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Instituto Tecnológico Autónomo de México
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(Communicated by Palle Jorgensen)

Abstract

We consider variations and generalizations of the initial Dirichlet problem for linear

second order divergence form equations of parabolic type, with vanishing initial values

and non-continuous lateral data, in the setting of Lipschitz cylinders. More precisely,

lateral data in adequations of the Lebesgue classes Lp, and a family of Sobolev-type

classes are considered. We also establish some basic connections between estimates

related to solvability of each of these problems. This generalizes some of the well-

known works for Laplace’s equation, heat equation and some linear elliptic-type equa-

tions of second order.
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1 Introduction and preliminary definitions

Some historical background and context

Questions of solvability of boundary value problems associated to equations of elliptic and

parabolic type have always been a central topic in the theory of partial differential equations.
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Of particular interest are the generalizations where either the datum or the boundary of the

underlying domain are assumed less regular than in classical results.

In the present work we take up an issue related to this circle of ideas, focusing on esti-

mates associated to initial-boundary problems for second order linear equations of parabolic

type and divergence form over a Lipschitz cylider. These equations have the form

div(A(x)∇u(x, t))− ∂u(x, t)

∂t
= 0, x ∈ Rn, t ∈ R, (1.1)

where both the divergence and the gradient are taken with respect to x variables only. The

n× n matrix A(x) consists of smooth bounded functions, and is assumed to be symmetric,

and to satisfy the ellipticity condition (1.2) below.

It has been a common ocurrence that some techniques originally designed for problems

associated to boundary value problems associated to the Laplace operator are later adapted

to the heat equation. And the same can be said about more general equations of elliptic and

parabolic type. However, the adaptation of techniques that work in the elliptic setting is not

always trivial or straightforward, as the references we are about to mention have shown.

The Dirichlet-type problems that motivated questions of this kind were originally stud-

ied for Laplace equation on C1 and Lipschitz domains (see e.g. [19, 12, 7, 8, 20, 30]) and

for second order, divergence form linear equations of elliptic type (see e.g. [16, 27]). Ac-

tually, this last reference is the main motivation for studying the questions we solve herein.

For similar equations of parabolic type, see e.g. [21, 11, 14, 10], and in the setting of non-

cyilindrical domains see e.g. the fundamental works [17, 18] and some more recent work

in [24, 25, 26].

For the initial-Dirichlet problem, one may attach to the parabolic equation (1.1) a

vanishing initial condition, along with a condition on the lateral boundary of a cylinder

Ω = D× [0,T ), where D is a bounded Lipschitz domain in Rn and T > 0:

u(x,0) = 0 for x ∈ D, u(y, s) = f (y, s) for (y, s) ∈ ∂D× [0,T ).

A special feature of the non-classical problem we want to describe, is that f is not necessar-

ily continuous, and so this boundary datum is attained almost everywhere. Hence one im-

poses an extra condition in the form of the boundedness of certain boundary non-tangential

maximal operator associated to u.

Having said this, we emphasize that our argumentations are focused on the maximal

estimates associated to two variations of the previously described problem, described in the

next paragraphs.

We should point out a more recent work [6] that deals with related problems, although

with a different approach than ours.

Initial description of results

Having described some of the historical background, we now start the technical description

of the problems we have been mentioned before.

The main results in this paper describe a couple of particular connections between es-

timates related to the solvability of the initial Lp Dirichlet problem and of the initial Lq
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regularity problem on Lipschitz cylinders. This type of domains have the form Ω = D×R,

where D is a bounded Lipschitz domain in Rn, 1 < p,q <∞.

In these initial-Dirichletproblems, the datum provided in the lateral boundary S belongs

to an adequate Lebesgue class Lp(S ), 1< p <∞, and a Sobolev-type class W
1,1/2
p (S ) defined

through (1.7) below, respectively.

For our results we also require the main coefficients of the parabolic operator to be

independent of the time variable (as for instance in [6]). This feature will guarantee that

one may obtain solutions to the adjoint equation from solutions to the original equation via

a reflection in the time variable.

An estimate for a non-tangential maximal function (from now on refered to as the (D)p

condition) turns out to be the right estimate to pose the initial Lp Dirichlet problem (see

(1.5) below). We propose here the condition (R)q as the adequate maximal condition (see

(1.8) below) for a initial Lq regularity problem.

A rough description of the main results in this work are as follows:

• In our first main result (Theorem 1.3 below), we prove that the condition (R)p implies

the (D)p′ condition, where 1 < p < ∞, and p′ = p/(p − 1). This result resembles

[16, Theorem 5.4], only that we do not define a regularity boundary value problem

subsumed in the Lq regularity condition that we define herein.

• Our second main theorem establishes a partial reciprocal result, which as far as we

know is the first adaptation to parabolic equations of the result in [27]. On way to

describe the result is by saying that if the (D)p′ condition holds along with the (R)q

for certain 1 < q < p, then the condition (R)p holds. See the Theorem 1.4 for the

precise statement.

The regularity condition (R)p adopted in our work contains a definition of a Sobolev-

type space on the boundary of the LipchitzΩT , and is aimed to generalize for p , 2 the one

introduced in [4].

The adaptations we provide are not straightforward consequences from the situation

for elliptic equations. For instance, unlike the elliptic operator in [16, 27], the parabolic

operator is not self adjoint, and by the evolutionary nature of the parabolic equations, certain

basic estimates for solutions, parabolic measure and Green’s function have a “shift in the

time variable” which requires different argumentations than those for elliptic equations. To

describe more properly the results in this work we introduce some notation and definitions.

Notations and definitions

Now that we have presented the basic description and background for our results, we are

ready to provide more technical material in order to give precise statements of what we

described in the previous paragraphs.

Points in Rn+1 will be denoted by X = (x, t) = (x′, xn, t), where the variables x = (x′, xn) ∈
R

n−1 ×R ≡ Rn are referred to as the space variables and t ∈ R is conceived as the time

variable.

The operator of parabolic type has the divergence form L = div(A(x)∇)− ∂t , where ∇
denotes the gradient with respect to space variables only, ∂t =

∂

∂t
, and where the coefficients
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form a symmetric matrix of functions A(x) = (ai, j(x)) which are assumed to be smooth, and

to satisfy the ellipticity condition

λ|ξ|2 ≤
n∑

i=1

n∑

j=1

ai, j(x)ξ jξi ≤
1

λ
|ξ|2 for all x ∈ Rn and ξ = (ξ1,ξ2, . . . ,ξn) ∈ Rn, (1.2)

and where |ξ| denotes the Euclidean norm of ξ.

As usual, the smoothness assumption for the coefficients of L is adopted to initially

consider smooth solutions to the equation Lu = 0, that is u ∈ C2,1 (two continuous deriva-

tives in space variables and one continuous derivative in t variable). Well known limiting

arguments allows us to extend the results to weaker notions of solutions (see e.g. [1, The-

orem 1, p. 634]). The reason is that the only quantitative information that will arise in the

constants of the results and estimates we invoke, comes from the ellipticity constant λ, the

dimension n, and geometric constants of the domain D we are about to specify.

We emphasize that we have assumed that the main coefficients of the operator L are

independent of t. To justify this assumption recall the definition of adjoint solutions associ-

ated to L. These are functions v ∈C2,1 which are solutions to the equation L∗v = 0, where

L∗ = div(A(x)∇)+ ∂t . Hence, if Lu = 0 on a domain Ω then v(x, t) = u(x,−t) is solution to

L∗v = 0 on Ω̃, the reflection in t variable t 7→ −t of the domain Ω.

And even though L∗ has the same ellipticity coefficients than L, they may be very

different operators. A couple of times in our argumentations we employ auxiliar adjoint so-

lutions arising from the application of this reflection mapping, and in particular, for Green’s

function for L in Ω, we compare a couple of different values in the adjoint variable. This

is also the reason why our proofs work on cylindrical domains.

