMAHTJ, Tόhoku Math. Journ. 4, 242 (1953), 5, 1
(1953) and A. WTJLFSOHN, Bull. Sci. Math., 87, 13 (1963). It can be stated most
simply as follows: choose two respective faithful representations πx and π2 of 2lx

and 2l2 on Hubert spaces J&Ί and ̂ f2 and take the smallest norm closed algebra
of operators on the tensor product Hubert space 3tfx ® ^f 2 which contains all finite
sums Σπι(Ai) ® TtziBi) with At £ 2ll5 Bt £ 2l2. This construction is independent

i
of the choice of the (faithful) representations nx and π% and has accordingly a
purely algebraic character. The a priori possibility that HAAG'S conjecture, although
incorrect in the original "ίF*-form", could be true in "O*-form" as stated here
exists according to A. GUICHARDET (oral communication).
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the convolution product of the test function / and the singular function
Zl+*. ψ is a square-integrable positive-energy solution of the Klein-
Gordon equation and the set of all such ψ is a dense linear manifold in
the free boson one-particle Hubert space $). Owing to the commutation
relations between creators and annihilators:

[a+{ψx}9 a+{ψ2}] = [α-{y>i}, a~{ψ2}] = 0

where (|) denotes the scalar product in §, one has for the field operator
the commutation relations

ίA{ψi}> A{ψ2}] = (Vi W - (WBI Vi) = 2i°(ψi> Ψ2) (!)
(we denote by <s(^1? φ2)

 a n ( ^ ^σ(ψn Ψ2) respectively the real and purely
imaginary part of the complex scalar product (ψ1\ψ2) in H).

A{ψ} being an unbounded self adjoint operator [13] we will get
an everywhere defined bounded (in fact unitary) operator by taking

U{ψ} = eiAM. (2)

By formal manipulation of (1) and (2) (where we replace the exponential
by its Mac Laurin expansion) we find as a substitute for (1) WeyΓs
commutation relations [31]

ϋ{ψ1} ϋ{ψ,} = e-"'^.*) ϋ{ψ2} ϋ{Ψl} ,

or equivalently the multiplication law

U{ψ! + vύ = *"«">*> ϋ{Ψl} U{ψ2} , (3)
which resembles the addition law of an Abelian group (the difference
consisting in the factor eiσ(ψuΨ*> which destroys commutativity — we
will accordingly call it twisted addition).

This analogy will help us to construct the algebras we are aiming
at as the objects analoguous to the "group algebras" of group theory
[32—35], Let us first consider the case of a subsystem with n degrees of
freedom, i.e. take the operators U{ψ} given by (2) with ψ confined to
an ^-dimensional complex subspace (£ of the Hubert space § . In its
natural topology Qc is locally compact and the analogue of the group
algebra (of a locally compact group) is then obtained as follows: to each
function / on @ integrable with respect to the Lebesgue measure dip of @
we associate the operator**

= ff(ψ)ϋ{ψ}dψ. (4)

* See for instance D. KASTLER: Introduction a l'Electrodynamique quantique
Dunod Paris (1961) Chap. V.

** This integral is to be understood in the weak sense i.e.

(Φ1\UV)\Φt)=jHφ){Φ1\U{y>}\Φt)dV

where Φx and Φ2 are arbitrary vectors in Fock space. The integral exists because
(Φx I U{ψ} I Φs) is a bounded continuous function of ψ.
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The multiplication law (3) for the U{ψ} then entails the following
multiplication law for the operators U(f):

x U) , (5)

where fx x /2 is the (Lebesgue integrable) function on E defined by

(/i x ft) (Ψ) = I e-ia(tψ) Λ(f) f,{ψ ~ ξ) dξ (6)

= fei°^f1(ψ-ξ)f2(ξ)dξ.

The product x defined by (6) is a bilinear associative composition law
for integrable functions analoguous to the convolution familiar in group
theory (the difference consisting in the exponential modulating factor
under the integral — we shall accordingly call it twisted convolution).
(3) implies also that

U(f*f=U(f)-i=U(f*)9 (7)

the integrable function /* (called adjoint of /) being defined as

/•(v) = /(-V) (8)

Under the product (6) and the adjoint operation (8) the set ^ ( S , σ)*
of Lebesgue integrable functions on (ξ (equipped with the £gχ norm \j\x

of functions) is a non-commutative Banach ^-algebra which parallels
the group algebra of a locally compact group for @ equipped with the
"twisted addition" (3). Furthermore / -> U(f) is a faithful (continuous)**
*-representation of Jδί\(@, σ). Setting

11/11 = || U(f)\\ = norm of the operator U(f) ,

one defines on ££x (@, σ) a norm with respect to which the completion
•&Ί (@J σ) is a O*-algebra which we might call the J&1 — C*-algebra of
the n-dimensional subsystem defined by the n-dime?ιsional subspace Qc.

In order to define a (7*-algebra corresponding to the infinite dimen-
sional system of free bosons we have to take a kind of an inductive limit
of the (7*-algebras of all fi-dimensional subsystems. To be able to do
this it is necessary that given two mutually included finite dimensional
subspaces (£C5 there be a corresponding inclusion of their (7*-algebras.
This is not realized with the JSPX — 0*-algebras of (£ and 5 (there is no
inclusion of ££x (@, a) in ££x (5, σ), the elements of S£x (@, σ) being measures
on ^ instead of integrable functions). This urges us to take instead of the
S£x — O*-algebras the <Jίx — C*-algebras defined as follows: given an
^-dimensional subspace (^C§ we extend the definition (4) to bounded

* We write ^ ( ( g , σ) (~#i(<£, σ)) instead of ^((g) ( ^ ( ^ ) ) as a reminder that
the multiplication law (twisted convolution x) depends on the symplectic form cr.

** For C*-algebras we use the terminology of the Appendix I of [6].
Commun. math. Phys., Vol. 1 2
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measures μ on ©*

= fϋ{ψ}dμ(ψ). (9)
One has now

ϋ{μx)

where x and * are now a "twisted convolution" and an adjoint operation
defined on bounded measures. Under these operations the set ^ί((B,σ)*'k

of bounded measures on ® is again a Banach *-algebra faithfully re-
presented by μ -> U(μ). Setting again

and completing with respect to this norm we now get (7*-algebras

e^#1(@,σ) (called the Jίx — 0*-algebras of the corresponding spaces)

such that to an inclusion ^ C 5 of finite dimensional spaces there cor-
responds a natural inclusion of their ^ # x — 0*-algebras. We are now in
a position to define the Λίx — 0*-algebra ^ # x ( § , σ) of the infinite di-
mensional ξ) as an inductive limit.

We close here this motivating introduction and proceed afresh to
construct Jίx (§, a) rigorously, forgetting about the origin of the problem
for the sake of generality. We shall recover a posteriori the field operator
Λ{ψ} on Fock space.

We raise a number of lemmas to the dignity of theorems for the
convenience of monotonic numbering. Before starting let us say that
another technique for treating the relations (3) in a group — theoretic
spirit would consist in building a group extension of the additive group
of (£: by the one-dimensional torus so as to relate (3) with representations
of this group extension [36]. This aspect will be described in a forth-
coming paper by LOUPIAS and MIRACLE which will in addition contain
a more detailed description of the ''regular representation" of theorem 5
as well as a discussion of the relations between our "twisted convolution"
and the BARGMANN [25] and WIGNER-MOYAL [26, 27] formalisms.

* We recall that the bounded measures on the locally compact space d; are the
(regular) complex measures μ on (£ for which \μ\ (<£) < oo. The set J(xψ£) of bounded
measures on <£ can be considered as the topological conjugate space of the Banach
space ^Ό(^) °f complex continuous functions on E vanishing at oo.
are Banach spaces under the norms

ll/lloo = Sup

W|x= Sup \μ(f)\= fd\μ\(φ) μ <E u f^S)
/(#o(«) «

ll/lloo = 1
The integral (9) is to be understood in the weak sense (cf. footnote ** on p. 16).

** See footnote * on p. 17.
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§ 2. Twisted convolution of measures on a finite-dimensional symplectic

space. The algebra -#i(<£, σ) and its subalgebras

A symplectic form σ(ψv ψ2) on a real vector space (£ is a regular*,

antisymmetric**, real bilinear form on ®. In this section we shall be

concerned with a finite-dimensional symplectic space (®, σ), that is, a

finite-dimensional real vector space (E equipped with a symplectic form σ.

© is then of even (real) dimension m = 2n and there exist in (£ symplectic

bases of vectors ei9 fif i = 1, 2, . . ., n, that is, reference systems such

that***

σ{ej9ek) = σ(fj9fk)=O .
σ(e,,/*) = - * ( / * , e,) = < W ^ = 1 > 2 > . ,« (10)

/ n

The coordinates (|% η*) of a vector γ> ζ ® in a symplectic base \ψ = Σ '
\ . \ i - i

• (l^e* + ?f/*) I a r e called symplectic coordinates. The measure dmσ

= ΊJdξ1 drf is the same for all systems of symplectic coordinatesf. We
i = l

call it the symplectic measure of (@, σ).

Theorem 0. Let μ be a bounded measure^ on (<B, σ) and let f £ ̂ 0 ( ^ )

The function μ x / defined by

(μ X /) (vθ = / e-**^) /( V - ξ) dμ(ξ) (11)

is again an element of ^0(@

μ(f) = (μ * ϊ) (0) (13)

f being the function of ^ 0(®) defined by f(ψ) = f(—ψ).

* A bilinear form φ(ψ19 ψ)2 on § is regular if ^(^x, ̂ 2) = 0 for arbitrary ψ>2 £ §
implies t/̂ i = 0.

** A bilinear form φ {ψl9 ψ2) on § is symmetric, resp. antisymmetric if φ (τ/>2, t̂ i)
= ς?(Vi» ̂ )> resp. φ(ψi9 φj = —g?(y>i, ya) for arbitrary v l 9 ^2 € θ
••* We can construct a symplectic base on the following way. Choose ex =j= 0 £ (£.

