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Abstract

In this paper, we show that the continuous dense embedding of a separable Banach

space B into a Hilbert spaceH offers a new tool for studying the structure of operators

on a Banach space. We use this embedding to demonstrate that the dual of a Banach

space is not unique. As a application, we consider this non-uniqueness within the

C[0,1] ⊂ L2[0,1] setting. We then extend our theory every separable Banach space

B. In particular, we show that every closed densely defined linear operator A on B
has a unique adjoint A∗ defined on B and that L[B], the bounded linear operators

on B, are continuously embedded in L[H]. This allows us to define the Schatten

classes for L[B] as the restriction of a subset of L[H]. Thus, the structure of L[B],

particularly the structure of the compact operators K[B], is unrelated to the basis or

approximation problems for compact operators. We conclude that for the Enflo space

Be, we can provide a representation for compact operators that is very close to the

same representation for a Hilbert space, but the norm limit of the partial sums may not

converge, which is the only missing property.
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1 Introduction

A Banach space with a Schauder basis (S-basis) {en}∞n=1
has two important properties. The

first property is uniqueness; for each u ∈ B, there is a unique set of scalers {un}∞n=1
such that

u =
∑∞

n=1 unen. This property is important for studying the geometry of Banach spaces and

for studying Lebesgue measure on Banach spaces (see Section 2.2 in [GZ]). The second

property is approximation for compact operators (approximation property); every compact

operator on B can be approximated by a sequence of operators of finite rank. A separable

Banach space B has the bounded approximation property if and only if there is a sequence

of finite rank operators {Tn} ⊂ L[B] such that limnTnu = u for each u ∈ B.
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Historically, in 1932, Banach [BA] asked if every separable Banach space possessed an

S-basis. Grothendieck [GR] introduced the bounded approximation property and demon-

strated that this implied the approximation property for separable reflexive Banach spaces.

In 1973, Enflo showed that a separable reflexive Banach space Be exists without the ap-

proximation property and hence without an S-basis (see [EN]). In the same year, Figiel

and Johnson demonstrated that the approximation property does not imply the bounded ap-

proximation property (see [FJ]). Finally, in 1987, Szarek demonstrated that the bounded

approximation property does not imply the existence of an S-basis (see [SZ]).

In 1965, Gross [G] proved that every separable Banach space contains a separable

Hilbert space as a continuous dense embedding. This work was a generalization of Wiener’s

theory, which used the (densely embedded Hilbert) Sobolev space H1
0
[0,1] ⊂ C0[0,1].

In 1970, Kuelbs [K], generalized Gross’ theorem to include the Hilbert space rigging

H1
0
[0,1] ⊂ C0[0,1] ⊂ L2[0,1]. A general version of this theorem can be stated as follows:

Theorem 1.1. (Gross-Kuelbs) LetB be a separable Banach space. Then, separable Hilbert

spaces H1,H2 and a positive trace class operator T12 defined on H2 exist such that H1 ⊂
B⊂H2 all as continuous dense embeddings, with

(

T
1/2

12
u, T

1/2

12
v
)

1
= (u, v)2 and

(

T
−1/2

12
u, T

−1/2

12
v
)

2
=

(u, v)1.

(Since we useH2, we prove that B ⊂H2 in the appendix.)

Purpose

The purpose of this paper is to show howH =H2 provides a completely different approach

to the study of operator theory on separable Banach spaces.

Summary

After establishing a few background results, we investigate the basis problem from a new

perspective. We show how to obtain the uniqueness property for the Enflo space Be using

H . In the second section, we show that the dual of every separable Banach space B has two

different representations for a class of linear functionals that are bijectively related to B.

In the next section, we use one representation to investigate the case when B = C[0,1], the

space of continuous functions on [0,1] and H = L2[0,1]. In the last section, we apply our

approach to obtain a new structure theory for the bounded linear operators on a separable

Banach space, which is close to that of a Hilbert space. We show that the structure of the

compact operators on B is almost identical to that of H . The important difference is that

the bounded linear operators on B do not form a C∗-algebra.

1.1 Preliminaries

Let B be a separable Banach space with dual space B∗, let C[B] be the closed densely

defined linear operators, and let L[B] be the bounded linear operators on B.

Definition 1.2. A duality map J : B 7→ B∗, is a set

J(u) =

{

u∗ ∈ B∗
∣

∣

∣

∣

〈

u,u∗
〉

= ‖u‖2B =
∥

∥

∥u∗
∥

∥

∥

2

B′

}

, ∀u ∈ B.
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If T is an operator, we let σ(T ) denote the spectrum of T and σp(T ) ⊂ σ(T ) denote the

point spectrum of T . The following theorem is due to Lax [L]. (A proof is provided in the

appendix.)

Theorem 1.3. (Lax’s Theorem) Let B be a separable Banach space that is continuously

and densely embedded in a Hilbert spaceH , and let T be a bounded linear operator on B
that is symmetric with respect to the inner product of H (i.e., (Tu,v)H = (u,Tv)H for all

u,v ∈ B). Then,

1. T is bounded with respect to theH norm, and
∥

∥

∥T ∗T
∥

∥

∥H = ‖T‖
2
H 6 k ‖T‖2B ,

where k is a positive constant.