An open and bounded domain D ⊂ Rn is a Lipschitz domain if its boundary is given

locally by Lipschitz functions. This means that for every P = (p1, . . . , pn−1, pn) ∈ ∂D, there

is a new local coordinate system (x′, xn), x′ = (x1, . . . , xn−1) ∈ Rn−1, xn ∈ R, and with respect

to these coordinates, one can find

• A rectangle of radius r > 0 of the form

R = R(P,r) =
{
(x′, xn) : |xi − pi | < r, |xn− pn| < 2nmpr, i = 1, . . . ,n−1

}
;

• A function φ= φP :Rn−1→ R satisfying |φ(x′)−φ(y′)| ≤mP|x′−y′| for certain mP > 0,

with the following significance. In this new local coordinate system (x′ , xn), one has

(i) 2R∩∂D = 2R∩{(x′, xn) : xn = φ(x′)}

(ii) 2R∩D = 2R∩{(x′, xn) : xn > φ(x′)}

where 2R is the rectangle concentric to R with twice its radius.

By compactness of ∂D we can choose a finite number of rectangles R1, · · · ,RN with the

same radius r0 covering ∂D and a finite number of Lipschitz functions φ1, · · · ,φN satisfying

the conditions above with an absolute and unique Lipschitz constant m. In fact one can

always take 0 < r0 < 1. Once this constant is fixed, one can define local geometric objects

within Lipschitz cylinders, whose definition we recall shortly.
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An infinite Lipschitz cylinder with constants m and r0 is an open set of the form Ω =

D×R where D is a Lipschitz domain with constants m and r0 as described above. We

denote by S the lateral boundary of Ω, defined as S = ∂D×R. On S we can consider the

surface measure σ given by the product measure dσ = dσ̃×dt, where σ̃ denotes the surface

measure on the Lipschitz domain D and dt is the Lebesgue measure on R.

For r < r0/10 and Q = (q, s) ∈ S we define the Carleson boxes, surface balls and right

and left corkscrew points (in that order) as

Ψr(Q) = {X = (
x′, xn, t

) ∈ Ω : |xi −qi| < r, i = 1, · · · ,n−1,

ψ(x′ , t) < xn < ψ(x′, t)+4nmr, |s− t| < r2};
∆r(Q) = S ∩Ψr(Q);

Ar(Q) = (q′,ψ(q′, s)+6nmr, s+2r2), A
r
(Q) = (q′,ψ(q′, s)+6nmr, s−2r2).

The parabolic cubes in Rn+1 are defined by

Qr(X) =
{
Y = (y, s) ∈ Rn+1 : |x− y| < r, |t− s| < r2

}
, 0 < r < r0.

In order to define the conditions (R)p and (D)p, we introduce the non tangential ap-

proach regions Γα(Q) = {X ∈Ω : δ(X,Q) ≤ (1+α)δ(X)}∩Ψr0
(Q). Here, δ(X) = δ(X;S ) is the

parabolic distance from X to the lateral boundary S and is given by δ(X;S ) := inf
Q∈S

δ(X; Q),

where the parabolic distance between X = (x, t) ∈ Rn+1 and Y = (y, s) ∈ Rn+1 is δ(X;Y) =

|x− y|+ |t− s|1/2.

Our main results are stated in the setting of a finite Lipschitz cylinder of the form

ΩT = D× (0,T ] with lateral boundary S T = S × (0,T ], with T > 0 fixed, and where a fixed

parabolic center has been defined as Ξ = (0,T + 1). This makes it easier to pose as an

adequate definition of an Lq regularity problem adapted to ΩT .

Conditions (D)p and (R)p and statement of the main results

It is well known that a Lipschitz cylinder Ω is a regular domain for Dirichlet-type prob-

lems associated to any parabolic operator that satisfies condition (1.2) (for instance us-

ing parabolic capacity, see e.g. [9]). This implies, for instance, that for every contin-

uous function f defined and compactly supported on S T , there exists a unique solution

u ∈C2,1(Ω)∩C(Ω) such that



Lu(X) = 0 X ∈Ω
lim
X→Q
X∈Ω

u(X) = f (Q) Q ∈ S T . (1.3)

From this, through the Riesz Representation Theorem, we can define the parabolic measure.

The L-parabolic measure at X ∈ Ω is the unique Borel measure ωX = ωX
L such that the

solution to (1.3) is represented at X ∈Ω by

u(X) =

∫

S T

f (Q)dωX(Q). (1.4)

We note that by the maximum principle this measure is actually supported on S T .
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To define solvability of the Lp Dirichlet problem for L in Ω, one requires that the

solution to (1.3) also must satisfy

‖(u)∗‖Lp(S T ) ≤ c‖ f ‖Lp(S T ), where the constant c > 0 is independent of f . (1.5)

Here (u)∗ is the non tangential maximal function of u, defined as

(u)∗(Q) = sup
X∈Γ(Q)

|u(X)|. (1.6)

When (1.5) holds, we say that the (D)p condition holds for L in ΩT .

The Lp Dirichlet problem associated to parabolic operators as L, even with coefficients

depending on time variable, is by now a well understood topic, see [24]. For instance,

following ideas from related problems associated to elliptic equations, it has been noted that

in order to obtain the estimate (1.5), because of comparability of u∗ and Hardy-Littlewood’s

maximal operator (see e.g. [24, p. 224-226]), it is equivalent to obtain a reverse Hölder

property for the Radon-Nikodým property of the parabolic measure with respect to the

surface measure.

In other words, obtaining the estimate (1.5) becomes a local matter, in the sense that

one must prove an estimate for every surace cube in S T . For this reason, when proving the

estimate (1.5) we work in the setting of a domain above a graph, as we mention later in this

section.

Based on the definitions of similar problems for elliptic equations from [16], and the

heat equation in [3], we consider an additional regularity condition for this Dirichlet-type

problem associated to Lu = 0 on a finite Lipschitz cylinder ΩT . Given the nature of a

parabolic equation we use a Sobolev-type space over S with the usual derivatives in the

(space) tangent directions, and a half order derivative in time direction.

The mixed norm space W
1, 1

2
p (S ) is defined as the closure of the set

{
g = f |S : f ∈ C∞0 (Rn× (0,∞))

}

with respect to the seminorm

‖ f ‖
W

1, 1
2

p (S )
=

(∫

S

(|∇tan f |p)dσdt+

∫

S

|∂
1
2
t f |p dσ

) 1
p

(1.7)

where ∇tan f = ∇ f −ν(∇ f ·ν) is the tangential gradient of f , ∇ f is the spatial gradient of f ,

ν is the exterior normal unit vector to ∂D and

∂
1
2

t f (x, s) =

(∫ T

−∞

| f (x, s)− f (x, t)|2
|s− t|2

dt

)1
2

.

This definition is taken from [28, p. 1034].

Remark 1.1. The definition of the mixed norm space W
1, 1

2
p (S T ) is meant to generalize to

p , 2 the space adopted in [3, p. 352-353] when solving an initial L2 regularity problem for

the heat equation. In [4] it is adopted another extension, using parabolic Riesz potentials,

following a definition from [11]. This extension is also adopted by [17, 18] in the setting

of non-cylindrical domains. In any case, for p = 2 the definitions coincide, by Plancherel’s

theorem, as observed for instance in [17, p. 353].



Lp Regularity and Lp Dirichlet conditions 41

We say that the (R)p condition holds forL onΩT whenever the following estimate holds

‖N(∇u)‖Lp (S T ) ≤ c‖ f ‖
W

1, 1
2

p (S T )
(1.8)

for each f ∈ C∞
0

(Rn × (0,∞)) and u the corresponding solution to (1.3). Here, the modified

non-tangential maximal function of a continuous function v defined on Ω is defined as

Nv(Q) =Nαv(Q) = sup
X∈Γα(Q)

(?
Q(X)

|v|2 dY

) 1
2

, (1.9)

where Q(X) ≡ Qc−1δ(X)(X) is such that Q(X) ⊂ Ω and α = α(m) > 0 is fixed. We are adopt-

ing the notation
>
Q(X)

vdY for the integral average 1
δ(X)n+1

∫
Q(X)

vdY. Integral averages with

measure different to the Lebesgue measure on Rn+1 will be used later on in this paper, and

its meaning should be clear from the context. Also, in later arguments N(∇u) will be used

instead ofN(|∇u|).
Remark 1.2. Given α,β > 0, using standard arguments (see e.g. [29, §6.2-6.4] or the original

argumentation in [15, p. 166]) one may prove that for any function h defined on Ω

‖Nα(h)‖Lp(S T ) ≈ ‖Nβ(h)‖Lp(S T ).

