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Abstract

In this paper we establish some vector inequalities related to Schwarz and Buzano re-
sults. We show amongst others that in an inner product space H we have the inequality

1
I [l Iyl + 1Kx, y) = 2¢Px, y) = 24Qx, )] > KQPx, y)

for any vectors x,y and P, Q two orthogonal projections on H. If PQ =0 we also have

[+ K v 1] > KPx,y) +(Qx, y)

N =

for any x,y € H.
Applications for norm and numerical radius inequalities of two bounded operators
are given as well.
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1 Introduction

Let (H,(:,-)) be an inner product space over the real or complex numbers field K. The
following inequality is well known in literature as the Schwarz inequality

lIxlHIyll = [(x, y)| for any x,y € H. (1.1)

The equality case holds in (1.1) if and only if there exists a constant A € K such that x = Ay.

“E-mail address: sever.dragomir@vu.edu.au



Vector Inequalities For Two Projections in Hilbert Spaces 9

In 1985 the author [5] (see also [23]) established the following refinement of (1.1):

Il Iyl = [<x, y) = Cx, e) Ce, )| + [(x, €) (e, y)| = [(x, ) (1.2)

for any x,y,e € H with |le|| = 1.
Using the triangle inequality for modulus we have

1¢x,y) = (X e) (e, | = [(x, €) (e, )| =[x, )
and by (1.2) we get

Iyl > 1Kx,y) = (xse) (e, ) + Kx, e) (e, )
2[(x, e) (e )= Kx. )15

v

which implies the Buzano inequality [2]

1
3 [+ e, )] > 1Cx, €) <e, v (1.3)

that holds for any x,y,e € H with |le|]| = 1.
The following results provides inequalities for two unitary vectors [19]:

Theorem 1.1. Let (H,{-,-)) be an inner product space over the real or complex numbers
field K. If x,y,e, f € Hwith |le|| = ||f]| = 1, then

[l = Kx, e) {fo )] (1.4)
> [(x,y) —(x,e){e,y) —{x, [Y{fs ) +{x,e) {f,y){e, /).

Moreover, ife L f,i.e. {e,f)=0, then
[IxI[ Il = [<x, €) {Foml = Kx,y) = (x,e) Ce, y) = x, ) (F . (1.5)
and

Theorem 1.2. Let (H,{-,-)) be an inner product space over the real or complex numbers
field K. If x,y,e, f € H with |le|| = ||f]| = 1, then

(Il = max {[{x,y) —2{x, e) e, )|, [{x, y) = 2x, fH{f- (1.6)
[{x, ) = (x, e} e, y) —<x, [H{s s
>
[{x, e)<e,y) = <x, [0l
and
[IxXIHIVI = [Kx, y) = 2€x,e) (e, y) = 24x, [H{f, ) +4{x,e) ([, y) e, ). (L.7)

The inequalities (2.1) and (1.7) are sharp.
Remark 1.3. If x,y,e, f € H with |le|]| =||f]| = 1 and f L e then by (1.7) we get

IVl = 1K, y) =2 Cx,e) <e, y) = 24x, ) (ol (1.8)
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Corollary 1.4. If x,y,e, f € H with |le|| = ||f]| = 1, then

1 1
Z[IIXIIIIyII+I<x,y>I] Z |3 [<x.e) e.y) + Cx, Y] = (x ey (foyd e, . (1.9)

In particular, if f L e, then

1
3 LI+ e, )] = [Kx, e) <e, y) +<x, £ {Fam]- (1.10)

The following result for two vectors also holds [20]:

Theorem 1.5. Let (H,{-,-)) be an inner product space over the real or complex numbers
field K. If x,y,e, f € H with |le|| = ||f]| = 1, then

1
(x,y) — 3 [x, Y0 +(x,e) <e,y>]’ (1.11)

1
S_
2

I (1517 =K. £0P) "+ (1P = . e0P) |

Remark 1.6. If we use the triangle inequality

1
5 K {f 30 +(xe) (e )l =[x )l
<

1
(o) =3 [Cx, Y (foy) +(x,e) <e,y>]’,

then we get from (2.1)

1
5 K (o3 +(x.e) eyl (1.12)

1
< e+ 5 [P =1 2) "+ (P =) |

for any x,y,e, f € H with |le|]| = ||f|| = 1.