Since σ is regular there exists ^ 4= λex £ <§: such that ^(e!, /x) = 1. (£ is the direct
sum of the plane (βu/x) and the subspace JJ of elements v6^ such, that σ(el9v)
= a (fl9 v) = 0: an arbitrary ψ ^ ̂  can namely be written in a unique way as
ψ> == u + v with u •= ξ1e1-\- η1f1 and v 6 -f7 (by taking I 1 = a(ψ, fx) and^x = σ(e1,\p)).
Now the restriction of a to the subspace 5 is bilinear, antisymmetric and regular (for
Ψi £ ffj tfίVu v) = 0 for all v £ 5 implies σ(γ>i, ̂ 2) = 0 for all ψzζQc and thus
yx = 0). (JJj cr) is thus a symplectic space of dimension m — 2 in which we can choose

e2, /2 such that σ (ea, /a) =)= 0 . . . etc. after -x- = w steps our construction will be

completed.
f One passes from a system of symplectic coordinates to another one by means

of a matrix of determinant i 1 (proof as for orthogonal transformations).
ft See footnote * on p. 18.

2*
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Proof: For fixed ψ, e~iσ^>ψ) f(ψ - ξ) is an element of #0(@) as a
function of ξ, whence the existence of the integral (11). We want to show
the continuity of (11) with respect to ψ around ψ0 ζ (£: let us first choose
a compact set K such that \f(ψQ — ξ)\ < ε/6 ||μ||i f° r f ί &- There exists
a neighborhood V1 of 0 such that for h ζVv ξ $ K, \f(ψQ + h - ξ) ^
^ 2ε/6 ll/ l̂! (we can take V1 such that Λ £ Vx implies \f(ψ + h) — f(ψ)\t^
^ ε/6 Hμlli for all ψ ζJE, which is possible since / ζ^0((£) is uniformly
continuous*. For h ζ F x we then have

^ y *. +A) /(φ0 + A - f) -

A - f)| dμ(ξ)

^ Y + {blli II/IU Sup |β-*"<* *> - 1| + Sup | / ( V o + A - f) - / ( V β - | ) | J ,

which can be made arbitrarily small because of the uniform continuity
in ξ of σ(ξ, h) and f(ψ— ξ) on the compact set K.

We have now to show that (μ x /) (ψ) tends to 0 for ψ tending to oo.
Since we have the majorization

\(μxf)(ψ)\^f\f(ψ-ξ)d\μ\(ξ) ( l l a )

and since |/| is a function of ^0(®) a n d l/̂ l a bounded measure on <B the
desired result reduces to the analoguous one for the usual convolution **.

Theorem 1. Let μ and v be bounded measures on (@, σ). There exists one
and only one bounded measure v x μ on @ (called twisted convolution of v
and μ) such that

v x (μ X /) - (v x μ) x / (14)

for every f ζ ̂ 0 ( ^ ) One ^ιas

{v x μ} (/) = / dv(η) f dμ(ξ) e-<«Ό>.«> f{ξ + η) (15)
and

\\vx μ l ^ llrllxll^l!. (16)
Proof: One has according to (11)

{̂ X (^χ/)}(^) = / ^ ^ ( 7 y ) / ^ ( f ) e - ^ ^ ^ e ^ ^ ^ ^ ) / ( ^ - | - ^ ) . (17)

The last assertion of Theorem 0 then shows that if v x μ exists with the
required properties it satisfies (15), whence the uniqueness. Now for

* Because of Prop. V, § 27, n° 3 of Kef. [32], p. 369 and the fact that each
/ € ^o (^) is a uniform limit of continuous functions with compact support.

** See for instance Ref. [34], p. 264, Lemma (19.5).
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bounded measures v, μ the integral exists as the value of v x {μ x f)
for ψ = 0 and furthermore (12) shows that

\{v X μ}(f)\ = \ { v x μ x f}(0)\ ^ \ \ v x μ x fiU ^ IWI \\μΛ | | / | U ,
whence (16). On the other hand (15) and (11) imply that [(v x μ) x f](ψ)
equals the right side of (17), whence (14).

Theorem 2. Given a bounded measure μ on (@, σ) there exists one and
only one bounded measure μ* such that

μ \J) — μ\J ) {*•*)

where /* = /. One has

\\μ*\\i = \\μ\\i (iβ)
and

(v x μ)* = μ* X v* . (20)

The proof is immediate and left to the reader.
Theorem 3. Equipped with the norm || ||x, the product x (twisted con-

volution) and the adjoint operation *, the set of bounded measures on (@, σ)
is a Banach *-algebra. We denote it by ^ x ( ® , σ) to remind that the algebraic
product depends on a.

The product x is evidently bilinear. I t is associative as a consequence
of (14). The * operation being evidently antilinear (19) and (20) then
imply that ^ # x (@, σ) is a normed *-algebra. As the topological dual space
of the Banach space ^ 0(®) & ^s m addition complete.

The Dirac measures δψ, ψ ζ @, denned by

δψ(f) = f(ψ) f ζ #0(<£) (21)

are elements of t^1((E, σ). One has according to (15) and (18)

or more generally, for ψl9 ψ2, ψ ζ (£,

R , x /} (Va) = e-**^.*) / ( V a - % ) (22a)

{/ x 3Vl} (%) = ^σ{Mz) f(ψ2 - Ψi) (22b)

δ* = δ-1 = δ-ψ. (23)

(22) is identical with the "twisted addition" (3). The algebra t^f1((£, σ)
is accordingly not commutative. (22 a) shows that Jtx (©, σ) has an identity
element, namely δ0.

Theorem 4. Let /, g be functions on (<£, σ) (defined up to a set of measure
zero) integrable with respect to the symplectic measure dma. The measures
f dmσ} g dmσ are elements of <Jίx ((£, σ) and one has

I/Ik = / l / W I < z « U ^ = l/<z™ σlli, (24)
(/ dma) x (g dma) = (/ x g) dma , (25)

(/ dma)* = /* dma , (26)
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where f x g and f* are again integrahle functions given hy

(/ X 9-) (?) = / e- ί o<^> /(£) g(ψ - ξ) dma(ξ)
(27)

= f *«*'*> f(y>-ξ)g(ξ)dmβ(ξ),

f*(ψ) = f(-Ψ). (28)

Equipped with the norm (24), the multiplication (27) and the adjoint opera-
tion (28) the set «£?!(<£, <x) o/ functions on @ integrahle with respect to dmβ

is a Banach * -algehra which can he considered as a closed suhalgehra of
^#1(@, σ) via the (injective) correspondance f ζ SPΎ (@, σ) -> / c?mσ ζ ^ ^ β ^ σ )
fm J^'s sê kse we shall write f instead of fdmσ). Furthermore ^ ( S , σ)
is a two -sided ideal of ~# x (®, σ): for f ζ .2^ ((£, σ) and μ ζ Jίx ((^, σ)
one has μ x /, / x μ £ J*?x (@, σ) ^iί^

(A* x /) (V) = / e-^'V* f(ψ - ξ) dμ(ξ) , (29)

(/ X μ) (ψ) - f eiσ<^v> /(v - I) ίAi(f) . (30)

For / ζ^ 0 (®) ( 2 9 ) coincides with (11)*.
Proof: (24) is classical. (25), (27) can be inferred from (15) and

Fπbini's theorem. (26), (28) is obvious. ^ ( S , σ) is known to be complete
in the norm (24). The existence almost everywhere of the integrals (27),
(29), (30) results from Fubini's theorem. (29) and (30) are implied by (15)
and Fubini's theorem.

Theorem 5. Let f he a function of ^ 0 ( ^ ) °f integrahle square with
respect to mσ and set as usual

μ being an arbitrary element of ^x(^, σ), μ X f is again such a function
and we have

\\μ x /IU < M l i II/I2 ί (31)
the mapping

f^π*(μ)f = μ * f (32)
can therefore be extended to a hounded operator on the Hilbert space J£2 (®) and
one gets in that way a continuous faithful *-representation of the Banach-
*-algebra ^±((£, σ). π2 will be called the regular representation of ^^((E, σ)
(or of its subalgebras).

Proof: μ x / ξ ̂ 0(®) by Theorem 0. (31) is reduced to the analoguous
result for the ordinary convolution** using the majorization ( l la) as
in the proof of Theorem 0. The fact that π2(μ x v) = n2(μ) 7ΐ2(v) is
obvious from the definition (32). The fact that π2(μ*) — π2(μ)* is ob-
tained from (18) and the change of variable ψ -> ψ + ξ in the integral

* ^o(^) Γ\ «̂ i(<£) is accordingly a two-sided ideal in Jίx{βy σ).
** See for instance Ref. [32], p. 383, Prop. V of § 28, n° 2.
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(we again use here Fubini's theorem). Equation (31) implies that

l, μζ^A^σ). (31a)

Finally the representation π2 is faithful because ^ 0 (®) is dense in j£?2 (@)
and μ 4= 0 implies the existence of / ξ ^ 0 ((£) such that μ (f)

= (μxf) (0) * 0.
Corollary. JFV μ ζ Jίx (g, σ) μ* x μ = 0 implies μ = 0.
Proof: The representation π 2 injects . ^ ( S , σ) into a 0*-algebra

where the property is true.
Definition: (@, σ) &em<7 α real vector space equipped with a symplectic

form σ, the real vectorial subspace ff C & is called regular if the restriction
of the bilinear form σ toff is regular inff*.

Theorem 6. Let ffbea regular subspace of (<£, σ). To each μ ζ Jt^, σ)
we associate the measure μ on (£ defined by

(33)

where f runs through ^ 0 ((£) and f \ ff denotes its restriction to ff C ®. μ is
an element of <Jίx(?ί, σ) which we call the natural extension of μ. One has

(34)

can be

v x μ

μ*

considered

= V X

as a

μ,

closed sub-*-algebra of a

(36a)

(36b)

via the correspondance μ ζ ̂ j (5, σ) -> μ ζ *Jίx (®, σ) **. // 5 ' *5 another
regular subspace of ((£, σ) perpendicular to ff with respect to the symplectic
form σ the subalgebras ̂ x(ff, σ) and *Jίχ&', σ) 0/ ̂ 1(Qί, σ) commute with
each other.