This will become useful when proving the Theorem 1.3 that we state below.

With all the previous definitions and remarks, we are now in position to make precise

description of our goal in this work. We prove the following two results relating the condi-

tions (R)q and (D)p under the assumptions stated above.

Theorem 1.3. Let Ω be a Lipschitz cylinder andL an operator satisfying (1.2). If condition

(R)p holds for L in ΩT+1, then condition (D)p′ holds for L in ΩT , 1/p+1/p′ = 1.

Theorem 1.4. Let Ω be a Lipschitz cylinder and L an operator satisfying (1.2). Let 1 < p <

∞, and suppose that the condition (R)q for L in ΩT for some 1 < q < p. If 1/p+ 1/p′ = 1

then the condition (D)p′ for L in ΩT implies that the condition (R)p for L in ΩT holds.

The next result is an immediate consequence of these theorems, a well-known property

of the condition (D)p and the classical theory of Muckenhoupt weights and reverse Hölder

inequalities (see e.g. [24, Theorem 6.1]).

Corollary 1.5. Let 1 < q <∞ and assume that the (R)q condition is satisfied on ΩT . Then

there exists ε > 0 such that the (R)s condition is satisfied on Ω for every q < s ≤ q+ ε.

Proof. If (R)q holds by Theorem 1.3 we know (D)q′ holds, with 1/q+ 1/q′ = 1. But then

thete exists ε > 0 such that (D)s holds for s ∈ (q′− ε,q′). Noticing that s′ ∈ (q,q+ ε), where

s′ = s/(s−1), by Theorem 1.4 we now know (R)s for s ∈ (q,q+ ε). �

Sections 3 and 4 are devoted to prove Theorem 1.3, while the remaining sections deal

with the proof of Theorem 1.4. The next section gathers some preliminary results.
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2 Some known results

The constants playing a role in each of the following results depend only on the ellipticity

constant, the dimension and the geometric features of the Lipschitz cylinder Ω, such as m,

the Lipschitz constant of D.

Theorem 2.1 (Harnack’s Inequality). [23, Theorem 2] Let u be a nonnegative solution of

Lu = 0 in ΩT . Let D′ be a convex subdomain of D such that δ = dist(D′,∂D) > 0. Then for

all x,y ∈ D′ and 0 < s < t ≤ T we have

u(y, s) ≤ u(x, t)exp

[
c

(
|x− y|2

t− s
+

t− s

R
+1

)]

where c = c(n,λ) and R = min{1, s,δ2}.

Theorem 2.2 (Carleson-type estimate). [10, Theorem 0.3] Let Q = (q, s) ∈ S and 0 < r <

min
{
r0,
√

s
}
. Then for any nonnegative solution of Lu = 0 in Ω vanishing continuously on

∆(Q,2r), we have

sup
Ψr(Q)

u ≤ cu(Ar(Q))

where the constant c = c(n,λ,m,r0) > 0.

Theorem 2.3. [21, Lemma 1.1] Let Q = (q, s) ∈ S T and 0 < r < 1
2

min
{
r0,
√

s,
√

T − s
}
.

Then, for each X ∈Ψr/2(Q) we have

ωX(∆r(Q)) ≥ c

where c = c(n,λ,m) > 0.

The Green’s function of L on Ω with pole at X = (x, t) ∈ Ω is denoted by G(X;Y) and

defined as

G(X;Y) = Γ(X;Y)−
∫

∂pΩ

Γ(Z;Y)dωX (Z) (2.1)

where Γ(X;Y) is the fundamental solution of L. In the next two Theorems, G(X,Y) denotes

the Green function, for X,Y ∈ D×{−1 < t < T +2}.

Theorem 2.4. [10, Theorem 1.4] Let Q = (q, s) ∈ S T and 0 < r < 1
2

min
{
r0,
√

s,
√

T − s
}
.

Then, for each X = (x, t) ∈ ΩT with s+4r2 ≤ t ≤ T we have

c−1rnG(X;Ar(Q)) ≤ ωX(∆r(Q)) ≤ crnG(X;A
r
(Q))

where c = c(n,λ,m,r0,T ) > 0.

Theorem 2.5. [10, Corollary 2.3] Let Q = (q, s) ∈ S T and 0 < r < 1
2 min

{
r0,
√

s,
√

T − s
}
.

Then we have

c−1 ≤
G(Ξ;A

r
(Q))

G(Ξ;Ar(Q))
≤ c

where c = c(n,λ,m,r0,T ) > 0.
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Theorem 2.6 (Local comparison principle). [10, Theorem 1.6] Let Q ∈ S T and u,v be two

positive solutions of Lu = 0 in Ψ2r(Q) vanishing continuously on ∆2r(Q). Then, for each

X ∈Ψ r
8
(Q) and 0 < r < 1

2
min

{
r0,
√

s,
√

T − s
}
, we have

u(X)

v(X)
≤ c

u(Ar(Q))

v(A
r
(Q))

where the constant c = c(n,λ,m,r0) > 0.

Theorem 2.7 (Hölder continuity). [24, Theorem 1.3] Let Lu = 0 in Ω. Then there exists

α = α(n,λ) > 0 such that u ∈Cα(Ω). Furthermore, if Q2r(x, t) ⊂Ω and (z,w), (y, s) ∈ Qr(x, t),

then

|u(z,w)−u(y, s)| ≤ c

(
|z− y|

r
+
|w− s|

r2

)α
r

(?
Qr(x,t)

|∇u|2dy

) 1
2

where the constant c = c(n,λ) > 0.

There is a version of this result adapted for solutions vanishing on a portion of the

boundary. The form of this result that we now present may be found in [22, Lemma 5], and

the ideas for its proof are the same as sketched therein.

Theorem 2.8. Let Lu = 0 in Ω vanishing on ∆2r(Q) for some Q ∈ S . Then there exist

α = α(n,λ) > 0 and C =C(n,λ) > 0 such that

|u(X)| .
(
δ(X)

r

)α
sup
Ψr(Q)

u (2.2)

for every X ∈Ψr(Q)

From now on, we will use the notation . or & to write an inequality with constants,

where the constants involved depend at most on known features such as dimension, ellip-

ticity and the Lipschitz character of Ω.

Some of the results stated above have a counterpart that holds for adjoint solutions, that

is, solutions to L∗v = 0, where L∗v = divA∇v+ ∂tv, see e.g. [24, p. 202]. If needed, we

will explicitly mention each of the results that we may use, and at this point we include

an instance of the reflecting-in-time-variable technique that we adopt in a couple of results

later in the paper (see the first few paragraphs of §4 below, as well as the proof of Lemma

5.2).

Theorem 2.9. Let Q ∈ S T and v1,v2 be two positive solutions of L∗v = 0 in Ψ2r(Q) vanish-

ing continuously on ∆2r(Q). Then, for each X ∈Ψr/8(Q) and 0 < r < 1
2

min
{
r0,
√

s,
√

T − s
}
,

we have
v1(X)

v2(X)
≤ c

v1(A
r
(Q))

v2(Ar(Q))

where the constant c = c(n,λ,m,r0) > 0.

Proof. Define ui(x, t) = vi(x,−t) for i = 1,2 and −T < t < 0. Then ui are positive solutions

to Lu = 0 in D× (−T,0), for the same operator L. Inserting ui in Theorem 2.6, we deduce

the desired estimate. �
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Theorem 2.10. Let Q ∈ S and 0 < r < min
{
r0,
√

s
}
. Then for any nonnegative solution of

L∗v = 0 in Ω vanishing continuously on ∆(Q,2r), we have

sup
Ψr(Q)

v ≤ cv(A
r
(Q))

where the constant c = c(n,λ,m,r0) > 0.