Now, let us recall some basic facts on orthogonal projection that will be used in the
sequel.
If K is a subset of a Hilbert space (H,(-,-)), the set of vectors orthogonalto K is defined
by
Kt :={xeH:{(x,k)=0forall ke K}.

We observe that K* is a closed subspace of H and so forms itself a Hilbert space. If V is a
closed subspace of H, then V* is called the orthogonal complement of V. In fact, every x
in H can then be written uniquely as x = v+w, with vin V and w in K*. Therefore, H is
the internal Hilbert direct sum of V and V1, and we denote thatas H = Ve V*.

The linear operator Py : H — H that maps x to v is called the orthogonal projection onto
V. There is a natural one-to-one correspondence between the set of all closed subspaces
of H and the set of all bounded self-adjoint operators P such that P> = P. Specifically,
the orthogonal projection Py is a self-adjoint linear operator on H of norm < 1 with the
property P%, = Py. Moreover, any self-adjoint linear operator E such that E? = E is of the
form Py, where V is the range of E. For every x in H, Py(x) is the unique element v of
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V, which minimizes the distance ||x—v||. This provides the geometrical interpretation of
Py (x): it is the best approximation to x by elements of V.

Projections Py and Py are called mutually orthogonal if Py Py = 0. This is equivalent
to U and V being orthogonal as subspaces of H. The sum of the two projections Py and
Py is a projection only if U and V are orthogonal to each other, and in that case Py +
Py = Py.y.The composite Py Py is generally not a projection; in fact, the composite is a
projection if and only if the two projections commute, and in that case Py Py = Pyny .-

A family {e j}jeJ of vectors in H is called orthonormal if

ej L e for any j,k € J with j # k and ||ej|| =1for any jk € J.

If the linear span of the family {e j}jeJ is dense in H, then we call it an orthonormal basis
in H.

It is well known that for any orthonormal family {e j} we have Bessel’s inequality

jeJ

Z |<x,ej>|2 < ||x|* for any x € H.
jeJ

This becomes Parseval’s identity

Z |<x,ej>|2 = ||x||2 for any x € H,
jeJ

when {e j} ,an othonormal basis in H.

JjE
For an othonormal family {e j}jeJ we define the operator P; : H — H by
PJx:=Z<x,ej>ej, xeH. (1.13)
jeJ

We know that P; is an orthogonal projection and

(Pyx,y) = Z<x,ej><ej,y>, x,y € Hand (Pyx,x) = Z|<x,ej>

jeJ jeJ

2
| , x€H.

The particular case when the family reduces to one vector ||e|| = 1, is of interest since in this
case P,x:={(x,e)e, x€ H,

(P.x,y) ={(x,e){e,y), x,yE€ H (1.14)

and Buzano’s inequality can be written as

1
3 [yl + 1K )] 2 KPex, y) (1.15)

that holds for any x,y,e € H with |le|]| = 1.
Consider the othonormal family {e j}jeJ and assume that @ # K, L c J. If we consider the
projections

Pgx:= Z(x,ek>ek , Prx:= Z(x,eﬁe; ,xXeH
kekK teL
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we have

PgPrx = Z (Prx,ex)er = Z <Z (x,ec)er ,ek>ek

keK keK ‘teL
= ZZ(x,emec ep)yer = Z (x,ex)er, x € H.
keK teL keKNL

We observe that if KN L =0, then PxP; =0 and Pk + Py is a projection with

Pxx+Prx= Z {(x,eryer,x € H.
keKUL

Motivated by the above results we establish in this paper some similar inequalities in-
corporating two projections and apply then to obtain some norm and numerical radius in-

equalities for two bounded linear operators on a complex Hilbert space (H,(:,-)).

2 Vector Inequalities for Two Projections

We have the following result for two projections.

Theorem 2.1. Let P,Q be two orthogonal projections on H. For any x,y € H we have the

inequalities

llxll Il = (P, x) /2 (Qy, y) 1% > [(x,y) = (Px,y) —{Qx,y) +{QPx, )|

and
2l Iyl = (1 = P) x, )12 (1 g = @)y, ) 1/? = KQPx, ).