2. σ(T ) relative toH is a subset of σ(T ) relative to B.

3. σp(T ) relative toH is equal to σp(T ) relative to B.

Let Be be a separable Banach space without an S-basis, and construct H such that

Be ⊂H as a continuous dense embedding. Let {en}∞n=1
be a complete orthonormal basis for

H such that for each u ∈ H , a unique set of scalers {ūn}∞n=1
exists with

u =

∞
∑

n=1

ūnen, with, ‖u‖2H =
∞
∑

n=1

|ūn|2.

This is also true for u ∈ Be; then, we can rewrite the above representation as follows:

u =

∞
∑

n=1

unhn, where, hn =
en

‖en‖Be
and un = ‖en‖Be

ūn.

Now, ‖hn‖Be
= 1, and the scalers {un}∞n=1 are still unique. Thus, the mapping from Be→ R∞,

taking u =
∑∞

n=1 unhn→ (u1,u2, · · · ), is a unique, so the uniqueness property of an S-basis is

actually true for all separable Banach spaces. (However, since we do not require that the

family {en}∞n=1
⊂ Be, the family {hn}∞n=1

is not a Schauder basis.)

1.2 Representation of Linear Functionals

Historically, it has been implicitly assumed that B∗, the dual space of B, has a unique rep-

resentation. In this section, we useH to construct two special families of linear functionals

that are bijectively related to B.

Let J be the natural linear mapping fromH →H∗, and let JB be the restriction of J to

B. Since B is a continuous dense embedding in H , JB is an isometric isomorphism of B
onto JB(B) ⊂H∗ as a continuous dense embedding.

1.2.1 The Hilbert Representation

For our first representation let u ∈ B.

Definition 1.4. We define uh = JB(u) and B∗
h
= {uh ∈ B∗ : u ∈ B}, so that 〈u,uh〉 = (u,u)H =

‖u‖2H . It is clear from our construction that the mapping u→ uh is a isometric (conjugate)

isomorphism from B onto B∗
h
⊂ B∗. We call B∗

h
the Hilbert representation for B in B∗.
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1.2.2 The Steadman Representation

For each u ∈ B, let ûs =
‖u‖2B
‖u‖2H

uh. Let the seminorm pu( · ) be the Minkowski functional

defined on the span of {u} in B by pu(v) = ‖u‖B ‖v‖B. By the Hahn-Banach Theorem, ûs( · )
has an extension us( · ) to all of B such that |us(v)| 6 pu(v) = ‖u‖B ‖v‖B for all v ∈ B. From

the definition of pu( · ), we find that ‖us‖B∗ ≤ ‖us‖B. Meanwhile, us(u) = ‖u‖2B 6 ‖u‖B ‖us‖B∗
so that us( · ) is a duality mapping for u (i.e., ‖us‖B∗ = ‖u‖B). We call B∗s the Steadman

representation of B in B∗.

Remark 1.5. In general, the embedding of B∗
h

(respectively B∗s) is a proper subspace ofB∗.

2 Special Case

In this section, we investigate the Hilbert representation B∗
h
, in a familiar setting with B =

C[0,1] ⊂ L2[0,1], where C[0,1] is the set of continuous functions on [0,1] and L2[0,1] is

the set of functions f , such that
∫ 1

0
| f (x)|2dx <∞, with the Lebesgue measure on [0,1]. In

this case, C[0,1] ⊂ L2[0,1] as a continuous dense embedding (i.e., ‖ f ‖2 6 ‖ f ‖C, f ∈C[0,1]).

It is well known that every bounded linear functional l(·) on C[0,1] has a representation of

the form

l( f ) =

∫ 1

0

f (x)dα(x), where α(x) ∈ C∗ [0,1] = NBV[0,1], (2.1)

the functions of normalized bounded variation on [0,1] (i.e., α(0) = 0). However, every

bounded linear functional on L2[0,1], when restricted to C[0,1], is a bounded linear func-

tional on C[0,1]. We conclude that the set of functionals C∗
2
=
{

( ·,u)2 | u ∈ L2 [0,1]
}

repre-

sent a subset of the functionals in NBV[0,1]. It follows that, for each u ∈ L2[0,1], there is a

function αu ∈ NBV[0,1] and a constant cu > 0, depending on u, such that

( f ,u)2 = c−1
u

∫ 1

0

f (x)dαu(x), for all f ∈ C[0,1].

Thus, C∗
2

is a new representational subspace of NBV[0,1]. This inner product representa-

tion offers a new and unexpected perspective on the adjoint problem. Let J2 : L2[0,1]→
{L2[0,1]}∗ be the standard conjugate isomorphism, and let JC be the restriction of J2 to

C[0,1] such that JC : C[0,1]→ {L2[0,1]}∗.
Define C∗

h
= {uh = ( ·,u)2 | u ∈ C [0,1]} such that JC(u) = uh. Let C[C[0,1]] be the set of

closed densely defined linear operators on C[0,1].

Theorem 2.1. If A ∈C[C[0,1]], then there is a unique operator A∗ ∈ C[C[0,1]] that satisfies

the following:

1. (aA)∗ = āA∗,

2. A∗∗ = A,

3. (A∗+B∗) = A∗+B∗,
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4. (AB)∗ = B∗A∗ on D(A∗)
⋂

D(B∗), and

5. if A is bounded (A ∈ L[C[0,1]]), then ‖A∗A‖B ≤ M ‖A‖2B (for some constant M) and

A has a bounded extension to L2[0,1].