Proof: For /£ife(<g) one has / | $ ζ ί f o ( $ ) with I/I5IU ^ ||/|U.
Conversely to each g ξ ̂ 0(1?) there exists a / ζ ^0(@) such that / | 5 = gr
with 11/1100 = 1̂1100 This justifies (33) and proves (34). In order to show
(35) we write for / £#0(@) u s i n g (33), (13), (14) and the fact that the
operation / -> f commutes with the restriction to 5 :

v 7ϊ{f) = {vxμ} (/Iff) = {v x μ x (f|ff)}(0) = v[(μ X (f|ff))-]

(v X μ) (/) = {v X μ X 0 (0) = v[(fi X /)"] = v[(CS X f)|ffΠ

(35) is thus reduced to

A« X (9-15) = (fi x 9)15 9- ̂ o ( S ) (33a)

* See footnote * on p. 19.
** We shall accordingly write μ instead of μ whenever this does not cause con-

fusion.
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which results immediately from (33) and (11): for ψ £ ̂  o n e n a s

{μ x tolff)} (V) = / e-W> g(ψ - ξ) dμ(ξ)

whilst

iμ x 9} (ψ) = fe-W>g(φ - ξ) dμ(ξ)

The last assertion of the theorem results from (33) and (15).
Theorem 7. Let (@, σ) be a finite dimensional symplectic space. The

formula
ma(ψ) (4a)

establishes a one-to-one correspondance between the essential continuous
*-representations f £ ££x (@, <r) -> Ϊ7 (/) o/ £&e algebra J&Ί((£9 σ) and the
weakly continuous unitary representations ψ £(£-> C {̂̂ } o/ ίΛe canonical
commutation relations. This correspondance carries over irreducϊbility and
cyclicity of vectors*.

Proof: Let us start from a weakly continuous unitary representation
of the canonical commutation relations on the Hubert space 3riP, i.e.
a weakly continuous mapping ψ -> U{ψ} of (£ into the unitary operators
on 3F obeying the relation (3) for all ψl9 ψ2 ζ ®. Given a μ ζ ^ ^ S , σ) we
define the operator U(μ) on Jΰ? by

(Φ| ί/(^)|Φ') = / (Φ| ff{y}|Φ') ί/ίty) (9a)

for all Φ,Φ' ζJtf. Since (Φ|C7{^}|Φ') is a continuous function of ψ
bounded by ||Φ|| ||Φ'|| the integral (9a) exists and is bounded in modulus
by HμJ ||Φ|| \\Φ'\\. (4a) thus defines a linear operator on Jf depending
linearly on μ and of bound not larger than ||̂ ej|χ. The fact that μ-> U (μ)
is a *-representation of the algebra . ^ ( S , σ) is shown by the relations

(Φ\ϋ(v)U(μ)\Φ')^Σ(Φ\ϋ(v)\Φi)(Φi\U(μ)\Φl)
i

=Jf(Φ\ϋ(ξ)ϋ(η)\Φ')dv(ξ)dμ(η)=(Φ\ϋ(vXμ)\Φ')
* Theorems 7 and 7 a are the analogues of well known theorems in the theory

of locally compact groups, see Ref. [32], §§29 and 30. A representation π of a
*-algebra 21 on a Hubert space 3tf is called essential if π($l) J4? is dense in 3tf (i.e. if
it does not admit the null-representation as a subrepresentation). Cyclicity of the
vector ¥O for the representation ψ -> U{ψ) on 2%* means that the U{ψ} Ψo, ψ ̂  (̂ ,
form a total set in «5f (i.e. generate linearly a dense set in J^). Theorems 7, 7 a and 8
are not indispensable for the comprehension of the sequel.
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(where use was made of Fubini's theorem, Lebesgue's dominated conver-
gence theorem for exchange of summation and integration, formulae
(3) and (15)) and

(Φ\ U{μ)*\Φ') = (Φ'\U(μ)\Φ) = / (Φ'| U{ψ}\Φ) dμ(ψ)

= f(Φ\U{-ψ}\Φ')dμ(ψ)=(Φ\U(μ*)\Φ')

cf (18). We have thus associated to the mapping ψ -> U{ψ} a continuous
*-representation of Λί^Qί, σ) whose restriction to the subalgebra ^ ( S , σ)
defines a continuous * -representation / -> U(f) of Jδfx(®, σ) (notice that
ϋ(δψ) = U{ψ}). The fact that / - > # ( / ) is essential is obvious: a Φ ^ J f
such that (Φ \U(f)\ Φf) vanishes for all / ζ J2\(g, σ) and Φ' ζ Jf is such
that (ΦI U{ψ} IΦ') = 0 for all Φ', whence Φ = 0.

Conversely let /-> U(f) be an essential *-representation of ^ ( S , σ)

i.e. a *-representation such that the set Jf0 of finite sums Σ U(h) Φu
i = l

ft ζ ̂ χ ( S , σ), Φ< ζ ^ , is dense in 3tf. We define the action of U{ψ} on

^ o ^ y

(a) ϋ{ψ}ΣU (h) Φ^ΣU (δψ x /,) Φ,.

Since

1 f C7(ό Λ) ΦJ|« 2 1 (Φl Z7(/? x ό_ v x <5V

this definition is coherent ((38) applied to the null vector gives again the
null vector) and U{ψ} is linear isometric on Jf0. It can accordingly be
extended to a unitary operator on J^ and the relation (3) (which need only
be verified for U{ψ} acting on J f 0) is a consequence of (a) and (22). Let
us now show that U{ψ} is weakly continuous in ψ. I t suffices to prove
the continuity of (Φx\ U{ψ}\Φ2) in ψ for Φx and Φ 2 running through
the total set of the U(g)Φ where Φ ζ Jf and g runs through the set
J$Γ ((£) of continuous functions on <B with compact support (the totality
of the set of U{g)Φ stems from the inequality !|Z7(gr)Φ|| < |b| |i | |Φ||
and the density of J f (®) in JSfΊ(®, σ)). We have now for /, g ζ J f ( g ) :

(Ϊ7(/)Φ| Ϊ7{φ} - ϋ{Ψo}\ U(g)Φ') = (Φ| Ϊ7(/ x (<$„ - όVβ) x g)\Φ') S

^ | φ | | IIΦΊI ll/ x ( ^ - ^ o ) x ή i ̂  \\n II«ΊI I/Ik l l ( ^ - ^ o ) xflilx

the function

{(δψ - δψo) x g}(u) = e-io^fiu - ψ) - e- ίσ^θ'w> /(u - V o )

converging to zero within a fixed compact set.
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Now we have shown how to assign to every unitary representation
of the canonical commutation relations an essential continuous *-re-
presentation of S£x (©, a) and conversely. To see that the correspondence
is one-to-one we need only verify the relations

/ {δψ x g}(u) (Φ\U(u)\Φ') dmσ(u) = / g(u) (Φ\ϋ{ψ} ϋ(u)\Φ')dma(u)

and

f(Φ\ϋ(δψxf)\Φ')g(ψ)dmψ = (Φ\U(gxf)\Φ')

which is straightforward with some amount of vectorial integration.
The relations (4 a) and (38) show that it is equivalent, for a Φ ζ Jf,

to be perpendicular to all U{ψ}Ψ0) ψ ζ <£, or to all U{f)Ψ0, f ζ Jί^ί®, σ),
(Ψo being a fixed element of 3F). Ψo is thus cyclic with respect to ψ -» U{ψ}
if and only if it is cyclic with respect to f -> U(f). The statement about
irreducibility results from the fact that irreducibility means cyclicity
for every vector.

We notice that the construction of U(f) from U{ψ} required only
the weak measurability of U{ψ}. By recovering U{ψ} from U(f) one
then sees that weak measurability of U (ψ) implies weak continuity. We
notice also that the process U(f)-> U{ψ}-> U(μ) defines a ''canonical
extension" of any essential continuous *-representation of ^?

1(S, σ)
to an essential continuous *-representation of ^£λ(^., σ).

Definition: A complex function ψ ζ ((£, σ) -» φ{ψ} on the finite dimen-
sional symplectic space (@, σ) is called of positive type if

Σ OiCke
i^^φ{Ψk-ψj}^0 (37)

for every choice of elements ιψj ζ ((̂ , σ) and complex constants Gί9j = 1,2, ...n.
Theorem 7 a. The formula

φ{ψ}=(Φ0\U{ψ}\Φ0) (38)

establishes a one-to-one correspondance between continuous functions of
positive type on (Qε, σ) and unitary cyclic weakly continuous representations
of the canonical commutation relations with cyclic vector Φo. The formula

= ff(ψ)ψ{ψ}dmσ(ψ) (38a)

establishes a one-to-ome correspondance between the continuous functions
of positive type ψ ξ (@, σ) -> ψ{ψ] on ((£, a) and the positive forms
f ζ j2Ί(<g, σ) -> φ(f) on ^ ( ( g , σ). The mapping f->U(f) defined by (4a)
is the *-representation of J ^ (®, a) associated with the positive form f -> φ (/):

i.e. 9,(/) (Φ0|C7(/)|Φ0).
Proof: The fact that φ{ψ} defined in (38) satisfies (37) is shown by

n

calculating || JJ @iU{ψi}\\2 u s i n g (3). Conversely starting from a φ{ψ}
ΐ = l
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satisfying (37), the formula

(f\g) = ΣW)g(n)*ia{*'n)φ{n-ζ} Ugί&

defines a semi-definite sesquilinear form on the vector space ϊF of complex
functions on <£ vanishing on all but a finite number of points. Passing to
the quotient ^Q == 3F\Jf of SF modulo the null space JΓ (consisting of
all / ^& such that (/(/) = 0 or equivalently (f\g) = 0 for all g ζ&)
our sesquilinear form becomes a strictly positive Hermitean product.
Now the definition

determines coherently a linear isometric operator ψ -> U{ψ} on J^o

as is shown by the relation (U{ψ} f\ U{ψ}g) = (f\g), easily obtained by
shifting summation variables. U{ψ} extends to a unitary operator on
the completion Jf of J^o. The relation (3) follows from the fact that the
definition of U{ψ} formally coincides with (22 a). The element Φo — /0+Λ^
of Jf 0, where /0 is the characteristic function of the set {0}, is easily seen
to be a cyclic vector for ψ -> U{ip}. Finally the relation