Proof. Using Schwarz inequality we get
llx= P [ly = QylI* > Kx = Px,y = Oy

for any x,y € H.
Observe that

llx = Px||> = (x— Px,x— Px) = ||x||> = (Px, x) — {x, Px) + {Px, Px)

= [xll” = (P, x) = (x, Px) + (P?x,x) = Il = (Px, )

and, similarly

ly = OyII* = IyI* = (Qy,»),

for any x,y € H.
Also, we have

[(x=Px,y—Oy)| = [{x,y) = (Px,y) —{Ox,y) +(QPx,y)|

for any x,y € H.

2.1

2.2)

2.3)
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Inequality (2.3) can be then written as
(Ilel> = (P, ) (I¥I> = (Qy. ) 2.4)
> [(x,y) = (Px,y) —(Qx,y) +(QPx, )]’

for any x,y € H.
Using the elementary inequality that holds for any real numbers a,b,c,d

(ac-bd)* > (a* - b*)(* - %),

we have
(Il = (P02 €0y 2) 2 (1P = (Px.x)) (I = ¢Qy.)) 25)
for any x,y € H.
Since
Il = (Px, )2, 1yl > <Qy. '/,
then

Il Iyl = ¢Px, x) /2 (Qy, ) /* > 0,
for any x,y € H.

Making use of (2.4) and (2.5) we get
(Il = (Px, )2 @y 2) 2.6)
> [(x,y) = (Px,y) —(Qx,)) +(QPx,y)*

and by taking the square root in (2.6) we get the desired result (2.1).
Now, if we replace P with 15 — P and Q with 15— Q in (2.1) we get

Xl vl = (L = P)x, ) (L = Q) o) @7
> [x,y) = (A =P)x,y) —((Ua = Q) x,y) + {1z = Q) (1n = P)x, )l
= QPx,y)|

for any x,y € H and the inequality (2.2) is proved. O

Remark 2.2. If QP =0, then we have

llxl Il = (Px, x) 72 (Qy, y) 2 = [(x,y) = (Px,y) = (Qx, )] (2.8)

for any x,y € H.
If we use the triangle inequality then we get from (2.8) that

lcl I+ 1€ )1 = (Px, x) 2 (Qy, y) 12 + [(Px,y) + (Qx, )|
for any x,y € H.

Corollary 2.3. Let P be an orthogonal projection on H. For any x,y € H we have the
following inequalities
Xl > (P, xy 72 (Py, y) 72 +1¢x,y) = (Px, ) (29)
> [(Px, )|+ [{x,y) = (Px,y)|.
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Proof. The first inequality follows by (2.1) for Q = P. The second inequality follows by

Schwarz inequality for the nonnegative operator P, namely
(Px,x)! 12 (Py.y)! 1% > (P, )|

for any x,y € H.

O

Remark 2.4. By the triangle inequality for modulus we get the following refinement of

Schwarz inequality

Iyl = (Px, x) /2 (Py,y)' /2 + [(x, y) = (Px, )|
> [(Px, )|+ [{x,y) = (Px,y)| = [{x, )]

for any x,y € H.
Using the triangle inequality, then by (2.9) we have

Xl IYl = (P, x) 2 (Py, y) 72+ Cx,y) = (Px, y)
> [(Px, )| +{x,¥) = (Px,y)| = 2|{Px,y)| — [{x, )]

for any x,y € H.

If we use the inequality between the first and last term in (2.11) we get

1
5 LIy + K )] = KPx, )]

for any x,y € H.

This is a generalization of Buzano’s inequality (1.3) for a projection P.

We also observe that from the first inequality in (2.10) we have

llxll Il = (Px, x) 12 (Py, )12 + [(x, ) = (Px, )]
> (Px, x) 2 (Py, )12 + |(x, y) | = [(Px, Y] s

which implies that
Il Iyl = 1€, )| = (Px, x) 12 (Py, )12 = [(Px,y)| = 0

for any x,y € H.
Similarly

Il Iyl = (Px, )12 (Py, y) 12 + [(x, ) — (Px, y)|
> (Px, x)' 2 (Py, )12 + [(Px, y)| = [(x, ),

which implies that
1 1 1/2 1/2
=[xyl + 1] = = [(Px, x Y,y X,y
5 Lyl + Kel] = 3 [Py 2 Py + K Py
> [(Px,y)]

for any x,y € H, that is better than (2.12).