Proof. If A ∈ C[C[0,1]], then the dual operator A′ : NBV[0,1]→ NBV[0,1]. As a mapping

on NBV[0,1], A′ is closed and weak∗ dense. However, sinceC[0,1] is dense in L2[0,1], C∗
h

is strongly dense in {L2[0,1]}∗. It follows that A′JC, mapping C∗
h
⊂ {L2[0,1]}∗→ {L2[0,1]}∗

is a closed (strongly) dense linear operator. Thus, J−1
C

A′JC : C[0,1]→ C[0,1] is a closed

and densely defined linear operator. We define A∗ = [J−1
C

A′JC] ∈ C[C[0,1]]. If A is bounded,

A∗ is defined on all of C[0,1]. According to the closed graph theorem, A∗ is bounded. The

proofs of (1)-(3) are straightforward. To prove (4), let u ∈ D(A∗)
⋂

D(B∗); then,

(BA)∗u = [J−1
C

(BA)′JC]u = [J−1
C A′B′JC]u

=
[

J−1
C A′JC

] [

J−1
C B′JC

]

u = A∗B∗u.
(2.2)

If we replace B by A∗ in equation (2.2), noting that A∗∗ = A, we also find that (A∗A)∗ = A∗A.

The proof of the first part of (5) follows from

∥

∥

∥A∗A
∥

∥

∥

C
6

∥

∥

∥A∗
∥

∥

∥

C
‖A‖C 6 ‖JC‖C∗

∥

∥

∥J−1
C

∥

∥

∥

C

∥

∥

∥A′
∥

∥

∥

C∗
‖A‖C = M ‖A‖2C ,

for some constant M. A proof of the second part is a special case of Theorem 1.3. From

(4), S = A∗A is self-adjoint; thus, from Theorem 1.3, S has a bounded extension to L2[0,1].

Therefore, A has a bounded extension Ā to L2[0,1] such that L[C[0,1]] is continuously

embedded into L[L2[0,1]], the bounded linear operators on L2[0,1]. �

The last result also implies that L[C[0,1]] is a ∗algebra.

Theorem 2.2. (Polar Representation) If A ∈ C[C[0,1]], then there exists a partial isometry

U and a self-adjoint operator T, T = T ∗, with D(T ) = D(A) and A = UT.

Proof. Let Ā be the (closed densely defined) extension of A to L2[0,1]. On L2[0,1], T̄2 =

Ā∗Ā is self-adjoint, and there exists a unique partial isometry Ū, with Ā = ŪT̄ . Thus, the

restriction to C[0,1] provides us A = UT , and U is a partial isometry on C[0,1]. (It is easy

to check that A∗A = T2.) �

Theorem 2.3. (Spectral Representation) Let A ∈ C[C[0,1]] be a self-adjoint linear operator.

There exists a operator-valued spectral measure Ex defined for each x ∈ R, and for each

u ∈ D(A),

Au =

∫ ∞

−∞
xdEx(u).

The next result easily follows from examination of the previous proofs.

Theorem 2.4. LetB be any Banach space that is a continuous dense embedding in L2[0,1];

then, all the results of this section hold for B.
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Since Lp[0,1] ⊂ L2[0,1], p > 2 as a continuous dense embedding, we conclude that

Theorems 1.1, 1.2, and 1.3 hold for all Lp[0,1], p > 2.

If u ∈ Lp[0,1], 2 < p <∞, then the standard duality mapping is

u∗ = ‖u‖2−p
p |u(x)|p−2 u(x) ∈ Lq[0,1], 1

p
+ 1

q
= 1. (2.3)

Furthermore,
〈

u,u∗
〉

= ‖u‖2−p
p

∫ 1

0

|u(x)|p dλn(x) = ‖u‖2p =
∥

∥

∥u∗
∥

∥

∥

2

q

Applying our earlier observation to Lp[0,1], p > 2, we find that for each u ∈ Lp[0,1], there

is a αu ∈ NBV[0,1], a constant cu > 0 and a unique u∗ ∈ Lq[0,1], 1
p
+ 1

q
= 1 such that (see

(2.3))

〈

f ,u∗
〉

p = ‖u‖
2−p
p

∫ 1

0

f (x)|u(x)|p−2u(x)dx = c−1
u

∫ 1

0

f (x)dαu(x),

for all f ∈ C[0,1]. It follows that there are an infinite number of possible of representations

for the linear functionals on C[0,1].