(f\u{ψ}g)= Σ ϊW)g{η)zia{ξ>η)-iσ{ψ>η+ξ) ψ{v-ξ + ψ}
ξ,η£G

shows both that U{ψ} is weakly continuous in ψ, and by making / = g== /0,
that it satisfies (3). (3) establishes a one-to-one correspondance between
φ{ψ} and U{ψ} because our construction applied to φ{ψ} given by (3)
is merely a reinterpretation of the cyclic component of Φo (via

n

Σ Ci U{ψi} Φo-> f + Λ* with / vanishing everywhere but in the points
i = l

ψi where it takes the values C^.
Let us now take ψ-> φ{ψ} and ψ-> U{ψ} related by (3) and let

/->?7(/) be the cyclic *-representation of ^((S, a) defined by (4 a).
One has by (4 a)

ψ(f) = (Φo\U(f)\Φo) = ff(ψ) ψ{ψ] dmd(ψ)

whence, by Theorem 7, formula (38 a) and the second part of our theorem.
The continuous positive form φ extends canonically to a (continuous)
positive form on ̂ £1{(^) σ) by using (9 a):

φ(μ) = (Φo | U(μ)\Φ0) = / <p{ψ} dμ(ψ) = μ{φ) , (38b)

this extension being such that φ{ψ} = φ{δψ)= δψ(φ). The possibility
of this extension shows that the function φ{ψ} is bounded:

I M L = IMI = 9>(<5o) = <p{o},
which could have been obtained directly from (37) for m = 2.
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Theorem 8. Each non vanishing continuous * -representation ρ of the
algebra J ^ (©, σ) is such that ρ ( / ) Φ θ for each f £ ££x ((£, σ) with nowhere
vanishing Fourier transform /.

Proof: If ρ(/) = 0 one has ρ(δu x / x δu) = 0 for all uζQί. Since, by
(22 a, b)

R x / x

the theorem follows if J ^ (@, σ) is the smallest closed subspace generated
by all translates of /. This is so because this subspace is an ideal and /
is contained in no proper ideal since its Fourier transform vanishes
nowhere (Ref. [32], p. 426, Folgerung 1 of § 31, n° 8. The meaning of the
word ideal is here the usual one in commutative harmonic analysis.)

§ 3. The Sehrδdinger representation of Jίx{<&, a)

and the associated C*-Algebra ^ i (@, a)

We know from Theorem 5 that the algebra ^£1 (®, σ) of bounded
measures on a finite dimensional symplectic space (@, a) can be faith-
fully represented by operators on a Hubert space. In this section we shall
see that ^ # 1 ( ^ , σ) has a unique faithful irreducible (continuous) *-re-
presentation (up to unitary equivalence). This is essentially Von Neu-
mann's uniqueness theorem for the representation of the canonical
commutation relations for systems of n degrees of freedom (see Ref. [11])
which we have to complement in some respects for our further study of
the infinite-dimensional case. We begin with the

Definition: Let Qί be a real vector space (of arbitrary dimension) on
which a symplectic form a is defined (we recall that a is a real-bilinear regular
antisymmetric form — this forces the dimension of d: to be even if it is finite).
We say that Qc is equipped with a σ-allowed prehilbertian structure if

1) <E is a complex vector space for which the respective addition of vectors
and multiplication by complex numbers of the form oc+iO coincides with
the addition and multiplication by reals for the initial real vector space
structure,

2) as a complex vector space <E has a hermitian positive definite scalar
product h whose purely imaginary part is equal to iσ.

Comment on this definition: from the point of view of the real vector
space structure multiplication in @ times the imaginary unit is a real-
linear operator J of square — 1:

α1? α2 realsα 1 ? α 2 reals
oc2ψ2) = oc1Jψ1 + α 2 Jψ2 (39)

J 2 = - l (39a)
satisfying in addition

σ(Jψv Jψ2) = σ(ψlt ψ2) ψl9 ψnξ ξ. (40)
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The real part s of the hermitean scalar product:

h(ψv Ψ2) = *(Vi» Ψ2) + icf(ψi9 Ψ2)> 5> σ r e a l ( 4 1 )

is a real-bilinear symmetric positive-definite form on @ satisfying

s {Jψl9 Jψ2) = s (ψl9 ψ2) ψl9 ψ2 ζ @ (42)

and
5 (Vi> V2) = ~ a (Jψi> Ψ2) ψi> Ψz ζ @ (43)

or equivalently

(̂Vi* %) = s(J>i> ψ*) Ψv ψ2ζ® (43 a)
so that

J=- σ -i β . (44)

The situation characterized by the presence on a real vector space of
a symplectic form σ and a σ-allowed prehilbertian structure can be re-
constructed
— either from a symplectic form σ and a / satisfying (39), (39 a) and (40)

s is then given by (43)
— or from a real-bilinear symmetric positive-definite (i.e. Euclidean) s

and a J satisfying (39), (39a) and (42); σ is then given by (43a)
— or from a symplectic σ and a Euclidean s satisfying (44) J is then

given by (44).
In the rest of this section we shall be concerned with a finite-dimen-

sional symplectic space (g, σ). In this case the existence of σ-allowed
(pre)hilbertian structures is guaranteed. In fact every symplectic base
(ek, fk), k = 1, 2, . . ., n provides one by defining

Jek = iek = fk
k k ' \ k=l,2,...,n (45)

which implies

U/^0 . , * = 1 , 2 , . . . , » (46)
and therefore

l9 ψ2) .

The ez , ί = 1, 2, . . ., n then constitute a complex orthonormal base for (£.
It is important to realize that there are plenty of σ-allowed prehilbertian
structures on (@, a), the preceding construction giving in general two
different σ-allowed prehilbertian structures if applied to two different
symplectic bases.

The main tool for the construction of the Schrόdinger representation
of Jίx (@, σ) will now be the

Theorem 9. Let (©, a) be a finite-dimensional symplectic space on
which we choose a c-allowed (pre)hiϊbertian structure. The function
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α = / β-β<v.v) dm t f(φ) (48)

grίves rises /or each μ ξ eΛ^ (@, a) to the relation

Ω x μ x β = ω{μ)Ω , (49)

= μ(aΩ) . (50)

We prove (49) by direct calculation using (27), (29) and Fubini's

theorem: we have

{Ω xμxΩ} {ψ) - a-*Jdmσ{v) eiaC°>v)Ω(ψ -v)f dμ(u) e~ίσ(u>v) Ω(v - u)

= a~2 f dμ{u) f dma{v) ei<T<*.v+u) .

— — [S(Ψ—V,Ψ—V) + s(v—u,υ—u)]

= or1 Ω(ψ) f dμiuje* 2 I .
with

= f dmσ(v) eίσ(v»v+«) β-β(«,«)

which we evaluate using symplectic coordinates: % = (v?, u'j), v ==• (v\ v''*
ψ = (ψjf ψ'f). We get

~ae 4 , q.e.d.

Corollary. Ω is a self-adjoint idempotent of t^#1(®, σ).

Proof: One gets £?* = Ω from (28) and ί2 x Ω = β by setting μ = δ0

(see (22 a)) in (49).

Corollary. T&e function ω on <Jtx (@, σ) defined by (50) is α continuous

positive linear form on Jίx (S, σ) swc^ ί^αί

|ω(/ί) | ^ i|sr«(Λ*)H ^ l/»li (51)

where π2 is the regular representation defined in Theorem 5 *.

Proof: ω is obviously linear. Setting μ = o>* x y in (50) and applying

π2 one gets

7r2(μ x Ω)* π2{μ x Ω) = ω(μ* X μ) π2(Ω)

* The positive form ω is associated to the function of positive type a β as
described by formula (38b).
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so that ω (μ* x μ) appears as the proportionality factor of two positive
operators: it is therefore non-negative. Since ^ x (©, σ) has a unit, ω is
automatically continuous. ω(μ*) = ω(μ) for all //ζ^ 1 (@, σ) because
of positivity (or directly from the definition). Applying π2 to (49) we get

\ω(μ)\ | |π 2 (β) | | = \\π2(Ω x μ x Ω)\\ £ \\π2(μ)\\ \\π2(Ω)\\* ,

whence (51) since | |π 2 (β) | | = 1 because of the first Corollary to Theorem 9.
Definition: Let Qibe a sub *-algebra of ^f1 ((£, σ) and ω 121 the restriction

of ω toQl: ω 121 is a continuous positive linear form on 21. The *-representa-
tion of 21 obtained from ω | 2 l through the Oelfand-Segal construction [37]*
is called the Schrδdinger representation of 21 and denoted πω^.

We recall that πω^ is obtained by considering in 21 the left ideal

2tω,sc = [μ 6 » 1 ω(μ* x μ) = 0} , (52)

then defining τzω)%(μ) acting on 2l/2Zω)2( by

π«,9l(μ) b + 2ΐα>,2ίl = V X μ + ^ω,Qi , (53)

and finally extending πωt % (μ) to the completion of 2ί/9ίω, ̂  with respect
to the norm associated with the scalar product

(μi + ^ω,sί I μ* + 9lα,,st) = ω(^f x ^ a) (54)

which is possible if τtωy<&{μ) is continuous for that norm. This circumstance
usually arises from the fact that the *-algebra under consideration is a
Banach *-algebra with approximate unit. We here instead notice that
(51) allows to extend ω to the (7*-completion of t^#1(®, a) in the π2

norm. Denoting by ^ the order relation in that (7*-algebra we have for

v* X μ* X μ X v ^ W^iμ* x μ)\\ v* x v

whence, upon applying ω and using (31) the inequalities

K.a(A*)l2^KC»*XA»)l^l/»!l? (65)
In order to study the Schrόdinger representation we shall now

describe it in another way supplied by the following theorems.
Theorem 10.**. LetQlbe a *-subalgebra of Jίx(^,σ) containing Ω.