(2.10)

2.11)

(2.12)

(2.13)

(2.14)
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Consider the orthonormal families E = {e;};c; and F = { f j} and the projections

jeJ
Pgx = Z(x,e,->e,-, Ppx = Z<x,fj>fj, x€H.
iel jeJ

Using the inequality (2.1) for P and P defined above, we have the inequalities

1/2 1/2
Il —{Z|<x,e,->|2} [Z |<y,fj>|2] (2.15)

iel jeJ

()= Y e enyy = > (x fi){£5y)

iel jeJ

+ Z Z (x.eiy(en f;){f3y)

jeJ iel

=

for any x,y € H.
If E ={e} and F = {f}, then from (2.15) we recapture the inequality (1.4).
If E L F, namely e; L f; for any i € I, j € J, then we get from (2.15)

1/2 1/2
Il —{Z|<x,e,->|2} [Z |<y,fj>|2] (2.16)

iel jeJ

Gy =Y reenyy = Y (% fi)(£-)

iel jeJ

=

for any x,y € H.
By the triangle inequality for modulus we have

)= Y e enyy = Y (x fi)(£5-y)

iel jeJ

Z (x,e)(eiy) + Z CNNGR)

iel jeJ

> =[x, )]

for any x,y € H.
Making use of (2.16) we deduce the following inequality

1/2 1/2
el 1+ 1,9 = {Z |<x,ei>|2) [Z |<y,f,~>|2] (2.17)

iel jeJ

Z (x,ei) (e, y) + Z <x,fj><fj,y>

iel jeJ

+

for any x,y € H.
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If E={e} and F = {f} with e L f then from (2.16) we get (1.5) while from (2.17) we
obtain

[l HII =+ 1<,y = [Kx, e) (v, O+ {x, ) e, y) +x, [H{f> 0 (2.18)
for any x,y € H.

Theorem 2.5. Let P,Q be two orthogonal projections on H. For any x,y € H we have the
inequalities

|6 3) = 2 [(Qx.y) + (Px. ]|

(2.19)
3 (Px,y) = (Qx, )
1 2 1/2 2 1/2
< 5 Il (1P = <Qy.39) "+ (Il = (P x)) ||y||]
1 2 N2 o 2 1/2
< 5 (Il +1517) 7 (1P + 18 = (Poc.x) = (@)
forany x,y € H.
Proof. Using Schwarz inequality we have
llxll 1y = OVl = [<x,y = @)1 = [(x, y) = {x, O] = [Kx,y) = Qx, ) (2.20)
and
llx = Px[|lyll = [Kx = Px, y)| = Kx,y) = (Px,y)l (2.21)
for any x,y € H.
We have 1
lly =@yl = (I¥* = (Qy.»)
and

1/2
llx= Pxl| = (Jld* = (Px, x)

for any x,y € H.
If we add the inequalities (2.20) and (2.21) and use the triangle inequality we have

el (112 = €233+ (1P = (P, ) Iy

12<x,y) = (Qx,y) = (Px,y)|
>

| kPryy -

for any x,y € H, which proved the first inequality in (2.19).
By the Cauchy-Bunyakovsky-Schwarz inequality

ac+bd < (a2 + b2)1/2 (c2 + dz)l/2 fora,b,c,d >0 (2.22)
we have
bl (112 = € Q) "+ (1P = (P, 29) Iy (223)
< (1P + 1) (1l + 12 = P, ) = (03 3)

for any x,y € H, which proves the last inequality in (2.19). O
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Corollary 2.6. Let P be an orthogonal projection on H. For any x,y € H we have the
following inequalities

[{x,y) = (Px,y)l

(2.24)
1
< 3 B2 = ) " (1 = (P, 0) |
1
< 5 (P +I1P) " (P + 1P = (P x) = (Pyy)
and
L)l
(2.25)
[KPx,yy = 3 (x|
N (R K]
<3 , ,

1 5 N2/ o 1/2
< 5 (P + 1) (Il = (Px.) + (Py.)
forany x,y € H.
Proof. The inequality (2.24) follows from (2.19) by taking Q = P while (2.25) follows from
(2.19) by taking Q = 1y — P. O