Finally, we include what might as well be called a local backward Harnack inequality.

We adapt the statement from [2, Theorem 1].

Lemma 2.11. Pick Q = (q, s) ∈ S T with 0 < r < 1
2 min

{
r0,
√

s,
√

T − s
}
. Assume u is a

nonnegative solution to Lu = 0 in Ψ2r(Q) which continuously vanishes on ∆2r(Q) and such

that mr = u(A
r
) > 0. Then, for 0 < ρ ≤ 1

2 r we have

u(Aρ(Q)) .

(
1+

Mr

mr

)
u(A

ρ
(Q))

where Mr = supΨ2r(Q) u.

We have an application of Lemma 2.11 for very specific solutions in which the factor(
1+ Mr

mr

)
may be dispensed of the explicit dependance on u or r. This will prove to be useful

in the next section.

3 Poincaré type inequalities

The first Poincaré type inequality that we state takes place in the boundary of a Lipschitz

cylinder and has nothing to do with the properties of solutions of any parabolic operator.

Rather, it is a first instance where the definition of the norm in (1.7) becomes convenient.

The inequality contained in the following theorem is an auxiliary result to prove Lemma

5.4 which in turn helps to prove Theorem 1.4, and is inspired on a result in [4, p. 17-18]. It

may be of independent interest.

Theorem 3.1. Let f ∈C∞
0

(Rn× (0,∞)). Then there exists β = βr ∈ R such that for p ≥ 1 and

r < r0, we have
∫

∆r

| f (q, s)−β|p dσ(q, s) . rp

∫

∆r

|∇tan f (q, s)|p dσ(q, s)+ rp

∫

∆r

|∂
1
2

t f (q, s)|p dσ(q, s)

where ∆r = ∆r(Q0) with Q0 ∈ S T .

Proof. Let Q0 = (q0, s0) ∈ S T . Notice that ∆r = ∆̃r × Ir, where ∆̃r = ∆̃r(q0) is a surface ball

with radius r on ∂D (the boundary of the Lipschitz domain D), and Ir = (s0− r2+ s0+ r2) is

a time-interval. Define

βr =

?
∆r

f (q, s)dσ(q, s) and βr(s) ≡ β(s) =

?
∆̃r

f (q, s)d σ̃(q).

Observe that
∫

∆r

| f (q, s)−βr |q dσ(q, s) .

∫

∆r

| f (q, s)−βr(s)|q dσ(q, s)+

∫

∆r

|βr(s)−βr |q dσ(q, s) ≡ I+II.
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By Fubini’s theorem and a Poincaré type inequality for the boundary of a Lipschitz domain

in Rn (see the proof of Theorem 5.19 in [16]) we see that

I . rp

∫

∆r

|∇tan f (q, s)|p dσ(q, s).

To handle II, we notice that

|βr −βr(s)| .
?
∆̃r

?
Ir

| f (q,τ)− f (q, s)|dτdσ̃(q)

.

?
∆̃r



(?
Ir

| f (q,τ)− f (q, s)|
|τ− s|2

dτ

)1
2
(?

Ir

|τ− s|2 dτ

) 1
2

 dσ̃(q)

. r

?
∆̃r

∂
1
2

t f (q, s)dσ̃(q).

Finally, integrating over ∆r and applying Hölder’s inequality and Fubini’s theorem we ob-

tain,

∫

∆r

|βr −βr(s)|q dσ(q, s) . rq

∫

∆r

∣∣∣∣∣∣

?
∆̃r

∂
1
2
t f (q, s)dσ̃(q)

∣∣∣∣∣∣
q

dσ

. rq

∫

∆r

?
∆̃r

∣∣∣∣∣∂
1
2

t f (q, s)

∣∣∣∣∣
q

dσ̃(q)dσ(q, s)

. rq

∫

∆r

∣∣∣∣∣∂
1
2
t f (q, s)

∣∣∣∣∣
q

dσ(q, s).

�

The next result is a sort of weighted Poincaré-type inequality. It originates from the

elliptic result in [16].

Lemma 3.2. Let Ω be a Lipschitz cylinder, Q = (q′,qn, s) ∈ S and 0 < r < min
{
r0,
√

s
}
. If

u ∈C∞(Ψr(Q))∩C(Ψr (Q)) and u ≡ 0 on ∆(Q,r), then

∫

Ψr(Q)

δ(X)αu2(X)d X .
r2

1−α

∫

Ψr(Q)

δ(X)α|∇u(X)|2 d X

for each 0 ≤ α < 1.

Proof. Fix X′ = (x′ , x′n, t) ∈ Ψr(Q). We first note that

u(X′) = u(x′, x′n, t)−u(x′,ψ(x′ , t), t) =

∫ x′n

ψ(x′,t)

∂

∂xn

u(x′, xn, t)d xn.

Setting X = (x′ , xn, t), by the Cauchy–Schwarz inequality,

|u(X′)| ≤
∫ x′n

ψ(x′,t)
|∇u(X)|d xn ≤


∫ x′n

ψ(x′,t)
δα(X)|∇u(X)|2 d xn


1
2

∫ x′n

ψ(x′,t)
δ−α(X)d xn


1
2

. (3.1)
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If α > 0, then
∫ x′n

ψ(x′,t)
δ−α(X)d xn .

∫ x′n

ψ(x′,t)

d xn

(xn −ψ(x′, t))α

=

∫ x′n−ψ(x′,t)

0

y−α d y ≤
∫ r

0

y−α d y =
r1−α

1−α . (3.2)

By (3.1) and (3.2)
∫

Ψr(Q)

δα(X′)u2(X′)d X′ ≤
∫

Ψr(Q)

rαu2(X′)d X′

.
r1−αrα

1−α

∫

Ψr(Q)

∫ x′n

ψ(x′,t)
δα(X)|∇u(X)|2 d xn d X′

≤ r

1−α

∫

Er (Q)

∫ ψ(x′,t)+r

ψ(x′,t)

∫ ψ(x′,t)+r

ψ(x′,t)
δα(X)|∇u(X)|2 d xn d x′n dσ(x′, t)

≤ r2

1−α

∫

Er (Q)

∫ ψ(x′,t)+r

ψ(x′,t)
δα(X)|∇u(X)|2 d xn dσ(x′, t)

=
r2

1−α

∫

Ψr(Q)

δα(X)|∇u(X)|2 d X.

Here, Er(Q) = {(x′, t) ∈ S : (x′, xn, t) ∈ Ψr(Q)}. If α = 0, we argue the same way using

(3.1). �

In order to prove Theorem 1.3 we will go through a series of lemmas and observations

concerning a very precise type of solution of (1.3).

If Q = (q, s) ∈ S T and 0 < r < min{r0,
√

s,
√

T − s}, we define
−→
Q(r) = (q, s + r2) and

←−
Q(r) = (q, s− r2). Now, take f ∈C∞

0
(Rn× (0,∞)) such that f ≡ 1 in ∆r(

←−
Q0(5r)) and f ≡ 0 in

∆2r(
←−
Q0(5r))c for some Q0 = (q0, s0) ∈ S T with 0 < 6r < min{r0,

√
s0,
√

T − s0}.
For the remaining of this section and the next one, u will denote the solution to the

Dirichlet problem over the domain Ω∩ {−1 < t < 2T }, with boundary datum given by a

function f as described above.

Remark 3.3. Observe that with the notation just introduced, the conclusion of the Corollary

2.11 yields

u(Aρ(Q)) . u(A
ρ
(Q)), ρ ≤ 2r

for Q = (q, s) ∈ S T with s0+43r2 ≤ s ≤ s0+200r2 and |q−q0| . r.

Proof. Note that s0+43r2 ≤ s implies ∆8r(Q) ⊂ ∆2r(
←−
Q0(5r))c. Clearly Mr ≤ 1. By Theorem

2.3, for X ∈Ψr/2(
←−
Q0(5r)) we have

ωX(∆r(
←−
Q0(5r))) & 1.