The sub *-algebra Ω x 21 x Ω of 21 is a field. Specifically the mapping

μζΩ x 21 x Ω->ω(μ) ζC (56)

is a *-isomorphism of Ω x 21 x Ω with the complex number field C.
Proof: The elements of 21 of the form μ = Ω x v x Ω, v £21 clearly

build a sub *-algebra of 21. They are such that

μ = ω(μ)Ω, μ ζ β X 21 x β , (57)

* See also Ref. [32], § 17, n° 3.
** Theorem 10, the minimality of the ideal IQ Γ\ 21 in Theorem 11, and Theorem

17 are not necessary for the understanding of subsequent constructions.
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which shows that the mapping (56) is multiplicative and injective, there-
fore surjective since 21 φ 0. It is on the other hand evidently linear and
we noticed earlier that ω(μ*) — ω(μ)*.

Theorem 11. Let 21 be as in Theorem 10 and consider in 21 the left
ideals 3# r\ 21 and κ$'Ω r\ 21 intersections of 21 with the closed left ideals

fl = uer

1((£,a) xΩ = {μ xΩ\μζ^1(<£,σ)}

= {μ 6 ^ i ( ® , σ)\μxΩ = μ} (58)

of . ^ ( S , σ). These ideals are directly defined as

ί 3 β n 2 t = = 2 l χ β = { μ £ 2 l | μ χ β = μ}

\df

ΩrΛ^=={μζ^\μxΩ = O}. ( 5 9 )

They are complementary
2 t = 3 β n 2 l θ 3 β Π 2 l (60)

and closed if 21 is dosed. 3 β r\ 21 ΐθ α minimal iedal of 21 072, which the sesqui-
linear form

(μ\v) = ω(μ* x v) (61)

defines a prehilbertian structure. 3& r\ 21 is a maximal ideal of 2ί coinciding
with the null-space 9tωf$ι 0/ ί̂ e /orm (61). Finally the restriction π of the
left-regular representation of 21 to the prehilbertian space 3 β Γ\ 21:

π{μ)v = μx v μ £21, v ζ 3 β n 31 (62)

ŝ α^ irreducible *-representation consisting of bounded operators whose
extension to the completion of 3# r\ 21 i$ unitarily equivalent to the Schrό-
dinger representation πωt<&.

Proof: The equalities between sets stated in (58) and (59) are immediate.
Continuity of the mappings μ -> μ x Ω — μ and μ -> μ x Ω implies
that 3β and 3^ are closed. Equation (60) amounts to the existence and
uniqueness of the decomposition for each μ ζ 21

μ = μ i + μ2 with μ 1 6 3 β n 2 t , μ 2 6 3 β n 2 l . (63)

Now right multiplication of (63) by Ω fixes μ1 = μ x Ω whence
μ2 = μ — μ x Q which actually fulfills (63). Let us now show the mini-
mality of κSΩ r\ 21: we start with a left ideal 2 Φ 0 of 21 contained in
3 β Γ\ 21. The square £ 2 = {Σ μt x v^μ^Viζ: £} of the ideal £ cannot
be (0) because taking μ ζ 2, whence μ* x μ ζ 2, this would imply
(μ* x μ)2 = 0, whence μ* x μ = 0 and μ = 0 by the corollary to Theorem
5. Now take μλx Ω, μ2x Ω ζ2 such that μ1xΩxμ2xΩ^=0 whence
flx/i2xί3φ0, there exist by Theorem lOvζΩxQίxΩ such that
vxΩxμ2xΩ = Ωso that
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whence £ = 3 β A 21, q.e.d. The maximality of 3^ A 21 now immediately
results from the minimality of 3# A 21 and (60). To study the sesquilinear
form (61) we write according to (49):

Ωxμ*xμxΩ=(μx Ω)* x (μ x Ω) = ω(μ* x μ)Ω

this implies via Theorem 5 the equivalences: ω (μ* x μ) = 0 <=> μ x Ω = 0o
<=> μ (: 3# A 21, whence 3β A 2t = 9lω>g|. Equation (60) then implies the
strict positivity of (61) on 3 β A 21.

π defined by (62) is a *-representation of 21 on 3 β A 21 (obvious
from Theorem 3). One sees easily that it is unitarily equivalent to the
Schrόdinger representations πωt<&: because of (60) the class μ -f- 9lω,st ζ
£2l/2Zω,2t contains a unique element of 3# A 2ί, namely μ x Ω. This
establishes a one-to-one mapping between these two spaces which is
isometric for the scalar products (54) and (61) and transforms (53) into
(62). The extension to the completions is obvious, π is irreducible
owing to the minimality of the left ideal 3# A 21.

Theorem 12. Let 2lχ and 2t2 be two sub *-algebras of «^1(@, σ) such that
3 j βC2l1C2l2. The Schrόdinger representation π^^ of 2lx is unitarily
equivalent to the restriction T r α , , ^ ^ of the Schrδdinger representation of
Sla to Sip This holds in particular if -S^ί®, σ) C 21XC 2t2. For *-algebras 21
such that 3β C 21C ̂ ι (®, or) w e shall accordingly write πω instead of

Proof: Results immediately from Theorem 11 and the fact that
lx = 3 β A 2l2 = 3 O . For 21 ̂> ^ (@, σ) one has 21 ̂  3 β because the

ideal JSfx (@, σ) contains β and therefore 3 β .
Theorem 13.* Let us denote by UΩ, u ζ (@, or), the following element of

o(®)
UΩ - όM x Ω . (64)

α function on @ w β

θcαZαr product (61) iw 3 β o/ wi3 and " β , u, v ζ @, is

(«β| φ β) = αvfl(w) . (66)

In particular UΩ is of unit norm. One has furthermore, for any f ξ #Ό(®)>

fx Ω = ff(v)vΩdma(v) (67)

(uΩ\fx Ω) = a{fx Ω}{u). (68)

The set of all UΩ, u running through <£, is a total set in 3 β (or hi the Hilbert
space of the Schrδdinger representation),

* The states UΩ are the same as the' 'coherent states" introduced by R. GLAUBER,
Phys. Rev., 130, 2529 (1963); 131, 2766 (1963).

Commun. math. Phys., Vol. 1 3
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Proof: (65) is immediate inserting (21) and (47) into (27). By (64),
(49) and (22), (23), the left side of (66) is seen to be equal to

ω(δ-u x δv) = eia<P'») δv-u{aΩ) = aeiσ(u>v)e~~z(v~~u>v~u).

Using (27) one has on the other hand for /
i

(/ x Ω) (ψ) = a-1 fe~ia(v>v) e~"2s ψ~v'ψ-v f^ dmσ(v) ^ ^

= fvΩ(ψ)f(υ)dmσ(υ)

which is the same as (67) where the integral on the right side is to be
understood in the topology of point-wise convergence on ^0(@). (68)
finally obtains by forming the scalar product of (67) with UΩ to the left
and using (66) and (67). For any / ζ 3 β , (by Theorem 0?/ = / x f l ^ 0 (<g))
(68) now shows that (uΩ\f) = 0 for all u ξ® implies / = 0: the set of

UΩ, u £ @, is therefore total in 3# (i.e.) the finite linear combinations
of the UΩ are dense in 3 f l).

Theorem 14 The Schrδdinger representation πω of ^ 1 ((£, σ) is faithful.
Proof: Take μ Φ 0 ζ ^ ί ® , a). To show that πω(μ) φ 0 we shall

exhibit / ζ^ 0 (®) s u c n t n a t ™ω(μ) πω{f) = πω(μ x f) Φ 0. Since μ Φ 0
there exists / ζ^ 0 (®) s u c n ^ n a ^ f*(ϊ) == (^ x /) W + 0> whence μ x /
= gr Φ 0. Now g ζ&0(@) (Theorem 0) is such that πω(g) Φ 0 because
otherwise one would have g x UΩ = 0 for all u and therefore

(g x UΩ) (ψ) = e-*σ(w'^> / e~iσ(ξ>ψ+u) Ω(ψ - u - ξ) g(ξ) dmσ(ξ) = 0

for all ψ and ΐ*. Uniqueness of Fourier transform would then imply
Ω(ψ — u — ξ) g(ξ) = 0 for all f, whence ^ = 0 contrary to hypothesis.

Theorem 15. Let 21 be a sub-*-algebra of ^ ( S , σ) containing Ω.
Each *-representation of 21 on a Hilbert space is the direct sum of a multiple
of the Schrδdinger representation πωf& and a *-representation ρ± such that
ρx(Ω) = 0. Consequently each irreducible * -representation ρ such that
ρ (Ω) Φ 0 (in particular each faithful irreducible *-representation) is
unitarily equivalent to πωi<&. This theorem is a slight extension of Von
Neumann*s uniqueness theorem (see Ref. [ l l ] j .

Proof: Let ρ be a *-representation of 21 on the Hilbert space J>ίf.
Ω being a self-adjoint idempotent ρ(Ω) is a self-adjoint projector with
range J f and null space Ctif1-. Let {/α, α ζ /} be a complete orthonormal
system for Jf. Owing to (49) we have for μ, v ζ *Jίx (®, a)

(f«\Q(μ)\fβ) = <J*\Q(Ω x μ x Ω)\fβ) = <o(μ) (f.\Q(Q)\fβ) = δ«βωW

a n d

Thus the cyclic components of the /α, α ζ /, for the representation ρ
are mutually orthogonal, ρ reducing on each of them to a subrepresenta-
tion with expectation ω(μ), i.e. unitarily equivalent to πω,$t. Moreover
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Θ
since Σ Q (21) /α 2 & the remaining component ρ1 of ρ acts in Jf1- and

is thus such that ρ± (Ω) = 0. In the special event that ρ is irreducible and
such that ρ(Ω) φ 0 one has ρx = 0 and J f is one-dimensional.

We notice that as a result of Theorem 8, ρx annuls not only Ω but
the whole of ^ ( S , cr). In particular we have the

Theorem 15 a. Each *-representation of ^ ( ξ σ ) is a direct sum of
a multiple of the Schrόdinger representation and the null representation.
Each irreducible representation of ^ ( S , σ) is unitarily equivalent to the
Schrδdinger nepresentation.