If we consider the orthonormal families E = {e;};c; and F = { f j}jeJ’ then from (2.19) we
have the inequalities

|63 = [ Sier e ey + S es (. 1) (£o9)|

(2.26)

3 |Zie] (x,ei)(eiy) = Xjey <x’fj><fj’y>|

1 ) 1/2 1/2
<3 [l [nyn2 = > [ ] + {nxu2 -2, |<x,el->|2] ||y||‘

jeJ i€l
| 12
2
<5 (P +1viP) " [nxu2 P = D el = > [(£.9) ]
iel jeJ
for any x,y € H.
If E ={e} and F = {f}, then from (2.26) we get (1.11) and the inequality
KKx, e) e,y = (x, [Y{F. (2.27)

< I (1P =K P) "+ (12 = e e)P) I

for any x,y € H.
The following result holds:
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Theorem 2.7. Let P,Q be two orthogonal projections on H. For any x,y € H we have the
inequalities
[IXIHIYIE = [(x, y) = 2{Px,y) = 2{Qx,y) + 4(OPx,y)I, (2.28)

[lx[[ [yl = max {[{x,y) = 2{Qx, )|, {x,y) = 2(Px,y)|} (2.29)
{ [{x,y) =<Ox,y) = (Px,y)|,

>

| Koxy) - (Px.y)l
and

(I + I12) " (1P + 1P = (P, x) = Q. 3)) 2 (230)

1

2
3 3
(x,y) = 3 (Px,y) - 2 (Ox,y) +2<QPx,y>’.

1
2
=

Il (117 = (@3.39)'"* + (1t = (P, ) ]

=

Proof. Observe that if R is a projection, then for any z € H we have

llz - 2Rz|?

(z—2Rz,7—2R2)
llzll* = 2(Rz,z) — 2(z,Rz) + 4 (Rz,Rz)
llzll* — 4 (Rz,z) + 4<R2z,z> =|lzlI*.

Using Schwarz inequality we have

llx—2Pxl|{ly =20yl = Kx—2Px,y —2Qy)|
1€, y) = 2(Px,y) = 2{x, Qy) +4(Px, Qy)|
1€, y) =2(Px,y) = 2{Qx,y) +4(QPx, )|

lxH1yl

for any x,y € H.
By Schwarz inequality we also have

Ll Iyl = Nl ly = 20yl 2 Kx,y =20y)[ = Kx,y) = 2(Qx. y)|

and
X[yl = [lx=2PxI[ [[yll = Kx=2Px,y)| = [{x,y) = 2{Px,y)|

for any x,y € H, which produce the first inequality in (2.29).
By the elementary inequality max {a,b} > %(a +b) and the triangle inequality for the
modulus we have

max {[(x,y) =2(0x,y)|. Kx,y) = 2{Px.,y)[}

1
25 [1<x,y) = 2{Qx, )| + [{x,y) = 2{(Px, ||

[{x,y) =<(0x,y) = (Px,y)|
>

| KXy - Pxy)
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for any x,y € H, which proves the last part of (2.29).
We also have

[l = Px|l Iyl = llx = Pxl| [y =20yl = {x— Px,y —=20y)|
= [{x,y) = (Px,y) —=2(0x,y) + 2{OPx,y)|

and

llxHly = Pyll = |lx = 2Pxlllly - Oyll = Kx=2Px,y - Oy)|
= [(x,y) = 2(Px,y) =(Qx,y) + 2(QPx,y)l|

and by addition and the triangle inequality we have

[l = Px]l Iyl + [|xl| [y — Pyll

> [(x,y) = (Px,y) —2(Qx,y) + 2(QPx,y)|
+{x,y) = 2(Px,y) —=(Qx,y) + 2{QPx,y)|

> [24x,y) =3(Px,y) —3(0x,y) +4(QPx,y)|

and dividing by 2 we get

1
3 [1lx = Px][[yll + I xIl lly — Pyll]
3 3
> (x,y) — 3 (Px,y) — 3 (Ox,y) +2{QPx,y)

for any x,y € H.
This proves the second inequality in (2.30).
The first inequality in (2.30) was proved before.