One of the most important implications of this section is the possibility of a new rep-

resentation theory for compact operators. Let A be a compact operator on C[0,1], and

let {en}∞n=1
⊂ C[0,1] be an orthonormal basis for L2[0,1]. From Theorem 1.1(5), A has a

bounded extension Ā to L2[0,1]. On L2[0,1], Ā has the following representation:

Ā f =

∞
∑

n=1

µn

(

Ā
)

( f ,en)2Ūen,

for all f ∈ L2[0,1], where the µn(Ā) are the eigenvalues of [Ā∗Ā]1/2 counted by multiplicity

in decreasing order. Since (·,en)2 is a linear functional on C[0,1], for each n, there is a

αn ∈ NVB[0,1] and constant cn > 0 such that ( f ,en)2 =
〈

f ,α∗n
〉

= c−1
n

∫ 1

0
f (x)dαn(x). From

Theorem 1.3 (3), µn(Ā) = µn(A). It follows that we can also represent A on C[0,1] as

A f =

∞
∑

n=1

µn(A)( f ,en)2Uen =

∞
∑

n=1

µn(A)c−1
n

〈

f ,α∗n
〉

Uen.

for all f ∈ C[0,1]. The partial sums always converge in H , but convergence in C[0,1]

requires proof.

3 The Adjoint Problem

The important properties of operators on a Hilbert space do not directly depend on the inner

product; however, they do depend on the existence of an adjoint operator A∗ for each closed

densely defined linear operator A. In this section, we extend the special case of C[0,1] to

all separable Banach spaces.

Theorem 3.1. Let B be a separable Banach space. If A ∈ C[B], then there is a unique

operator A∗ ∈ C[B] that satisfies the following:

1. (aA)∗ = āA∗;
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2. A∗∗ = A;

3. (A+B)∗ = A∗+B∗;

4. (AB)∗ = B∗A∗ on D(A∗)
⋂

D(B∗);

5. if A ∈ L[B], then ‖A∗A‖B ≤ M ‖A‖2B, for some constant M; and

6. if A ∈ L[B], it has a bounded extension to L[H].

Proof. Let JB be the restriction of J to B, and let JB(B) = B∗
h
⊂ H∗. Since B is dense in

H , B∗
h

is dense in H∗. It follows that if A ∈ C[B], A′ : B∗
h
→H∗ is closed and densely

defined. Thus, J−1
B A′JB : B→B is a closed and densely defined linear operator. We define

A∗ = [J−1
B A′JB] ∈ C[B]. If A ∈ L[B], A∗ = J−1

B A′JB is defined on all of B such that A∗ ∈ L[B]

by the closed graph theorem. The proofs of (1)-(3) are straightforward. To prove (4), let

u ∈ D(A∗)
⋂

D(B∗); then,

(BA)∗u = [J−1
B (BA)′JB]u = [J−1

B A′B′JB]u

=
[

J−1
B A′JB

] [

J−1
B B′JB

]

u = A∗B∗u.
(3.1)

If we replace B by A∗ in equation (3.1), noting that A∗∗ = A, we also find that (A∗A)∗ = A∗A
(self-adjoint). To prove (5), we observe that

∥

∥

∥A∗A
∥

∥

∥B 6
∥

∥

∥A∗
∥

∥

∥B‖A‖B 6 ‖JB‖B∗
∥

∥

∥J−1
B
∥

∥

∥B
∥

∥

∥A′
∥

∥

∥B∗ ‖A‖B = M ‖A‖2B .

It follows that
∥

∥

∥A∗A
∥

∥

∥B ≤ M ‖A‖2B . (3.2)

To prove (6),

〈

A∗Av,JB(u)
〉

=
〈

A∗Av,uh

〉

=
(

A∗Av,u
)

H =
(

v,A∗Au
)

H ,

so that A∗A is symmetric. Thus, from Theorem 1.3 (Lax), A∗A has a bounded extension to

H and ‖A∗A‖H 6 k ‖A∗A‖B, where k is a positive constant. It follows that A has a bounded

extension to L[H] (i.e., L[B] ↪→L[H] is a continuous embedding). �

Remark 3.2. The continuous embedding of B inH does not imply the dense embedding of

L[B] in L[H]. We conjecture that the embedding is dense.

Definition 3.3. Let U be bounded, A ∈ C[B], and letU,V be subspaces of B. Then,

1. A is said to be self-adjoint if D(A) = D(A∗) and A = A∗.

2. A is said to be normal if D(A) = D(A∗) and AA∗ = A∗A.

3. U is unitary if UU∗ = U∗U = I.

4. The subspaceU is ⊥ to V if and only, for each v ∈ V and ∀u ∈ U, (v,u)H = 0 and,

for each u ∈ U and ∀v ∈ V, (u,v)H = 0.

The last definition is transparent since orthogonal subspaces in H induce orthogonal

subspaces in B.
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3.0.3 Self-adjointness

With respect to our definition of self-adjointness, the following related definition is due to

Palmer [P], where the operator is called symmetric. This operator is essentially the same

as a Hermitian operator as defined by Lumer [LU]. (An operator A is dissipative if −A is

accretive.)

Definition 3.4. A closed densely defined linear operator A on B is called self-conjugate if

both iA and −iA are dissipative.

Theorem 3.5. (Vidav-Palmer) A linear operator A, defined on B, is self-conjugate if and

only if iA and −iA are generators of isometric semigroups.

Theorem 3.6. The operator A, defined onB, is self-conjugate if and only if it is self-adjoint.