Corollary. The regular representation π2 of Jίx (®, σ) is a multiple of
the Schrδdinger representation πω. Accordingly | |π2(μ)|| = | |πω(μ)| | for

Proof: We have to show that the subspace J Γ 1 in the proof of Theo-
rem 15 reduces to the null vector for ρ = π2. For any / ζ Jf1- C &i (®, dma)
one has π2(g) f = g x / = 0 for all g ζ ^ ( S , a). In particular for each
g ζ J2\(@, σ) r\ %0((£), g x / ζ ίfo(®) by Theorem 0 and

which implies that / = 0 since -S^ί®, σ) r\ &0(<S) is dense in e3?2(®> dmσ).
Theorem 16. Let 21 be as in Theorem 15. The Schrδdinger representa-

tion πω,% of 21 is (topologically) irreducible.
Proof: Let 21 be the completion of 21 in the jr2-norm (Theorem 5).

21 is a C*-algebra and possesses therefore an irreducible representation ρ
such that ρ (Ω) φ 0*. The restriction of ρ to 21 is also irreducible since 2t
is dense in 2t in the norm topology (and a fortiori in the weak topology
of operators on the representation space of ρ). According to the preceding
theorem ρ is then unitarily equivalent to πω,<& which is thus irreducible.
This result could also have been inferred from the Theorem 19 below.

The C*-algebra <Jlx (@, a). Let (@, σ) be a finite-dimensional symplectic
space on which one has defined two different σ-allowed Hilbertian struc-
tures s± + iσ and s2 + io. Let Ωx and Ω% be defined as in (47) in terms
of sx and s2 respectively, and let ωx and ω2 be the corresponding positive
forms on . ^ ( S , or). Theorem 15 shows us that for a sub-*-algebra 21
of <Jίx (@, σ) containing Ωx and Ω2i in particular for Λ(x (@, a) itself,
ωx and ω2 define the same (faithful) *-representation πωu^ = πω2>vι
up to unitary equivalence. The following definition pertains therefore
only to the symplectic structure of (<£, σ):

Definition. Let (®, σ) be a finite-dimensional symplectic space. For
μ ζ<^ι((£, σ) we denote by \\μ\\ the norm of the corresponding operator in

* See for instance Ref. [5], p. 324, Theorem 4 of § 24, n° 2; p. 314, Prop. II
of § 23, n° 3; and p. 320, Prop. I of § 24, n° 1.

3*
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the Schrδdinger representation of Jέx (£, a):

ιι n ii / M I a ω(v* X μ * X μ X y)"5"

IN = K(ί*)ll= S U P — —-L—~ ( 6 9 )
IIμ|| is cαZZed the Schrδdinger norm of μ *.For any sub-*-algebra^ of JίΎ ((£, or),
we denote by 2ί the completion of 2t /or the Schrδdinger norm (69). 21 is a
C*-algebra called the Schrδdinger C*-completion of 21. In particular the
respective C*-completions of ϊ^#1((£,σ) and J£Ί{<£, σ) are denoted by
Jί^β) and

It is obvious from this definition that one has 21C ̂ i ( ^ ? cr), 21 being
the sub-(7*-algebra of t ^ 1 ( ^ 5 σ) generated by 21. Setting v = δQ in (69)
and using Sehwarz's inequality for ω and (55) one gets the set of in-
equalities i

\ω(μ)\ ^ω(μ*x μ)* £ \\μ\\ £ H i (69a)

The positive form ω on ̂ # x ((£, a) therefore extends to a positive form on
Jίx{^, σ) which we continue to call ω, the representations 7iω^x^σ)
extending correspondingly to a faithful irreducible representation of
^i (@> σ) which we continue to call the Schrδdinger representation and to
denote by πω)Jίi^iΰ) = πω.

If, as we shall assume in what follows, 21 contains 3 β , \\μ\\ is equal
to the operator-norm ||πω,2i(μ)|| i e. is obtained by taking the Sup in
(69) for v running through 21 (Theorem 12). Theorem 16 then shows that
21 is (via πω — πω,^) isomorphic to a topologically (and, by Kadison's
Theorem [38], strictly) irreducible operator algebra i.e. 21 is primitive.
The following theorem shows that by completing 2t in the 0*-norm we
obtain a new object.

Theorem 17. Let 21 be a sub-*-algebra of ^ ( S , σ) containing 3 β .

21 is strictly smaller than its Schrδdinger C*-completion 21.
Proof: We set

and easily obtain using Theorem 8 and (24):

Theorem (4.10.6) of RICKART** then shows that 3 β r\ 21 is strictly smaller

than its Hubert space completion: because of Kadison's theorem 21 is

then strictly smaller than 21.

The inequality (69a) allows one to extend (49) to ̂ £x(^, a). Reasoning

as in the proofs of Theorems 10, 11 and 15 one then gets corresponding

results for the O*-algebra ^ ( S , σ):

* The fact that μ is a norm and not a pseudonorm results from Theorem 14.
** See Ref. [33], p. 263, Theorem (4.10.6).
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Theorem 18. One has for all μ £ Jίx (@, σ)

Ωx μx Ω=ω(μ)Ω (49')

where ω denotes the extension of the form (50) to ^^(Q, σ). The sub-algebra

ΩxQίxΩoftyίisa field. The respective Schrδdinger C*-completions

21 x Ω = 3 β n 2 l = 2t x Ω = 3 β A 21 and 3^_A 21 = % A 2t of 3 β A 21
α?ιeZ 3β A 21 are complementary left ideals of 21, ί̂ e /ιrs£ δemgr a minimal,

the second a maximal left ideal. 3& A 2ί ŝ £&e ?mZZ 5^ace o/ ^e extension

of ω to 21. 3# A 2t *s f% Kadison's theorem) a complete Hilbert space under

the scalar product (μ \ v) = ω (μ* x v) (dΩ ΓΛ 21 has accordingly the same com-

pletion in the norms \μ\ and ω(μ* x μ)2)*. The extension of the Schrδ-

dinger representation πω to 21 coincides with the restriction of the left regular

representation of 21 to the minimal left ideal 3 β A 2ί (this providing an

alternative proof of Theorem 16J. Every * -representation ρofQlona Hilbert

space is the direct sum of a multiple of the Schrδdinger representation and

a representation ρx such that ρ x(β) — 0. In particular every irreducible

representation ρ of 21 such that ρ(β) φ 0 is unitarily equivalent to the

Schrδdinger representation nω. Every *-representation of ^ ( S , σ) is the

sum of a multiple of the Schrδdinger representation and the null representa-

tion. Every irreducible representation of Jέ?

1((£, a) is unitarily equivalent

to the Schrδdinger representation. All *-representations of ^ ( S , σ) are

quasi-equivalent.

The last statement is an immediate consequence of the definition of
quasi-equivalence of representation, for which we refer to Appendix I of
Rβf. [6].

Theorem 19. The Schrδdinger representation maps 3?x ((£, a) isomor-
phically onto the compact (= completely continuous) operators of the re-
presentation space.

This theorem is an immediate consequence of A. ROSENBERG'S
result that a concrete (7*-algebra on a separable Hilbert space having
only one irreducible representation consists of the compact operators [39].

Theorem 20. Let (@, σ) be a 2n-dimensional symplectic space, d^
a 2p-dimensional regular subspace of (©, a), @2 the orthogonal complement
of (^ (with respect to a), πω, πωi, πφ2 the respective Schrδdinger representa-
tions of ^ ( S , σ), -#!(©!, or), ^ ( ^ g , σ) acting on the respective spaces
Jf, e?f! and Jf2. One has

Jί? = ^ (8) J^2 (70)

* This can be directly inferred from the fact that ω(μ* X μ)2 =| |μ| |
j ^

= ||μ* X μ\\ 2 for μ £ <3Ω (take μ* x μ for μ in (49)).
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and, for μx ζ ^ ( © ^ σ), μ2 £ «.#2(®2, <*)

(74)

i.e. μx has the same Schrδdinger norm as an element of *Jίx (@1? a) and as an
element of ^^((S, a). Consequently one has the inclusion*

(75)

Proof: The definition g 2 = {ψ ζ ® |σ(y>, θ) = 0 for all 0 ζ (gj implies
that @ = (^ Θ (£2 since <r is regular one has namely dim© = dimS^ +
+ dim®2 and on the other hand (£x r\ @2 reduces to the null vector owing
to the assumed regularity of (Ŝ . Moreover if v ζ @2 is such that σ (v, η) = 0
for all η £ @2 one has σ (v, y)) = 0 for all ψ ζ @, and therefore @2 is also
regular. Taking symplectic bases (ei9 fi) and (eί9 fj) respectively in
@! and ®2j i = 1> 2, . . ., p, j = ^ + 1> > n> w e get a symplectic base
in (@, σ) which, upon the construction (45), (46) provides a σ-allowed
prehilbertian structure h — s -{- iσ on (@, σ) for which (Ŝ  and @2 are
orthogonal complements. For ψ = ^ + ^ 2 £ @, ^ ζ (£l5 ^ 2 £ @2 we set

where

αf = / e"5^^) dmσ(yή , a = a±a2

and denote by ω, 0)2, ω 2 the corresponding positive forms respectively on
Jt = uf^ί®, σ), ^ = Jίx^ί^ σ), ^ # 2 = ~ î(®2> ̂ ) F o r Vi ζ uίΊ, ̂ 2 ζ-^2
one has according to (33) and (50):

ω(vx x va) = ω^Vx) ω2{v2) . (76)

To prove (70) we define the tensor product of μ1 = μ1-{- 31 ωi, jιx ί ^il^ωu jtx

and μ2 = μ2 + 3tω 2,^2 £ ̂ 2 / 3 l ω 2 ) ^ 2 as

A ® j ί ! = ftXiMi + 3 l β i ι i (77)

This definition is coherent because Qχζ(3lωi)^1, Qzί^ω^jtz imply

^i x £?2> ̂ i x μ& Q2 x lh 6 2tω s v# owing to (76). Furthermore for

ω 2 ,^ a J < = 1, 2, . . ., fc, , = 1,2,..., Z

* As a result of theorem 19, -S?i((έ, σ) is the C*-tensor product of =2?