Remark 2.8. Using the triangle inequality and (2.28) we have

Il Iyl = [<x, y) = 2(Px, y) = 2(0x, y) +4(OPx,y)|
> 4QPx, )| =[x, y) = 2(Px,y) = 2(Qx,y)|,

which implies that

1
1 [l Iyl + 1€, y) = 2 (P, y) = 24Qx, )] = KQPx, )|
for any x,y € H.
From (2.30) we also have

1
4
+

It (117 = (@399)'"* + (1t = Px.) |
1

3 3
e =33 <Qx,y>]
> (QPx.y)|

for any x,y € H.

(2.31)

(2.32)
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Corollary 2.9. Let P be an orthogonal projection on H. For any x,y € H we have the
inequalities

Il 2 1¢x.y) = 2¢Px.y) (2.33)
and
1
= (1P + 12 (12 + 1P = P ) = Py ) (234)
1
> 2 B2 = Py.) " (1 = (P, 0) |

> [(x,y) = (Px,y)|.

Remark 2.10. By the triangle inequality we have

Il Iyl = [€x, y) = 2(Px, )| = 21KPx, y)l =[x, y)l

for any x,y € H, which also implies the inequality (2.12).
From (2.34) we have

It (117 = (P (P = ¢P)) (2.35)

1
5 + =
Kxyl+5
> [(Px,y)]
for any x,y € H.

Corollary 2.11. Let P, Q be two orthogonal projections on H with QP = 0. For any x,y € H
we have the inequalities

Iyl = [Cx, y) =2 (Px, y) = 2(0x, y)l (2.36)

and

1
2
>

I (117 = €@3,99)'"* + (1 = P, ) | (237)

3 3
() =3 Py -3 <Qx,y>].

Remark 2.12. Let P, Q be two orthogonal projections on H with QP = 0. Using the triangle
inequality we have from (2.36)

[l IVl = [€x,y) = 2(Px,y) = 2{0x,y)| = 2|{Px,y) +{Ox, )| = Kx, )|,
which implies
1
3 LIl I+ [ p) 1] = [KPx, y) +{0x, y) (2.38)

for any x,y € H.
From (2.37) we get
1
2
>

It (117 = (@399)'"* + (1t = Px.) |

3 3
() =3 Py -3 <Qx,y>]

3
> §I<Px,y> +{(0x, ) =[x, )1,
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which implies

1
3 112 = (@) (12 = (P)) " i+
> [(Px,y) +{(0Ox,y)|

for any x,y € H.

(2.39)

If we consider the orthonormal families E = {e;};c; and F = { fj} Iz then from (2.28)

JjE
and (2.31) we have the inequalities

=2 e ey =2 ) (x. i) {fiy)

iel jeJ

w433 e {en ) (£39)

jeJ iel

llxll Iyl =

’

and

=2 (e eny) =2 (x. fi){f3y)

iel jeJ

Z Z (x.eiy(en f;)(fiy)

jeJ iel

1 1
7 Idlvil+ 7

=

for any x,y € H.
From (2.29) we also have

|<x,y> — Zier (X, €i)(ei,y) = Zjej<x,fj><fj,y>| ;
Iyl >
[ e (6 F1) (£53) = Bier (i) )|

for any x,y € H.
If E L F then by (2.38) and (2.39) we have

Z (x,ei)ei,y) + Z CNNGR)

1
3 [l I+ e )] =
iel jeJ

and

1/2 1/2
1 2 1
§||x||[||y||2—2|<fj,y>|} +§{||x||2—2|<x,ei>|2] Iyl
jeJ i€l
1
+ 7 )|

Z (x,ei)(ei,y) + Z <x,fj><fj,y>

iel jeJ

=

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)
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for any x,y € H.
If E ={e} and F = {f}, then from (2.40)-(2.44) we get some results stated in the intro-
duction. We omit the details.

3 Inequalities for Norm and Numerical Radius

Let (H;(:,-)) be a complex Hilbert space. The numerical range of an operator T is the
subset of the complex numbers C given by [26, p. 1]:

W(T)=(Tx,x), xe H, |lx|| =1}.
The numerical radius w(T) of an operator T on H is defined by [26, p. 8]:
w(T) =sup{|d],A € W(T)} = sup{KT'x, x)|,[lx]| = 1}.