As a consequence

u(X) =

∫

S T

f dωX ≥ ωX(∆r(
←−
Q0(5r))) & 1.

With this at hand, Carleson-type estimate and Harnack inequality (Theorems 2.2 and 2.1)

yield mr = u(A
4r

(Q)) & 1, and the proof of the Remark is finished. �
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Lemma 3.4. Let Q = (q, s) ∈ S T with s0+43r2 ≤ s ≤ s0+200r2. Then, there exists 0 < α < 1

depending on n and λ only, such that

?
Ψr(Q)

u2(X)d X ≤ c
1

rα

?
Ψr(Q)

δ(X)αu2(X)d X.

Proof. Consider K = Ψr(Q)\S 1
2

r(Q) where

S ar(Q) = {X ∈ Ψr(Q) : δ(X) < ar}, 0 < a < 1. (3.3)

Note that |K| ≈ rn+2 ≈ |Ψr(P)|. By the Theorem 2.2, Remark 3.3 and Harnack’s inequality

we obtain

sup
Ψr(Q)

u2
. u2(Ar(Q)) . u2(A

r
(Q)) . inf

K
u2 ≤

?
K

u2(X)d X. (3.4)

This and (2.2) imply that for X ∈Ψr(Q) one has

u(X) .

(
δ(X)

r

)α (?
K

u2(Y)dY

)1/2

. (3.5)

Since δ(X) ≈ δ(Y), for X,Y ∈ K, we can use (3.4) and (3.5), to obtain

?
Ψr(Q)

u2(X)d X .

?
K

?
K

(
δ(X)

r

)2α

u2(Y)dY dX

.
1

rα

?
K

δ(Y)αu2(Y)dY .
1

rα

?
Ψr(Q)

δ(Y)αu2(Y)dY.

The lemma follows. �

Lemma 3.5. Let Q = (q, s) ∈ S T with s0+43r2 ≤ s ≤ s0+200r2. Then we have

?
Ψ2r(Q)

u2(X)d X .

?
Ψr(Q)

u2(X)d X,

?
Ψr(Q)

|∇u(X)|2 d X .

?
Ψ 3

4
r
(Q)

|∇u(X)|2 d X. (3.6)

Proof. The first assertion follows using (3.4). For the second assertion we use Caccioppoli’s

at the boundary inequality to obtain

?
Ψr(Q)

|∇u(X)|2 d X . r−2

?
Ψ 3

2
r
(Q)

u2(X)d X.

With this, the second assertion of this lemma may be derived from the first assertion and

Lemma 3.2 for α = 0. �

Lemma 3.6. Let Q = (q, s) ∈ S T with s0 + 43r2 ≤ s ≤ s0 + 200r2. Then, there exists ε =

ε(n,λ,m) > 0 such that

?
Ψr(Q)

|∇u(X)|2 d X .

?
Ψr(Q)\S εr(Q)

|∇u(X)|2 d X.
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Proof. According to Lemma 3.5 and a Caccioppoli’s inequality at the boundary inequality,

we have ?
Ψr(Q)

|∇u(X)|2 d X .

?
Ψr/2(Q)

|∇u(X)|2 d X .
1

r2

?
Ψr(Q)

u2(X)d X.

From Lemmas 3.4 and 3.2

1

r2

?
Ψr(Q)

u2(X)d X .
1

r2+α

?
Ψr(Q)

δα(X)u2(X)d X .
1

rα

?
Ψr(Q)

δα(X)|∇u(X)|2 d X.

Thus, we have

?
Ψr(Q)

|∇u(X)|2 d X .
1

rα

?
Ψr(Q)\S εr(Q)

δα(X)|∇u(X)|2 d X+
1

rα

?
S εr(Q)

δα(X)|∇u(X)|2 d X

.

?
Ψr(Q)\S εr(Q)

|∇u(X)|2 d X + εα
?

S εr(Q)

|∇u(X)|2 d X

≤
?
Ψr(Q)\S εr(Q)

|∇u(X)|2 d X + εα
?
Ψr(Q)

|∇u(X)|2 d X.

Finally, choosing ε > 0 very small we can hide the second term in the right hand side into

the left hand side, and hence we conclude the desired estimate. �

4 Proof of Theorem 1.3

We retain notations from the previous sections. In particular, recall that we have stated right

before the Remark 3.3 that u denotes a solution overΩ∩{−1< t < 2T } with a very particular

prescribed data function f . It is convenient now to impose some extra conditions on this

data, namely |∇ f | . 1
r

and | ft | . 1
r2 .

We are interested in the norm of f as an element of W
1, 1

2
p (S T ), because once this norm

is computed, the fact that (R)p is solvable will provide us a precise estimate of the Lp norm

ofN(∇u). Indeed, observe that with these new conditions on f , we have

∫

S T

|∇ f (Q)|p dσ(Q) . rn+1−p,

∣∣∣∣∣∂
1
2

t f (x, s)

∣∣∣∣∣ .

∫ s0−21r2

s0−29r2

(
1

r2

)2

d t



1
2

.
1

r
.

This implies that

‖ f ‖p
W

1,1/2
p (S T+1)

. rn+1−p.

When attempting to prove that (R)p implies (D)p′ , using the techniques from [16], one

finds some difficulties when trying to use the Theorem 2.4. Indeed, in the elliptic case

several times it is used the fact that the divergence form second order linear operators similar

toL are selfadjoint. For the parabolic operators this is not the case, and actually the Green’s

function is not symmeteric in its arguments; that is, the order of the argument variables is

essential.

One way to tackle this obstacle is to use an auxiliary solution v to the adjoint equation

L∗v = 0, defined in terms of the particular solution u, by a reflection in time change of
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variables, as mentioned earlier. And in the estimates (4.1) below is crucial our use of

Theorem 2.9, thus the independence of the coefficients matrix A from the t variable.

To be more precise, we think ofΩ as the extended domain D× (−∞,∞). For X = (x, t) ∈
Ω∩{−2T < t < 2T }, define X̃ = (x, t̃) to be the reflection of X with respect to the hyperplane

for which t = s0 + 25r2, that is, X̃ = (x,2(s0 + 25r2)− t). Here it is important to recall that

Q0 = (q0, s0) ∈ S T has been fixed when defining the support of f .

Now define v(X) = u(X̃). Observe that L∗v = 0 in Ω∩ {−2T < t < 2T } and that by the

support definition of f the boundary values of v(x, t) vanish for 2(s0+ 25r2)− t ≥ s0 − 21r2

or equivalently t ≤ s0+71r2.

Take Q ∈ ∆r/16(Q0) and ρ < r
16 . From Theorems 2.4, 2.5 and 2.9 , we have

ωΞ(∆ρ(Q))

ρn+1
.

G(Ξ,A
ρ
(Q))

ρ
=

v(A
ρ
(Q))

ρ

G(Ξ;A
ρ
(Q))

v(A
ρ
(Q))

.

v(A
ρ
(Q))

ρ

G(Ξ;A
r
(Q0))

v(Ar(Q0))
.

v(A
ρ
(Q))

ρ
G(Ξ;Ar(Q0))

.

v(A
ρ
(Q))

ρ

ωΞ(∆r(Q0))

rn
, (4.1)

where we have used the fact that v(Ar(Q0)) = u(Ar(Q̃0)) & 1. On the other hand, similarly

to (3.4) we may conclude

v(A
ρ
(Q)) = u(Aρ(Q̃)) .


?
Ψρ(Q̃)

u2(Y)d Y


1
2

.