Proof. Let Ā be the closed densely defined extension of A toH . OnH , Ā is self-adjoint if

and only if iĀ generates a unitary group and if and only if it is self-conjugate. Thus, both

definitions coincide onH . It follows that the restrictions coincide on B. �

The proof of the last theorem represents a general approach for proving new results for

B. The following two are representative.

Theorem 3.7. (Polar Representation) Let B be a separable Banach space. If A ∈ C[B],

then there exists a partial isometry U and a self-adjoint operator T, with D(T ) = D(A) and

A = UT. Furthermore, T = [A∗A]1/2 in a well-defined sense.

Theorem 3.8. (Spectral Representation) Let B be a separable Banach space, and let A ∈
C[B] be a self-adjoint linear operator. Then, there exists a operator-valued spectral mea-

sure Ex, x ∈ R, and for each u ∈ D(A),

Au =

∫

R

xdEx(u).

3.1 Example

The following (separable) Hilbert space is a concrete construction ofH . It is related to one

that was first found by Steadman [ST]. This particular H was used in [GZ] to provide a

rigorous foundation for the path integral formulation of quantum mechanics in the manner

originally suggested by Feynman. It is also important because it contains the Lp spaces and

the test functionsD(Rn) as continuous dense embeddings.

3.2 The space KS 2[Rn]

On Rn, let Qn be the set {x = (x1, x2 · · · , xn) ∈ Rn} such that xi is rational for each i. Since

this is a countable dense set in Rn, we can arrange it as Qn =
{

x1,x2,x3, · · ·
}

. For each l and

i, let Bl(x
i) be the closed cube centered at xi, with sides parallel to the coordinate axes and

edge el =
1

2l
√

n
, l ∈ N. Now choose the natural order that maps N×N bijectively to N:

{(1,1), (2,1), (1,2), (1,3), (2,2), (3,1), (3,2), (2,3), · · · }.
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Let {Bk, k ∈ N} be the resulting set of (all) closed cubes {Bl(x
i) |(l, i) ∈N×N} centered at a

point in Qn, and let Ek(x) be the characteristic function of Bk so that Ek(x) is in Lp[Rn] for

1 ≤ p ≤∞. Define Fk( · ) on L1[Rn] by

Fk( f ) =

∫

Rn

Ek(x) f (x)dλn(x). (3.3)

It is clear that Fk( · ) is a bounded linear functional on Lp[Rn] for each k, ‖Fk‖ ≤ 1 and, if

Fk( f ) = 0 for all k, f = 0 so that {Fk} is fundamental on Lp[Rn] for 1 ≤ p ≤∞ . Set tk = 2−k

such that
∑∞

k=1 tk = 1, and define a measure dµ on Rn ×Rn by

dµ =

[

∑∞
k=1

tkEk(x)Ek(y)

]

dλn(x)dλn(y).

To construct our Hilbert space, define an inner product ( · ) on L1[Rn] by

( f ,g) =

∫

Rn×Rn

f (x)g(y)∗dµ

=
∑∞

k=1
tk

[∫

Rn

Ek(x) f (x)dλn(x)

][∫

Rn

Ek(y)g(y)dλn(y)

]∗
.

(3.4)

We call the completion of L1[Rn], with the above inner product, the Kuelbs-Steadman space,

KS 2[Rn]. Steadman [ST] constructed a version of this space by modifying a method devel-

oped by Kuelbs [K] for other purposes. Her interest was in demonstrating that L1[R] can be

densely and continuously embedded in a Hilbert space that contains the non-absolutely inte-

grable functions. To show that this is the case, suppose that f is a non-absolutely integrable

function, say a Henstock-Kurzweil integral; then,

‖ f ‖2
KS 2 =

∑∞
k=1

tk

∣

∣

∣

∣

∣

∫

Rn

Ek(x) f (x)dλn(x)

∣

∣

∣

∣

∣

2

6 sup
k

∣

∣

∣

∣

∣

∫

Rn

Ek(x) f (x)dλn(x)

∣

∣

∣

∣

∣

2

<∞.

Since the absolute value is outside the integral, we find that f ∈ KS 2[Rn] for any of the

classical definitions of a non-absolute integral (see [GO]). A discussion of this space, its

relationship to the Feynman path integral formulation of quantum mechanics and proofs of

the following can be found in [GZ].

Theorem 3.9. The space KS 2[Rn] contains Lp[Rn] (for each p, 16 p 6∞) as a continuous

dense compact embedding.

Remark 3.10. The fact that L∞[Rn] ⊂ KS 2[Rn] as a continuous dense and compact em-

bedding, while KS 2[Rn] is separable clearly indicates in a very forceful manner that sepa-

rability is not an inherited property. We note that since L1[Rn] ⊂ KS 2[Rn] and KS 2[Rn] is

reflexive, the second dual L1[Rn]
∗∗
=M[Rn] ⊂ KS 2[Rn]. Recall thatM[Rn] is the space of

bounded finitely additive set functions defined on the Borel setsB[Rn]. This space contains

the Dirac delta measure and free-particle Green’s function for the Feynman path integral.

The space KS 2[Rn] uses a base composed of characteristic functions of cubes, and the

volume of the largest cube is vol(Bk) ≤
[

1

2
√

n

]n

. This observation leads to the following

interesting theorem.
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Theorem 3.11. The space of test functions D(Rn) ⊂ KS 2[Rn] as a continuous dense em-

bedding.

Proof. Suppose that φ j → φ in D(Rn). By definition, a compact set K ⊂ Rn exists that is

the support of φ j −φ, and Dαφ j converges to Dαφ uniformly on K for every multi-index α.