1((g1, σ)
and -Ŝ i (®2» σ ) We leave open the question of wether an analoguous result holds
for the c^1-C*-algebras.
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one has by (54) and (76):

Σ μ\ 9 A Σ (78)

where ( | ), (\)l9 ( | )2 denote the scalar products (54) respectively on
*^/9ϊω, Jt > ^i/3tω l s Ms ^2l^ω2, jt%* Since the two last spaces are respectively
dense in ^ and «^2, (77) and' (78) show that 2tfx $ J f 2 C ^ and (70)
will be proven if we show that this inclusion is an equality. This now
follows from the last assertion of Theorem 13: we start from the total
systems {UlUv u± ζ Sj}, {u*ύ, u2 ζ @2} respectively in Jf1 and Jf 2 and show
that UχΩ1 ® Wai22 is total in ^f: since ©x and @2 are orthogonal Jf^ and 3tif2

commute (Theorem 6). One has therefore

the M,0 = Uί + UiΩ being a total system in 3tf.
Proof of (73), (71) and (72). We verify (73) on the total set of elements

π ω ( ^ x ^ a) vt Θ ί2 - ^ X μ2 X ^ x v2 + ^JI

= μ±x v1x μ2x V2+
<31(O}^= πωι(μj) vx Θ πωz(μ2) v2

(71) and (72) are obtained by specifying respectively μt = (50, μ2 = δ0

in (73).

We close this section with the remark that ^ ( ( 5 , σ) is a separable
C*-algebra whilst ^#1(@, σ) is non-separable. Separability results for
^ f t α ) from Theorem 19. The non-separable character of Jtx{^, a)
will result from the existence of an irreducible representation π on a
non-separable Hubert space (see Ref. [35] 2.3.3). We proceed to the con-
struction of π. Let ei} fif i = 1, 2, . . ., n, be a symplectic base in ® with

ψ = Σ (£kek + ?7fc/fc)> V ζ ®? a n ( i tet 5 ^ e ^ n e r e a >l subspace of @ spanned

by the vectors eif i = 1, 2, . . ., n. Consider the commutative subalgebra
23ί of Jίx (@, σ) consisting of all (canonical extensions of the) bounded
measures on ^ An element μ ζ 321 can be considered as a measure μ (ξk)
on the space of the coordinates ξk and we define as follows its Fourier
transform μ:

Σλkξ*\dμ(ξ
= l J

For fixed λk μ ξ 9K -> /ί (Afc) is a character of 22ΐ because the twisted con-
volution reduces on 371 to the ordinary convolution. We thus get a
one-dimensional representation π 0 of 9K on a complex Hubert space
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spanned by the vector u by setting

πQ(μ)u = μ(λk)u, μ ζ 221

One can now construct an irreducible representation π of *Jtx ((£, a)
on a Hubert space ^f containing the vector u such that π restricted to
321 acts on u like π0 (see Ref. [35], 2.10.2). Taking

2 ? f c , Σth
k=l k=l

one has then using (22)

2i £ ξkηk]π(δη) π(δξ) u
k l

which shows that for η φ η' π(δη)u and π{δn>)u are eigenvectors of the
π(δξ) belonging to different eigenvalues and hence mutually orthogonal,
^f contains thus a non-denumerable orthonormal system q.e.d.

§ 4. The algebras Jtx (S), σ) and Jίx (S), σ)
for an infinite-dimensional symplectic space

We consider in this section an infinite-dimensional symplectic space
(§, σ), that is, an infinite-dimensional real vector space ξ) equipped with
a symplectic form and such that in addition there exists a filtrating and
absorbing system of regular finite-dimensional subspaces of ξ) (we recall
that a subspace @ C § is regular if the restriction of σ to © is regular.
£f is filtrating in the sense that to each pair ®l5 ©2 £ ̂  there exists
<S3 ζ ΪP such that (£3 } ®x w S 2 ^ is absorbing in that^U @ = £. These

two definitions imply that to each finite-dimensional vectorial subspace
5 C $) there exists a n g ( ^ such that 5 C ®)

The infinite-dimensional symplectic spaces which we will have to
consider are all provided by some complex prehilbertian space § with
a complex scalar product h = s + iσ, S? consisting of all finite-dimen-
sional complex subspaces of § . In this case one has a "σ-allowed pre-
hilbertian structure" on (S), σ) as was defined in the beginning of Section 3.
Since however other σ-allowed prehilbertian structures on the same
(§, a) can be of interest (see § 6), it is useful to consider the symplectic
space (§, a), as above, independently of the way in which it is given in
terms of a prehilbertian space.

Our task is to construct the analogues for (S), σ) of the algebras
discussed in §§ 2 and 3 for a finite-dimensional symplectic space. Roughly
speaking these are the "union" of the algebras ^ ( S , σ) (resp. ^ ( ( g , σ))
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corresponding to the subspaces S £ Sf of § . For a rigorous construction
we start from the set 2K of all couples {μ, (£} consisting of an (£ ζ £P
and & μ ζ ̂ x (@, o) and define on 22ΐ an equivalence relation in the follow-
ing way: given @αC <£β £ ̂  let us first denote by 99^ the homomorphic
injection of e^1(@α, a) into «Λ̂ 2(®/5> σ ) provided by the "natural exten-
sion" of measures (see Theorem 6). One has, according to (33)

9?αα = identity operation on «Λ0Ί(@α> σ) (79)

φγβ'ψβcc=φγx for SaCfyCGytSr. (80)

The equivalence {μx, @α} ~ {μ ,̂ β }̂ between elements of 22ΐ is now defined
as the existence of (at least one) (£γ £ £f such that @y ̂> (£α w S^ and

φγ*μ*^ φγβμβ> (81)

One can equivalently require (81) for all (Sγ such that (£y^)@αw (S .̂
Suppose indeed that (81) holds for @y and that there is a ©̂  £ ̂  such that
^ό D ®α w ̂  but φδΰtμxΦ ψδβμβ- Taking ©ε £ ̂  such that ®β Z> ®y w ®Λ

one would conclude from (81) and the fact that φεδ is injective that

ψeγφγxμoc^ ψεγψγβμβ^ ψεccμoc= ψeβ

<Pεδ<Pdaμx 4= ψεδψδβμβ =» ̂ βα^α 4=

The relation ~ defined by (81) is now easily seen to be an equivalence
relation : reflexivity is obvious from (79), reciprocity from the symmetry
of (81) in α and β, transitivity from the fact that the equivalences
{μ*, ^α} ~ {μβ, &β} and {μβ, <gβ} - {μγy dγ} imply for <gd£S? such that
@ό ̂  ®α w ^ t h a t

whence {//a, <£a} = { ŷ) @y}.
We consider now the set 93^ of the classes determined in 921 by the

equivalence relation ~ . Let us call {μx, (£α} £ 92ΐ a representant of μ ζ ^
if {μα, ©α} ζ /̂ . For μ, v ζ 9KX with representants {μα, ©α}, {^, (£β} we
can choose other representants {φγ<x.μa.i &γ}, {ψγβVβ> ®y} with the same
® y ζ ^ , Sy^SαU®^. We then define aμ + bv (for complex scalars
a,b), μ x v and μ* as the respective equivalence classes of {aφγxμx +
Jcbφγβμβ,<ξγ}1 {(ψγocμoc) x {ψγβμβ)^v} a n d {(<Prαμ«)*> ®v} We define
in addition

bill = \ψy«μAi = -^i - norm of μ (82)

||μ|| = l̂ yα/Wαfl = Schrodinger norm of μ . (83)

Owing to (34), (35), (36a, b) and (74) these definitions do not depend on
the choice of 6rr Neither do they depend on the choice of the represen-
tants {μa, @α} and {vβ, (£β} of μ and v because by starting from other
representants one would get the same {φγoίμx, <£γ}, {φγβvβ, Q£γ} with
an appropriate (£γ. We have therefore defined on (3ϊl1 the structure of
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a normed *-algebra (in either of the two norms (82) and (83)). The

Banach *-algebras - ^ ( ί ) , a) and ^ ^ ( ί j , a) are now defined as the com-

pletions of (3R1 = 2ftx(§, a) in the respective norms (82) and (83). Since

\\μ* X μ\\ = \\μ\\* for all μ ζ 2ft1? ^ ( § , a ) is a C*-algebra.
The preceding construction depends a priori on the system £P.

However,
Theorem 21. 2R1(§, σ) as constructed above (and therefore

and *Jtx{$)<>G)) depend uniquely on the symplectic space ($),σ) and not
on the system £f used for their construction.

Proof: Take a symplectic space (§, σ) with two distinct filtrating and
absorbing systems S? and Sfx of finite-dimensional regular subspaces.
Sf' = £f \J £fx is a filtrating and absorbing system containing £f (it is
filtrating because £f absorbs every finite-dimensional vectorial subspace
5 of §) . Let 2R^ and 2ftf, resp. 2ft^' and 2Rf̂  denote the spaces construct-
ed above respectively with Sf and «$*'. We want to establish a one-to-
one homomorphism between 2ft f and 2ft f . For this, to each μ ζ 2ft f
with representant {μx, (£a} £ 2ft^ C 2ft^ we assign the class μ' ζ 2ftf
of {μa, (£α} in 2ft^'. This procedure is independent of the choice of the
representant {μx, @α} of μ because if {μα, @α} ^ {μβ, <£β} in 221^ the same
holds obviously in 2ft^\ Since the algebraic operations in 2ftι9"/ can be
defined using arbitrary representants the mapping μ-> μ' is homomorphic.
I t is on the other hand one-to-one (because of the arbitrariness of
(Ey in the definition of ~) and onto (because £f is absorbing).

Theorem 22. Let (5), a) be an infinite-dimensional symplectic space and
S? a symplectic subspace of (§, σ) (that is a subspace which is itself a
(possibly infinite-dimensional) symplectic space under the induced struc-
ture). There is a natural homomorphic injection of e^1(S?, a) into ^ι{$), σ)

(respectively of ^±(^, σ) into -#i (§,σ) j . The set of these injections for
different subspaces satisfies in addition the rules (79), (80).

S? and Sfx being filtrating absorbing systems f or"§ and k respectively
one sets SPr = 6? \J £fx and performs with Sf and $f" the construction
of the preceding theorem, the only difference being that £f is not ab-
sorbing for § , so that the mapping μ -> μ' is not onto.