From this and lemmas 3.2 and 3.6 we obtain

v(A
ρ
(Q)) . ρ


?
Ψρ(Q̃)\S ερ(Q̃)

|∇u(Y)|2 d Y


1
2

. (4.2)

Plugging (4.1) and (4.2) together, we get

ωΞ(∆ρ(Q))

ρn+1
.
ωΞ(∆r(Q0))

rn


?
Ψρ(Q̃)\S ερ(Q̃)

|∇u(Y)|2 d Y


1
2

. (4.3)

This suggests that we introduce the next two maximal functions:

Mσω(Q) ≡Mσ, r
16
ω(Q) = sup

0<ρ< r
16

ωΞ(∆ρ(Q))

ρn+1
where ω is the parabolic measure, and

Nεϕ(Q) ≡ Nε
αϕ(Q) = sup

X∈Γα(Q)


?
Ψδ(X)(PX)\S εδ(X)(PX)

ϕ2(Y)d Y


1
2

for ϕ any function defined on Ω, and where PX = (x′,ψ(x′ , t), t) if X = (x′, xn, t). Notice that

we have included the aperture α in the notation. The reason will be clear shortly. With this

definitions, (4.3) yields

Mσω(Q) .
ωΞ(∆r(Q0))

rn
Nε (∇u)(Q̃). (4.4)

In the last step to prove Theorem 1.3, we make use of the following
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Lemma 4.1. For any function ϕ defined on Ω

Nε
αϕ(Q) . Nβϕ(Q)

for some β = β(n,λ,m,r0) > α, where ε is as in Theorem 3.6.

Proof. First note that the region

Ψ̃r(Q) =
{
(x, t) ∈ Rn+1 : |xi −qi| < r, i = 1, · · · ,n−1,

ψ(x′ , t)− r < xn < ψ(x′ , t)+4nmr, |s− t| < r2
}

can be covered with N = N(ε,n,m) parabolic cubes of radius r′ ≥ εc−2r, independently of

r. Hence, for X ∈ Γα(Q), as we just observed, we can cover Ψδ(X)(PX) \ S εδ(X)(PX) with

N parabolic cubes Qi, each one with radius c−2εδ(Xi), centered at points of Ψδ(X)(PX) \
S εδ(X)(PX). Now, from the fact that εδ(X) ≤ δ(Xi) ≤ δ(X), it follows that

∣∣∣Ψδ(X)(PX)\S εδ(X)(PX)
∣∣∣ ≈

∣∣∣Ψδ(X)(PX)
∣∣∣ ≈ |Qi|

where the comparability constants depend again only on ε and n. As a consequence, for

β > 0 big enough

?
Ψδ(X)(PX)\S εδ(X)(PX)

|ϕ|2 dY . c

N∑

1

?
Qi

|ϕ|2dY .Nβϕ(Q).

Taking the supremum over X ∈ Γα(Q), the inequality is proved. �

To finish the proof of Theorem 1.3, we can apply the previous lemma and (4.4), along

with the Remark 1.2 to obtain by the very definition of Mσω that ωΞ << σ, because

Nβ(∇u) ∈ Lp(S T ). In fact, ωΞ ∈ A∞(dσ) (see [24, p. 224]). Now


?
∆ r

16
(Q0)

(
dωΞ

dσ

)p

dσ



1
p

.

(
1

rn+1

) 1
p ω(∆)

rn
‖N(∇u)‖Lp(S T+1) .

(
1

rn+1

) 1
p ω(∆)

rn
‖ f ‖

W
1, 1

2
p (S T+1)

.

(
1

rn+1

) 1
p ω(∆)

rn

(
rn+1−p

) 1
p ≈ ω(∆)

rn+1
≈
?
∆ r

16
(Q0)

(
dωΞ

dσ

)
dσ,

where ∆ = ∆r(Q0), thus finishing the proof.

5 (D)p′ and (R)q implies (R)p

Let us first make a couple of observations about the behavior of solutions near the boundary.

While the second observation depends on properties of solutions, the first one does not, and

it depends purely on the geometric features of ΩT . Here is our first observation:

Lemma 5.1. For any function u such that ∇u exists almost everywhere and r < r0, we have,?
Ψ28r(Q0)

|∇u(Y)|d Y .

?
∆32r (Q0)

N(∇u)(P)dσ(P) (5.1)

where Q0 ∈ S T .
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Proof. Inequality (5.1) can be broken into two assertions:

?
Ψ28r(Q0)

|∇u(Y)|d Y .

?
Ψ28r(Q0)

?
Q(X)

|∇u(Y)|dY dX, (5.2)

?
Ψ28r(Q0)

?
Q(X)

|∇u(Y)|dY dX .

?
∆32r(Q0)

N(∇u)(P)dσ(P). (5.3)

Taking into account that δ(X) ≈ δ(Y) if Y ∈ Q(X), (5.2) is proved as follows:

?
Ψ28r(Q0)

?
Q(X)

|∇u(Y)|dY dX ≈
?
Ψ28r(Q0)

1

δ(X)n+2

∫

Ψ30r(Q0)

|∇u(Y)|χQ(X)(Y)dY dX

≈
?
Ψ30r(Q0)

∫

Ψ28r(Q0)

1

δ(X)n+2
|∇u(Y)|χQ(Y)(X)dX dY

&

?
Ψ28r(Q0)

|∇u(Y)|d Y.

To prove (5.3) we observe that for P = (p′, pn, s) ∈ ∆32r(Q0)

N(∇u)(P) =

? pn+112nmr

pn

N(∇u)(p′,ρ, s)dρ ≥
? pn+112nmr

pn

?
Q(p′,ρ,s)

|∇u(Y)|dY dρ.

Integrating this, we have

?
∆32r (Q0)

N(∇u)(P)dσ(P) ≥
?
∆32r(Q0)

? pn+112nmr

pn

?
Q(p′,ρ,s)

|∇u(Y)|dY dρdσ(P)

&

?
Ψ28r(Q0)

?
Q(X)

|∇u(Y)|dY dX.

�

Here is the second observation of the behavior of solutions near the boundary:

Lemma 5.2. Assume that u is a solution of Lu = 0 in Ω and that u = 0 continuously on

∆32r(Q0) for some Q0 = (q0, s0) ∈ S T . Then we have,

|u(X)| . G(Ξ; X̃)

G(Ξ;A12r(Q̃0))

(?
Ψ18r(Q0)

|u(Y)|2 d Y

) 1
2

(5.4)

for X ∈ Ψ 3
2

r(Q0), and where X̃ and Q̃0 were defined in page 49.

Proof. Let u1 and u2 be the solutions ofLu = 0 inΨ32r =Ψ32r(Q0) with data f1 =max{u,0}
and f2 =max{−u,0} on ∂Ψ16r(Q0) respectively. Note that u= u1−u2 in ∂Ψ32r, by uniqueness

u = u1−u2 in Ψ32r.

Now we perform again a reflection to X with respect to the time variable of Q0. In

this instance we define vi(X) = ui(X̃) for X ∈ Ψ32r(Q̃0) where X̃ = (x,2(s0 + (32)2r2)− t) if

X = (x, t). By the comparison principle

vi(X̃) .
G(Ξ; X̃)

G(Ξ;A12r(Q̃0))
vi(A12r

(Q̃0)) i = 1,2
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for X ∈ Ψ 3
2

r(Q0). This is the same as

ui(X) .
G(Ξ; X̃)

G(Ξ;A12r(Q̃0))
ui(A12r(Q0)) i = 1,2. (5.5)

Now, note that by Harnack’s inequality we have

ui(A12r(Q0)) . inf
K

ui ≤
(?

K

u2
i (Y)d Y

) 1
2

.

(?
Ψ18r(Q0)

u2
i (Y)d Y

) 1
2

i = 1,2 (5.6)

where K ⊂ Ψ18r(Q0) is an appropiate compact set to the right of A16r(Q0). Putting (5.5)

and (5.6) together we obtain the lemma. �

Back to our main goal, which is to prove Theorem 1.4, we now state two lemmas, whose

proof is provided in the last section.

Lemma 5.3. Let 1 < p < ∞. Assume that (D)p′ is solvable in ΩT for L. Let u be a

solution of Lu = 0 in ΩT that vanishes continuously in ∆32r = ∆32r(Q0) with 0 < 16r <
1
2

min{r0,
√

s0,
√

T − s0}. Then

(?
∆r

|N(∇u)|p dσ

) 1
p

.