Let {EKl
} be the set of all El, with support Kl ⊂ K. If α is a multi-index, then we have the

following:

lim
k→∞

∥

∥

∥Dαφk −Dαφ
∥

∥

∥

2

KS 2

= lim
k→∞

∞
∑

l=1

tl

∣

∣

∣

∣

∣

∫

Rn

El(x)
[

Dαφk(x)−Dαφ(x)
]

dλn(x)

∣

∣

∣

∣

∣

2

6 lim
k→∞

sup
l

∣

∣

∣

∣

∣

∫

Rn

El(x)
[

Dαφk(x)−Dαφ(x)
]

dλn(x)

∣

∣

∣

∣

∣

2

6

[

1

2
√

n

]2n

lim
k→∞

sup
x∈K

∣

∣

∣Dαφk(x)−Dαφ(x)
∣

∣

∣

2
= 0.

Since α is arbitrary, we find thatD(Rn)⊂KS 2[Rn] as a continuous embedding. SinceD(Rn)

is a dense topological vector subspace of KS 2[Rn], according to the Hahn-Banach theorem,

each continuous linear functional T onD(Rn) has a continuous extension to KS 2[Rn]. How-

ever, from the Riesz representation theorem, every continuous linear functional on KS 2[Rn]

is of the form T ( f ) = ( f ,g)KS 2 for some unique g ∈ KS 2[Rn]. �

Example 3.12. Let A be a second-order differential operator on Lp[Rn] of the form

A =

n
∑

i, j=1

ai j(x)
∂2

∂xi∂x j

+

n
∑

i, j=1

xibi j(x)
∂

∂x j

,

where a(x) =
[[

ai j(x)
]]

and b(x) =
[[

bi j(x)
]]

are matrix-valued functions in C∞c [Rn ×Rn]

(infinitely differentiable functions with compact support). We also assume that, for all

x ∈Rn det
[[

ai j(x)
]]

> ε and the imaginary part of the eigenvalues of b(x) are bounded above

by −ε for some ε > 0. Note that since we do not require a or b to be symmetric, A , A′.
It is well known that C∞c [Rn] ⊂ Lp[Rn]∩Lq[Rn] is dense for all 1 < p ≤ q <∞. Further-

more, since A′ is invariant on C∞c [Rn],

A′ : C∞c
[

Rn] ⊂ Lp [Rn]→ C∞c
[

Rn] ⊂ Lp [Rn] .

It follows that A′ has a closed extension to Lq[Rn]. (In this case, we do not needH directly,

and we can identify J with the identity onH and A∗ with A′.)

A number of other examples are given in Chapter 3 of [GZ].

4 Schatten Classes on Banach Spaces

Let K(B) be the class of compact operators on B, and let F(B) represent the class of op-

erators of finite rank. For separable Banach spaces, K(B) is an ideal that need not be the

maximal ideal in L[B]. If M(B) is the set of weakly compact operators and N(B) is the
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set of operators that map weakly convergent sequences into strongly convergent sequences,

it is known that both are closed two-sided ideals in the operator norm and, in general,

F(B) ⊂ K(B) ⊂M(B) and F(B) ⊂ K(B) ⊂ N(B) (see part I of Dunford and Schwartz [DS],

pg. 553). For reflexive Banach spaces, K(B) = N(B) and M(B)=L[B]. For the space of

continuous functionsC[Ω] on a compact Hausdorff spaceΩ, Grothendieck [GR] has shown

that M(B)=N(B). However, it is shown in part I of Dunford and Schwartz [DS] that, if

(Ω,Σ,µ) is a positive measure space, then for L1 (Ω,Σ,µ), we have M(B) ⊂ N(B). In this

section, we present a natural definition of the Schatten class of operators on B and show

that the structure of L[B] is almost identical to that of L[H] (see [SC]).

4.1 Background: Compact Operators on Banach Spaces

In the appendix of Chapter 5 in [GZ], we assumed that B was uniformly convex with an

S-basis. In this section, we weaken that assumption to a separable Banach. Here, we show

that the structure of L[B] is almost identical to L[H], except it is not a C∗-algebra. This

result follows from the following theorem.

Theorem 4.1. For every φ ∈ H , there exists a ϕ∗ ∈ B∗ and a constant cφ > 0 depending on

φ such that ( f ,φ)H = c−1
φ 〈 f ,ϕ∗〉B∗ for all f ∈ B.