§ 5. The Fock representation of Jίx (^, a) associated to a σ-allowed
prehilbertian structure and the corresponding field operator

In the last section the algebra Jίx{$), a) has been given an algebraic
definition without reference to a special representation. This is made
possible by the intrinsic character of the Schrodinger norm (83) due to
von Neumann's uniqueness theorem (adapted to the algebra of bounded
measures). We now intend to describe the analogue for ^^(ξ j , σ) of the
Schrodinger representation of *Jίx (®, a): the analogy with the finite-
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dimensional case is however only partial: instead of the uniqueness of
the Schrόdinger representation (following from Theorem 15) we will
now have a plurality of "Fock representations" (which depend on the
choice of a σ-allowed prehilbertian structure), amongst which the famil-
iar Fock representation of field theory is only one example.

Let (ξ), σ) be our infinite-dimensional symplectic space. We start
as in § 4 from a σ-allowed prehilbertian structure h = s + iσ on {$), σ).
Defining the function Ω's on § as

Ω's(y) = e-τs{Ψ w), ψζ<?> (84)

we consider the linear form ωs on ^ ( ί ) , a) defined as follows: for

μ ζ. 2#i(§> <*) with representant {μx, gα}, S α £ S?, we set

ωa(μ) = μΛ(Ω'.\<ε«) (85)

where Ω's | @α is the restriction of Ω's to the subspace (£α.
This definition does not depend on the representant {μx, (£α}: given

another representant {μβ, Qίβ} we have an (Sγ ££?, @y Z> ®α ^ &β, such
that ψγαμoc^ ψγβμβ, whence

I t is obvious from the definition of algebraic operations in <2R1($), σ)
that ωs is a positive linear form on this algebra. One has further from (51),
(68), (82), (83)

M/*)| ίS Ml ϊϊ M i , (86)

therefore ωs extends to a positive linear form on the Banach *-algebras

fty#1(§, σ) and ^£x{ξ), σ), which is of unit norm since μ(δ0) = 1. The re-
presentation πωιs of *Jίχ($)> σ) (and, by restriction of its sub *-algebras)
is called the Fock representation associated with the σ-aΐlowed prehilbertian
structure h — s + iσ. Unlike the case of a finite number of degrees of
freedom (corollary to Theorem 15) πωs now essentially depends on s.

If, for ψ £ ξ> such that s(ψ,ψ) = 1, we define

ϋs(ψ) = πω>(δψ), (87)

the correspondence
(88)

is by (22) a unitary representation of the additive real number line.
Since

ωs(ψ) = (Φ0\ϋs(ψ)\Φ0) = e"2SiΨ>Ψ) (89)

is continuous in ψ this representation is strongly continuous (we denote
by Φo the cyclic vector of the Fock representations πΦs constructed
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a la Gelfand-Segal from the positive form ωs). By Stone's theorem there
exists therefore a self-adjoint infinitesimal operator

^ ( y ) 1 (90)

such that
Us{ψ) = eiA (ψ) (91)

this (unbounded) operator is called the field operator associated with the
Fock representation πωg (or with the σ~allowed structure h = s -f- iσ).
Let § be the Hubert space completion of the prehilbertian space (§, h).
The field operator (90) is identical with the operator

a+{ψ} + a-{ψ}9 ψζξ>C$ (92)
oo

defined in the Hubert space <$?($))= 0 Sξ)®p. This results from the

equality of (89) with
< [ + ί } + ί } ] ~~ϊs(Ψ>Ψ) (93)

where ψ0 is the vacuum of
The last formula is easily derived from the fact that the exponential

of (92) as applied to the vector ψ0 is equal to its Mac Laurin expansion
(calculation analogous to the derivation of the addition law (3)).

Notice that the Fock representation πω$ of ^1(ξ),σ) is obviously
faithful since ||πωβ(μ)|| = \\μ\\ for all μ.

§ 6. The field operator algebra 2ϊ (φ, σ) and its subalgebras 21 (6, σ)

We come now to the description of the "field operator algebra"
which is the object of main interest for field theory. (§, σ) still denoting
an (infinite-dimensional) symplectic space let 5 be a finite-dimensional
vectorial subspace of ί) and μ a bounded measure on 5- We can give μ
a unique meaning as an element of t^#1(§, σ) by choosing @ ζ SP such
that @D5> defining μ = φ&$μ on @ by (33) and taking the element of
£#!(§, σ)C^#!(§, σ) represented by (μ,<£). This procedure does not
depend on the choice of the subspace (£, because, if we had chosen in-
stead (£' £ ̂ , there would exist (£' ( y , g " ) g υ (£' such that

or {/Γ, (S;} ~ {//, ©}. In this way we can consider as included in uί^(§, σ)
the following decreasing sets: the set Jί± (5) of bounded measures on *§,
the set J^ίO) of bounded measures on 5 absolutely continuous with
respect to Lebesgue measure and the set ^ό(5) °f (bounded) measures
with Radon-Nicodym derivatives (with respect to Lebesgue measure)
continuous and with compact support.
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Definition: Let 21 (£j, σ), resp. 2lo(§, σ), be the smallest sub-(7*-
algebra of ^ ( 1 ) , σ) containing all Jδ?ί (5), r e s P ^ό(ι?)> f°Γ a ^ one-dimen-
sional (real) vectorial subspaces of § . 2l(§, σ) is called the field operator
algebra of the symplectic space (§, σ).

This definition being given for an (§, σ) of arbitrary dimensionality,
it is clear from the inclusion of the ~#rO*-algebras that 2l(§, a) contains
as sub-O*-algebras all the 21 (®, σ) corresponding to the regular subspaces
gof§.

The following theorem gives the connection between 2l(§, σ) and the
field operators of the different Fock representations.

Theorem 23. Let h = s + iσ be an arbitrary a-allowed prehilbertian
structure on (£j, σ) and let πω$ and Λs(ψ) be the associated Fock representa-
tion and field operator. The image of 21 (£j, σ) in πωg is the smallest sub-
C*-algebra of π^i^M^.aΫ) which contains all functions of the different
field operators Λs(ψ), ψ ζ$), which are continuous and vanish at infinity.

This theorem shows that the " algebra generated by the field operator"
is independent of the Fock representation (viz σ-allowed prehilbertian
structure). This motivates the name "field operator algebra" without
further specification.

Proof of the theorem: The specification of a vector ψ in the one dimen-
sional subspace 5 establishes as follows a one-to-one correspondance
between Lebesgue-integrable functions and absolutely continuous mea-
sures on 5

μf(g)= f g(λΨ)f(λψ)dλ g^oCS). κ '
— oo

Let

As(ψ)=+fξdP(ξ) (95)
— oo

be the spectral decomposition of the self-ad joint field operator As(ψ).
Stone's theorem tell us that

Us(λψ) = πωs(δψ) = eίλA>M = feiλ*dP(ξ) (96)
— oo

and we know from the theory of the j£\-algebra of the additive group
of 5 that for μf given by (94)

*»>/) = +fϋs(λψ) f(λψ) dλ = /7(f) dP(ξ) = f(As(ψ)) , (97)
— oo — oo

where / is the Fourier transform of λ -> f(λψ)

=

 +feaίf{λψ)dλ. (98)
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the norm of the operator (97) is given by

/ (99)

Our theorem then results from the known fact that the set of Fourier
transforms (98) of functions of «= f̂1(5) is a dense subset of the set ^0(λ)
of all continuous functions vanishing at infinity on the real line.

§ 7. Other possible choices of O*-algebras

The 0*-algebras described above do not exhaust the list of possible
choices of a (7*-algebra associated with the Boson field. The following
alternatives are to be considered, each of which might possess special
virtues:

The algebra SB (§, a) defined as the smallest <7*-subalgebra of Jίx (ξ>,o)
containing all bounded measures on the different (real) one-dimensional
spaces of § . This algebra could, as well as Sl(§, σ), claim the name of
"field operator algebra" since it is the smallest O*-algebra of Jίx($), σ)
containing all bounded continuous functions of the different field opera-
tors which are differences of continuous functions of positive type (this
is seen by an argument analoguous to the one of the previous section) *.

The algebra J f ( § , σ) is the smallest C*-subalgebra of ^#χ(§, σ)
containing all absolutely continuous measures on the different regular
subspaces of $). This algebra is easily seen to be included in all others
(by means of the Stone-Weierstrass Theorem). In any concrete realiza-
tion it consists of tensor products of a compact operator times a unit
operator.

SEGAL defines as the "Weyl algebra" the C*-algebra obtained in the
following way. The fact, noted in Theorem 18, that all representations
of S£x ((£, σ) are quasi-equivalent, implies that there is a (unique) one-to-
one correspondence between the weak closures (the von Neumann rings
generated) in any two different representations. This provides an
intrinsic definition of the von Neumann ring 9ΐ(@, σ). Moreover for
®, ̂  ζ ff> such that (gc5 one has 9t(<£, a) C 91(5, a). The Weyl algebra
of SEGAL is then defined as the completion in norm of the inductive
limit of aI19t(@,σ), < £ ζ ^ .

The algebra dealt with in Ref. [1] is the O*-inductive limit of "Haag
rings" obtained in the following way. Let SB be an open space-time do-
main with compact closure; then 91 {SB) is the von Neumann algebra
generated by the spectral projectors of all field operators A (/) correspond-
ing to test functions / with support in SB. In our description 91 {SB) could
be obtained as the closure in the weak operator topology associated with

* We leave open the question of wether <% (ξ), σ) is actually smaller than Jt± (§, σ).
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the standard Fock representation of the smallest C*-subalgebra of
^i(§> σ) containing all bounded measures of all rays of $) of the form
ψ = A+*f, where / is a test function with support in «̂ . One then
takes the uniform closure of the inductive limit of all 91 (^). This de-
finition uses both the detailed structure of the one-particle space of
free relativistic bosons and the standard Fock representation defined
by the Lorentz-invariant vacuum. The question of whether the con-
struction actually depends upon this particular representation is related
to the possible ''local quasi-equivalence" of all representations.
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