It is well known that w(-) is a norm on the Banach algebra B(H) and the following
inequality holds true

w(T) <||IT|| <2w(T), forany T € B(H).

Utilising Buzano’s inequality (1.3) we obtained the following inequality for the numerical
radius [13] or [14]:

Theorem 3.1. Let (H;{:,-)) be a Hilbert space and T : H — H a bounded linear operator
on H. Then

1
2 2 2
w (T)SE[W(T )+IT12). 3.1)
The constant % is best possible in (3.1).
The following general result for the product of two operators holds [26, p. 37]:

Theorem 3.2. If A, B are two bounded linear operators on the Hilbert space (H,{-,-)), then
w(AB) <4w(A)w(B). In the case that AB = BA, then w(AB) < 2w(A)w(B). The constant
2 is best possible here.

The following results are also well known [26, p. 38].

Theorem 3.3. If A is a unitary operator that commutes with another operator B, then
w(AB) < w(B). 3.2)
If A is an isometry and AB = BA, then (3.2) also holds true.

We say that A and B double commute if AB = BA and AB* = B*A. The following result
holds [26, p. 38].

Theorem 3.4. If the operators A and B double commute, then

w(AB) <w(B)||A]l. (3.3)
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As a consequence of the above, we have [26, p. 39]:

Corollary 3.5. Let A be a normal operator commuting with B. Then
w(AB) <w(A)w(B). (3.4)

A related problem with the inequality (3.3) is to find the best constant ¢ for which the
inequality
w(AB) < cw(A)||Bl|

holds for any two commuting operators A, B € B(H). It is known that 1.064 < ¢ < 1.169,
see [3], [34] and [35].
In relation to this problem, it has been shown in [24] that:

Theorem 3.6. For any A, B € B(H) we have

AB+ BA
W(T) < V2w(A) 1Bl (3.5)
For other numerical radius inequalities see the recent monograph [18] and the references
therein.

We recall that the absolute value of an operator T is defined by |T'| = (T* T)l/ 2

Theorem 3.7. Let P,Q be two orthogonal projections on H. If A, B are two bounded linear
operators on H then we have the inequalities

W(B[IH—l(Q+P) A) 3.6)
1
<5 llaP +11-Prap| |5
and
w(B[lH—%(Q+P) A) (3.7)

1
<7 |||A|2+|(1H—P)A|2+ B +|1y-0 B[ |
Proof. By the inequality (2.19) we have
1 1
K[IH— 7 (@+P) x,y> =5 [l = @)yl + 1L = P) Iyl (3.8)

for any x,y € H.
By taking y = B*u, x = Au with u € H in (3.8) we get

Au,u>

IAull||(12 = Q) Bul| + 111 1 —P)Au|||

(3.9

1
K [IH_E(Q"‘P)
<

B*u

I

< = [IlAuP + 115 — P) Aul|

NI»—‘NM—*
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for any u € H, where for the last inequality we used the elementary Cauchy-Bunyakovsky-
Schwarz inequality

ac+bd < (a2 + b2)1/2 (c2 + dz)l/2 fora,b,c,d > 0.
Observe that, by using the notation absolute value of an operator 7 we have

AUl + 111 = P) Aul? = ([|AP + (1 - P)AP | u,u)

2=< B 2]u,u>
Au,u>

§[<[|A|2+|(1H PYAPuu)]"?
<[{lleT )]

Taking the supremum over u € H, ||u|| = 1 in (3.10) we get the desired result (3.6).
By the arithmetic mean-geometric mean inequality we also have

Au,u>

and

k

|Bu2

+||(1u - Q) Bu

+|(1y - 0) B*

forany u € H.
By (3.9) we have

(3.10)

K [H—1<Q+P>
<

’<B[1H—%(Q+P) (3.11)

1 2
<7 [uAun2 (1 P) Aulf?