Proof. The proof is easy. For each f ∈ B and all φ ∈ H , ( f ,φ)H is well defined. It follows

that (·,φ)H is a bounded linear functional onB for all φ ∈ H . Thus, a ϕ∗ ∈ B∗ and a constant

cφ > 0 depending on φ exist such that ( f ,φ)H = c−1
φ 〈 f ,ϕ∗〉B∗ for all f ∈ B. �

Let A = U[A∗A]1/2 be a compact operator on B, and let Ā = Ū[Ā∗Ā]1/2 be its extension

toH . For each compact operator Ā, an orthonormal basis {φn |n > 1 } forH exists such that

Ā =

∞
∑

n=1

µn(Ā) (· ,φn)H Ūφn. (4.1)

Here, the µn(Ā) are the eigenvalues of [Ā∗Ā]1/2 =
∣

∣

∣Ā
∣

∣

∣, counted by multiplicity and in decreas-

ing order. Without loss of generality, we can assume that {φn |n > 1 } ⊂ B. From Theorem

4.1 and the fact that µn(Ā) = µn(A) by Lax’s theorem, we can write A as follows:

A =

∞
∑

n=1

µn(A)c−1
n

〈·,ϕ∗n
〉

B∗Uφn. (4.2)

If Ā ∈ Sp[H], the Schatten class of order p in L[H], its norm can be represented as follows:

∥

∥

∥Ā
∥

∥

∥

H
p
=

{

Tr
[

Ā∗Ā
]p/2
}1/p

=















∞
∑

n=1

(

Ā∗Āφn,φn

)p/2

H















1/p

=















∞
∑

n=1

∣

∣

∣

∣

µn

(

Ā
)

∣

∣

∣

∣

p















1/p

.
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Definition 4.2. We define Sp[B], the Schatten class of order p in L[B], as follows:

Sp[B] =



















A ∈K[B] : ‖A‖B
p
=















∞
∑

n=1

|µn (A)|p














1/p

<∞



















.

Since µn(A) = µn(Ā), we have the following:

Corollary 4.3. Let A ∈ Sp[B]; then, Ā ∈ Sp[H] and ‖A‖B
p
=
∥

∥

∥Ā
∥

∥

∥

H
p

.

It is clear that all of the theory of operator ideals on Hilbert spaces extends to separable

Banach spaces. As in [GZ], we state a few of the more important results to provide a sense

of the power provided by the existence of adjoints. The first result extends the theorems due

to Weyl [W], Horn [HO], Lalesco [LA] and Lidskii [LI]. The proofs are all straightforward:

for a given A, extend it toH , use the Hilbert space result, and then restrict back to B.

Theorem 4.4. Let A ∈ K(B), and let {λn} be the eigenvalues of A counted up to algebraic

multiplicity. If Φ is a mapping on [0,∞] that is nonnegative and monotone increasing, then

we have the following:

1. (Weyl)
∑∞

n=1
Φ (|λn(A)|) 6

∑∞
n=1
Φ (µn(A))

and

2. (Horn) If A1, A2 ∈ K(B)

∑∞
n=1
Φ (|λn(A1A2)|) 6

∑∞
n=1
Φ (µn(A1)µn(A2)).

In the case where A ∈ S1(B), we have the following:

3. (Lalesco)
∑∞

n=1
|λn(A)| 6

∑∞
n=1
µn(A) <∞

and

4. (Lidskii)
∑∞

n=1
λn(A) = tr(A).

Remark 4.5. According to Pisier [PS], when B is a Hilbert space, equation (4) was first

discovered by Grothendieck [GR1].

4.2 Discussion

On a Hilbert spaceH , the Schatten classes Sp(H) are the only ideals in K(H), and S1(H)

is minimal. In a Banach space, this is far from true. A complete history of the subject can

be found in the recent book by Pietsch [PI1] (see also Retherford [RE], for a nice review).

We limit our discussion to a few major topics. Grothendieck [GR] defined an important

class of nuclear operators as follows:
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Definition 4.6. If A ∈ F(B) (the operators of finite rank), define the ideal N1(B) by:

N1(B) = {A ∈ F(B) | N1(A) <∞} ,

where

N1(A) = glb

{
∑m

n=1

∥

∥

∥u∗n
∥

∥

∥‖un‖
∣

∣

∣

∣
u∗n ∈ B∗, un ∈ B, A =

∑m

n=1
un

〈· , u∗n
〉

}

and the greatest lower bound is over all possible representations for A.

Grothendieck has shown that N1(B) is the completion of the finite rank operators. Fur-

thermore, N1(B) is a Banach space with norm N1(·) and is a two-sided ideal in K(B). He

also noted that if B has the approximation property, then for every A ∈ N1[B], tr[A] =
∑∞

n=1

〈

un,u
∗
n

〉

(trace) is well defined. Johnson and Szankowski [JS] have asked if the fam-

ily eigenvalues of A, {λn[A]} are absolutely convergent, can the above trace formula be

replaced by

tr[A] =
∑∞

n=1
λn (A).

Absolutely convergence is necessary as it is known that if B is not a Hilbert space, there is

an A ∈ N1[B], with
∑∞

n=1 |λn (A)| =∞ (see [JKMR] or Simon [SI]).

In order to compensate for the cloudy view of K(B) due to the lack of an adjoint for

Banach spaces, Pietsch [PI2], [PI3] defined a number of classes of operator ideals for a

given B. Of particular importance for our discussion is the class Cp(B), defined by

Cp(B) =

{

A ∈ K(B)
∣

∣

∣

∣
Cp(A) =

∑∞
i=1

[si(A)]p <∞
}

,

where the singular numbers sn(A) are defined by:

sn(A) = inf
{‖A−K‖B | rank of K 6 n

}

.