?
∆32r

N(∇u)dσ. (5.7)

Lemma 5.4. Retaining the notation from the previous lemma, define

E(λ) = {Q ∈ ∆2r :M∆2r
(|N(∇u)|q)(Q) > λ}. (5.8)

Let 1 < q < p <∞ and suppose that (D)p′ and (R)q are solvable in ΩT . Then there exists

constants ε,γ,α > 0 such that

|E(Aλ)| ≤ ε |E(λ)|+ |{Q ∈ ∆r :M∆2r
(|∇tan f |q)(Q) > γλ}|

+ |{Q ∈ ∆r :M∆2r
(|∂

1
2

t f |q)(Q) > γλ}| (5.9)

for λ ≥ λ0, where A = (2ε)
− q

p and

λ0 = α

?
∆2r

|N(∇u)|q dσ. (5.10)

Assuming temporarily these results, we now provide the

Proof of Theorem 1.4. Multiplying both sides of (5.9) by λ
p

q
−1

, integrating, and using the

Lp boundedness of Hardy-Littlewood operator we obtain

∫ Λ

λ0

|E(Aλ)|λ
p

q
−1

dλ ≤ ε
∫ Λ

λ0

|E(λ)|λ
p

q
−1

dλ (5.11)

+ c

∫

∆2r

|∇tan f |p dσ+ c

∫

∆2r

|∂
1
2
t f |p dσ,
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with Λ sufficiently large. Applying a change of variables, and noting that A
p

q = 1
2ε
> 1, we

find that

2ε

∫ AΛ

Aλ0

|E(λ)|λ
p

q
−1

dλ ≤ ε
∫ AΛ

λ0

|E(λ)|λ
p

q
−1

dλ (5.12)

+ c

∫

∆2r

|∇tan f |p dσ+ c

∫

∆2r

|∂
1
2
t f |p dσ.

Splitting the first integral of the right hand side (5.12), hiding a small term we get

ε

∫ AΛ

Aλ0

|E(λ)|λ
p

q
−1

dλ ≤
∫ Aλ0

λ0

|E(λ)|λ
p

q
−1

dλ (5.13)

+
1

ε

∫

∆2r

|∇tan f |p dσ+
1

ε

∫

∆2r

|∂
1
2
t f |p dσ.

From (5.13) and (5.8) we see that

∫ AΛ

Aλ0

|E(λ)|λ
p

q
−1

dλ . |∆2r|λ
p

q

0
+

∫

∆2r

|∇tan f |p dσ+

∫

∆2r

|∂
1
2
t f |p dσ,

where the dependance on ε has been incorporated to the constants of the inequality. From

here we obtain

∫ AΛ

0

|E(λ)|λ
p

q −1
dλ . |∆2r|λ

p

q

0
+

∫

∆2r

|∇tan f |p dσ+

∫

∆2r

|∂
1
2

t f |p dσ.

Letting Λ→∞, from (5.9) we get

∫

∆2r

|N(∇u)|p dσ . |∆2r |λ
p
q

0
+

∫

∆2r

|∇tan f |p dσ+

∫

∆2r

|∂
1
2
t f |p dσ. (5.14)

Substituting the value of λ0 in the first term of (5.10), using the hypothesis (R)q and then

Hölder’s inequality,

|∆2r |λ
p

q

0
= |∆2r |

(
α

?
∆2r

|N(∇u)|q dσ

) p

q

. |∆2r |
(?
∆2r

|∇tan f |q dσ

) p

q

+ |∆2r |
(?
∆2r

|∂
1
2

t f |q dσ

) p

q

. |∆2r |
?
∆2r

|∇tan f |p dσ+ |∆2r |
?
∆2r

|∂
1
2
t f |p dσ

we conclude that
∫

∆2r

|N(∇u)|p dσ .

∫

∆2r

|∇tan f |p dσ+

∫

∆2r

|∂
1
2
t f |p dσ. (5.15)

Finally, by covering S T with a finite number of surface balls, we obtain (R)p and the proof

is finished. �
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6 Proofs of Technical Lemmas 5.3 and 5.4

Proof of Lemma 5.3. It is enough to prove the following two estimates:

N(∇u)(Q) .

(
u

δ

)∗
(Q)+

?
∆32r

N(∇u)dσ(Q), Q ∈ ∆r, (6.1)

(?
∆r

∣∣∣∣∣
(
u

δ

)∗
(Q)

∣∣∣∣∣
p

dσ(Q)

) 1
p

.

?
∆32r

N(∇u)(Q)dσ(Q) (6.2)

where (
u

δ

)∗
(Q) = sup

Y∈Γ20α(Q)

{
|u(Y)|
δ(Y)

: δ(Y) ≤ r

}
.

Let us begin by establishing (6.1). For Q ∈ ∆r pick X ∈ Γ(Q) with δ(X) ≥ r. This way, if

A = {P ∈ ∆32r : X ∈ Γ(P)} then we will have |A| & rn+1. Hence we have

?
∆32r

|N(∇u)(P)|dσ(P) ≥ 1

|∆32r|

∫

A

(?
Q(X)

|∇u(Y)|2d Y

) 1
2

dσ(P)

&

(?
Q(X)

|∇u(Y)|2d Y

) 1
2

. (6.3)

On the other hand, if δ(X) ≤ r, by Caccioppoli’s inequality we see that

(?
Q(X)

|∇u(Y)|2d Y

) 1
2

.


1

|Q 3
4
δ(X)(X)|

∫

Q 3
4
δ(X)

(X)

|u(Y)|2
δ(X)2

d Y



1
2

.


1

|Q 3
4 δ(X)(X)|

∫

Q 3
4
δ(X)

(X)

|u(Y)|2
δ(Y)2

d Y



1
2

.

(
u

δ

)∗
(Q). (6.4)

Now (6.1) follows from (6.3) and (6.4).

We now focus on proving (6.2). By (5.4) one deduces that

(
u

δ

)∗
(Q) .

1

G(Ξ;A12r(Q̃0))

(?
Ψ18r(Q0)

u2(Y)d Y

) 1
2
(
G(Ξ, ·)
δ

)∗
(Q̃) (6.5)

for Q ∈ ∆r(Q0). By Theorem 2.4 we know that

G(Ξ,Aδ(X)(Q̃))

δ(X)
.
ω(∆δ(X)(Q̃))

δ(X)n+1
.

Using this and the adjoint version of Carleson estimate (Theorem 2.10 above) for X ∈
Γ(Q) with δ(X) ≤ r we have

G(Ξ; X̃)

δ(X̃)
.

G(Ξ;A
δ(X)

(Q̃))

δ(X̃)
.

G(Ξ;Aδ(X)(Q̃))

δ(X̃)
.
ω(∆δ(X)(Q̃))

δ(X̃)n+1
.
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Therefore we obtain,

(
G(Ξ, ·)
δ(·)

)∗
(Q̃) . sup

0<ρ<r


ω(∆ρ(Q̃))

ρn+1

 ≡Mσ,r(ω)(Q̃) (6.6)

for Q ∈ ∆r(Q0). By hypotesis (D)p′ is solvable in ΩT , so we know that

(?
∆r(Q̃0)

∣∣∣∣∣
dω

dσ

∣∣∣∣∣
p

dσ

) 1
p

.
ω(∆r(Q̃0))

|∆r(Q̃0)|
. (6.7)

By (6.5), (6.6), (6.7) and the Lp boundedness of Mσ,r(ω) (where this last maximal operator

is the same we defined at the end of section 4) we get

(?
∆r

∣∣∣∣∣
(
u

δ

)∗
(Q)

∣∣∣∣∣
p

dσ(Q)

) 1
p

.

.