_ %<[|A|2 Fl(—=PYAP +|B [ + |1y - Q) B

i)
u,u
forany u € H.
Taking the supremum over u € H, ||u|| = 1 in (3.11) we get the desired result (3.7). O

Remark 3.8. 1f we take Q = P and then replace 1y — P by P we get from (3.6) and (3.7) that

1/2

w(BPA) < %|||A|2 +|PAP|| (3.12)
and |
w(BPA) < 2 ||AP +1PAP + |B°[" + [PBT. (3.13)
If we take in (3.6) and (3.7) Q = 1y — P we get
w(BA) < [|AP + 11— P) AP 2|8 + pBef| (3.14)
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and
w(BA) < %||IA|2+|(1H—P)A|2+ B +|pPB P (3.15)
for any projection P.
Remark 3.9. Using a similar argument and the inequality
KPx,y) =(Qx.y)]
< I (1P = () " + (1P = (P ) ol
for any x,y € H, we get
w(B(P—-Q)A) (3.16)
< |lAP + 11— Py AP
and
w(B(P—Q)A) (3.17)

1
< §||IA|2+|(1H—P)A|2+ B

for P, Q two orthogonal projections on H and A, B two bounded linear operators on H.
If we take in (3.16) and (3.17) Q = 1 — P, then we get

( (p__lH) ) (3.18)
B «2||1/?

< 5 [1AP +11m-P)AP) "

and
o[ofe-) 019
I

Theorem 3.10. Let P, Q be two orthogonal projections on H. If A, B are two bounded linear
operators on H then we have the inequalities

B +|PB*

1
< < |Jar +10 - Prap +

AINIBII = max {||B(Q - P)AIl,[|1B(1x — P - Q) All} (3.20)

1
>|(Blz1lg—P|A

and

%|||A|2 +

B*2|2max{w[B(Q—P)A],w[B(lH—P—Q)A]} (3.21)

S
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Proof. By (2.29) we have

KAz —-P-Q)x, I,
[yl > (3.22)
K(@-P)x,y)
for any x,y € H.
This implies that

KB(lp—P—Q)Au,v)|,

|l Aul|||B*v|| > (3.23)
(B(Q~P)Au,v)|

for any u,v € H.

Taking the supremum over u,v € H, ||u|| = ||v|| = 1 in (3.23) we get the first part of (3.20).
The rest is obvious.

From (3.23) and the arithmetic mean -geometric mean inequality we have

(8B o) = 3 [1ast? +|

{ KB(1g—P—Q)Au,u)l,

B* B*u

*| = w5 (3.24)

>

KB(Q—P)Au,u)|

forany u € H.
Taking the supremum over u € H, ||u|| = 1 in (3.23) we get the first part of (3.20). The
rest is obvious. O

We also have:

Theorem 3.11. Let P, Q be two orthogonal projections on H. If A, B are two bounded linear
operators on H then we have the inequalities

1 1. P+
—AlllIBII+]||B —lH——Q Al = |BQPA]| (3.25)
4 4 2
and 1 1. P
s |||A|2 +|B |+w B(ZIH— %Q)A] > w(BQPA). (3.26)
Proof. By the inequality (2.31) we have
1
1 [Vl + K g =2P =20) x, )] = KOPx., y)] (3.27)
for any x,y € H.
This implies that
1 .
7 [14ul]|BV] + KIB (1 ~ 2P~ 20) Alu.)l| = K(BQPA)w.v)] (3.28)
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for any u,v € H.

Taking the supremum over u,v € H, ||lu|| = ||[v|| = 1 in (3.28) we get the desired result
(3.25).

From (3.28) we also have

3|

|+ KB (1 —2P~2Q) Alu,u)l] > ((BQPA)u,u)|

for any u € H and since

%<(|A|2 +|B* 2)u,u> > ||Au||| B*u |
we get
%[%<(|A|2 +|B* 2)u,u>+I([B(lH—ZP—ZQ)A]u,u>| (3.29)
> ((BOPA)u,u)|

forany u € H.
Taking the supremum over u € H, ||u|| = 1 in (3.29) we get the desired result (3.26). O

Remark 3.12. If in (3.25) and (3.26) we take Q = 1y, then we get

1 1 1
7 [|AIIBI| + 3 HB(P+ EIH)A > ||BPA|| (3.30)

and

B[

%”lAl2 + |+ %w

B(P+ %IH)A] > w(BPA). (3.31)

Also, if in (3.25) and (3.26) we take Q = P, then we get

1
7 lAllBl + > ||BPA]| (3.32)

1
B(-1y-P|A
(77

and

2

1
—llAP +|B*
8||| |

|+

B(%IH—P)A] >w(BPA). (3.33)
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