Pietsch has shown that, C1(B) ⊂ N1(B), while Johnson et al [JKMR] have shown that for

each A ∈ C1(B),
∑∞

n=1 |λn(A)| <∞. It is known that, if C1(B) = N1(B), then B is isomorphic

to a Hilbert space (see [JKMR]). It is clear from the above discussion, that:

Corollary 4.7. Cp(B) is a two-sided *ideal in K(B), and S1(B) ⊂ C1(B) ⊂ N1(B).

For a given separable Banach space, it is not clear how the spaces Cp(B) of Pietsch

relate to our Schatten Classes Sp(B) (clearly Sp(B) ⊆ Cp(B)). Thus, one question is that of

the equality of Sp(B) and Cp(B). (We suspect that S1(B) = C1(B).)

4.3 Conclusion

In this paper, we have shown that the continuous dense embedding of a separable Banach

space into a Hilbert space is a powerful tool for studying the structure of operators on

Banach spaces. This approach also offers some new insights into the structure of Banach

spaces themselves. We have first used this embedding to show that the lack of an S-basis

does not invalidate the uniqueness property that a basis affords. We have also used this

embedding to show that the representation of the dual of a Banach space is not unique. We
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first investigated the non-uniqueness within the C[0,1] ⊂ L2[0,1] setting. We then extended

our study to all separable Banach spaces, showing that every closed densely defined linear

operator A onB has a unique adjoint A∗ defined onB. We have further shown thatL[B], the

bounded linear operators on B, are continuously embedded in L[H]. This result allowed

us to define the Schatten classes for L[B] as the restriction of a subset of the ones in L[H].

Thus, the structure of L[B], particularly that of the compact operators K[B], is unrelated to

the basis problem or the approximation problem for compact operators. We conclude that

for the Enflo space Be, we can provide a representation for compact operators that is very

close to the same representation for a Hilbert space, but the norm limit of the partial sums

need not converge, which is the only missing property.

5 Appendix

5.1 Partial Proof of Gross-Kuelbs

We now constructH2 ⊃ B as a continuous dense embedding.

Proof. Let {en} be a countable dense sequence on the unit ball ofB, and let {e∗n} be any fixed

set of corresponding duality mappings (i.e., e∗n ∈ J(en) for each n and e∗n(en) =
〈

en,e
∗
n

〉

=

‖en‖2B =
∥

∥

∥e∗n
∥

∥

∥

2

B∗ = 1). For each n, let tn =
1
2n , and define (u,v) as follows:

(u,v) =
∑∞

n=1
tne∗n(u)ē∗n(v) =

∑∞
n=1

1
2n e∗n(u)ē∗n(v).

It is clear that (u,v) is an inner product on B. Let H2 be the completion of B with respect

to this inner product. It is clear that B is dense inH2, and

‖u‖2H2
=
∑∞

n=1
tn
∣

∣

∣e∗n(u)
∣

∣

∣

2 ≤ sup
n

∣

∣

∣e∗n(u)
∣

∣

∣

2
= ‖u‖2B ,

so the embedding is continuous. �

5.2 Proof of Lax’s Theorem

Proof. To prove (1), let u ∈ B, and without loss of generality, we can assume that k = 1 and

‖u‖H = 1. Since T is self-adjoint,

‖Tu‖2H = (Tu,Tu) =
(

u,T2u
)

6 ‖u‖H
∥

∥

∥T2u
∥

∥

∥H =
∥

∥

∥T2u
∥

∥

∥H .

Thus, we have ‖Tu‖4H 6
∥

∥

∥T4u
∥

∥

∥H ; consequently, it is clear that ‖Tu‖2n
H 6
∥

∥

∥T2nu
∥

∥

∥H for all n.

It follows that
‖Tu‖H 6 (

∥

∥

∥T2nu
∥

∥

∥H )1/2n
6 (
∥

∥

∥T2nu
∥

∥

∥B)1/2n

6 (
∥

∥

∥T2n
∥

∥

∥B)1/2n(‖u‖B)1/2n
6 ‖T‖B (‖u‖B)1/2n.

By allowing n→∞, we obtain that ‖Tu‖H 6 ‖T‖B for u in a dense set of the unit ball ofH .

It follows that

‖T‖H = sup
‖u‖H=1

‖Tu‖H 6 ‖T‖B.
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To prove (2), suppose that λ0 < σ(T ) over B such that T −λ0I has a bounded inverse S on

B. Since T is symmetric on H , S is also symmetric on H . It follows that S extends to a

bounded inverse onH such that λ0 < σ(T ) overH . It follows that the spectrum of T on the

extension toH is a subset of the spectrum of T on B.

To prove (3), suppose that λ ∈ σ(T )p, the point spectrum of T , such that T −λI has a

finite dimensional null space N and dimN = dim{B/J}, where J = (T −λI)(B).

Since T is symmetric, every vector in J is orthogonal to N. Conversely, from dimN =

dim{B/J}, we find that J contains all vectors that are orthogonal to N. It follows that

(T −λI) is a one-to-one onto mapping of J → J such that T −λI = S has an inverse on J,

which is bounded (on J) by the closed graph theorem. It follows that the extension S̄ of

S to the closure of J, J̄ in H is bounded on J̄. This means that (T −λI) is the orthogonal

compliment of N over H ; thus, λ belongs to the point spectrum of T on H , and the null

space of (T −λI) overH is N. It follows that σp(T ) is unchanged on extension toH . �
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