?
∆r


1

G(Ξ;A12r(Q̃0))

(?
Ψ18r(Q0)

u2(Y)d Y

) 1
2
(
G(Ξ, ·)
δ(·)

)∗
(Q̃)



p

dσ(Q)



1
p

.
1

G(Ξ;A12r(Q̃0))

(?
Ψ18r(Q0)

u2(Y)d Y

) 1
2
(?
∆r

(Mσ,r(ω)(Q̃))p dσ(Q)

) 1
p

.
1

G(Ξ;A12r(Q̃0))

(?
Ψ18r(Q0)

u2(Y)d Y

) 1
2
(?
∆r(Q̃0)

(
dω

dσ

)p

(Q)dσ(Q)

) 1
p

.
1

G(Ξ;A
12r

(Q̃0))

(?
Ψ18r(Q0)

u2(Y)d Y

) 1
2 ω(∆r(Q̃0))

|∆r(Q̃0)|

.
1

r

(?
Ψ18r(Q0)

u2(Y)d Y

) 1
2

where the last two inequalities are consequence of Theorems 2.4 and 2.5 respectively. We

can continue this sequence of inequalities making use of Poincaré’s inequality in Lemma

3.2 with α = 0, and obtain

(?
∆r

∣∣∣∣∣
(
u

δ

)∗
(Q)

∣∣∣∣∣
p

dσ(Q)

) 1
p

.

(?
Ψ18r(Q0)

|∇u(Y)|2 d Y

) 1
2

. (6.8)

By Caccioppoli’s inequality at the boundary, and arguing as in (5.6) we get

(?
Ψ18r(Q0)

|∇u(Y)|2 d Y

) 1
2

. r−1

(?
Ψ19r(Q0)

u2(Y)d Y

) 1
2

. r−1 sup
Ψ19r(Q0)

|u|

. r−1

?
Ψ28r(Q0)

|u(Y)|d Y .

?
Ψ28r(Q0)

|∇u(Y)|d Y. (6.9)

The proof is complete once we put together (6.8),(6.9) and apply (5.1). �
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Proof of Lemma 5.4. Let ε > 0 be a small constant to be chosen later. By the weak (1,1)

estimate for the maximal operator M∆2r
we have |E(λ)| ≤ ε |∆r| for λ ≥ λ0 if we choose α

big enough. Now we apply the Calderón-Zygmund type decomposition (as described for

instance in [27, p. 210]) and obtain a collection of disjoint cubes {Qk}k contained in ∆r such

that E(λ) =
⋃

kQk and each Qk is maximal. We may also choose ε small enough so that

64Qk ⊂ ∆2r.

The key statement of this proof is that there exist constants ε,γ,α > 0 such that if Qk is

a cube that satisfies

Fk =

{
Q ∈ Qk :M∆2r

(|∇tan f |q)(Q) ≤ γλ, M∆2r
(|∂

1
2

t f |q)(Q) ≤ γλ
}
, ∅ (6.10)

then

|E(Aλ)∩Qk | . ε |Qk|. (6.11)

From this, setting Cλ =
⋃

k Fk , we have

|E(Aλ)∩Cλ | ≤
∑

k

|E(Aλ)∩Qk | ≤ ε
∑

k

|Qk | = ε |E(λ)|

and (5.9) follows. To prove (6.11) we notice that for Q ∈ Qk

M∆2r
(|N(∇u)|q)(Q) ≤max

{M2Qk
(|N(∇u)|q)(Q),βλ

}
. (6.12)

For ε small enough A = (2ε)−q/p ≥ β, and so in view of (6.12), we get

|E(Aλ)∩Qk | ≤ |
{
Q ∈ Qk :M2Qk

(|N(∇u)|q)(Q) > Aλ
} |. (6.13)

Now, for each k consider the smooth function φk : Rn+1→ R such that φk = 1 in 64Qk,

φk = 0 in (66Qk)c, |∇φk | . |Qk |−
1

n+1 and |(φk)t | . |Qk|−
2

n+1 . Let vk be the solution to Lv = 0 in

ΩT with boundary data φk( f −αk) where αk =
>

64Qk
f dσ. Let p > p. By (6.13), we obtain

|E(Aλ)∩Qk | ≤
∣∣∣∣∣
{
Q ∈ Qk :M2Qk

(|N(∇u−∇vk)|q)(Q) >
Aλ

2q+1

}∣∣∣∣∣

+

∣∣∣∣∣
{
Q ∈ Qk :M2Qk

(|N(∇vk)|q)(Q) >
Aλ

2q+1

}∣∣∣∣∣

.
1

(Aλ)
p

q

∫

2Qk

|N(∇u−∇vk)|pdσ+
1

Aλ

∫

2Qk

|N(∇vk)|qdσ ≡ I+II. (6.14)

First, let’s handle II. By hypotesis (R)q is solvable, which yields

II . 1

Aλ

∫

66Qk

|∇tanφ( f −αk)|q dσ+
1

Aλ

∫

66Qk

∣∣∣∣∣∂
1
2

t φ( f −αk)

∣∣∣∣∣
q

dσ ≡ III+IV.

From the Poincaré inequality in Theorem 3.1, we can see that

III . 1

Aλ

∫

66Qk

|φ∇tan f |q dσ+
1

Aλ

∫

66Qk

|( f −αk)∇tanφ|q dσ

.
1

Aλ

∫

66Qk

|∇tan f |qdσ+
1

Aλ
|Qk |

−q

n+1

∫

66Qk

| f −αk|qdσ

.
1

Aλ

∫

66Qk

|∇tan f |qdσ+
1

Aλ

∫

66Qk

∣∣∣∣∣∂
1
2

t f

∣∣∣∣∣
q

dσ.
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In order to bound IV, we first notice that

∂
1
2
t (φk( f −αk))(q, s) =

(∫

Ik

|φk( f −αk)(q,τ)−φk( f −αk)(q, s)|2
|τ− s|2 dτ

) 1
2

.

{∫

Ik

(
|φk(q,τ)|2 | f (q,τ)− f (q, s)|2

|τ− s|2
+ | f (q, s)−αk |2

|φk(q,τ)−φk(q, s)|2
|τ− s|2

)
dτ

} 1
2

.

{∫

Ik

| f (q,τ)− f (q, s)|2
|τ− s|2 dτ

} 1
2

+ | f (q, s)−αk |
{∫

Ik

|φk(q,τ)−φk(q, s)|2
|τ− s|2 dτ

} 1
2

. ∂
1
2
t f (q, s)+ |Qk |−

1
n+1 | f (q, s)−αk|

where Ik is the projection over the t axis of 66Qk. Consequently,

IV . 1

Aλ

∫

66Qk

|∇tan f |qdσ+
1

Aλ

∫

66Qk

∣∣∣∣∣∂
1
2
t f

∣∣∣∣∣
q

dσ.

The estimates for III and IV together with (6.10) give,

II . γ|Qk|
A

.

Now, let’s handleI. Note that the hypotesis (D)p′ and well-known properties of the Lp-

Dirichlet problem implies (D)p′ for some p > p. Also observe that u− vk−αk is a solution

with boundary data ( f −αk)(1−φ) and it vanishes on 64Qk. By (5.7) we find that

I . |2Qk|

(Aλ)
p
q

(?
64Qk

|N(∇u−∇vk)|dσ
)p

.
|2Qk|

(Aλ)
p

q



(?
64Qk

|N(∇u)|q dσ

) p

q

+

(?
64Qk

|N(∇vk)|q dσ

) p

q



.
|2Qk|

(Aλ)
p

q

(?
66Qk

|∇tan f |qdσ+

?
66Qk

∣∣∣∣∣∂
1
2

t f

∣∣∣∣∣
q

dσ

) p

q

where the last inequality is due to (R)q. Using (6.10) again,

I . |Qk|

A
p
q

.

Finally, since A = (2ε)
− q

p ,

|E(Aλ)∩Qk | .
[
γε

q

p−1
+ ε

p

p−1
]
ε |Qk|.

We fix ε > 0 so small such that ε
p

p−1
< 1, and then we choose γ > 0 such that γε

q

p−1
< 1 and

(6.11) follows. �



58 L. San Martin and J. Rivera-Noriega

Acknowledgments

This article contains part of the results in the Doctoral Dissertation of the first author, who

gratefully acknowledges partial financial support from Instituto de Matemáticas - Unidad
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