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Abstract

Let A and B be bounded linear operators in a Banach space. We consider the fol-

lowing problem: if
∑∞

k=0
‖Ak‖‖Bk‖ <∞, under what conditions

∑∞
k=0
‖(AB)k‖ <∞?
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1 Introduction and statement of the main result

LetX be a Banach space with a norm ‖.‖ andB(X) the algebra of bounded linear operators in

X. ‖A‖, σ(A) and rs(A) denote the operator norm, spectrum and spectral radius of A ∈ B(X),

respectively.

We consider the following problem: let A,B ∈ B(X) and
∑∞

k=0 ‖Ak‖‖Bk‖ < ∞. What

conditions provide the inequality
∑∞

k=0 ‖(AB)k‖ <∞?

The theory of powers of bounded operators is a significant part of the operator theory,

cf. [1, 2, 8, 10], and references given therein. In particular, below we derive conditions

that provide the power boundedness of AB. The power bounded operators have remarkable

spectral properties and attract the attention of many mathematicians, cf. [3, 4, 5, 9, 11].

To the best of our knowledge the above stated problem was not considered in the avail-

able literature. Put

ζm :=

m−1∑
k=0

‖Ak‖‖Bk‖ (m > 1) and K = AB−BA.

Now we are in a position to formulate our main result.
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Theorem 1.1. Let A,B ∈ B(X) and for some integer m ≥ 2 the condition

(1.1) ζm−1(ζm−1)‖K‖ < 1

hold. Then

max
k=0,...,m

‖(AB)k‖ ≤ maxk=0,...,m ‖Ak Bk‖
1−‖K‖ζm−1(ζm−1)

and

max
k=2,...,m

‖(AB)k−Ak Bk‖ ≤ ‖K‖ζm−1(ζm −1)maxk=0,...,m ‖Ak Bk‖
1−‖K‖ζm−1(ζm−1)

.

In addition,

m∑
k=0

‖(AB)k‖ ≤ ζm+1

1−‖K‖ζm−1(ζm −1)
and

m∑
k=0

‖(AB)k−Ak Bk‖ ≤ ‖K‖ζm−1(ζm −1)ζm+1

1−‖K‖ζm−1(ζm −1)
.

The proof of this theorem is presented in the next section. The theorem is sharp: if

K = 0, then (AB)k = AkBk for all k ≥ 0.

Let

ζ∞ :=

∞∑
k=0

‖Ak‖‖Bk‖ <∞

and

(1.2) ζ∞(ζ∞ −1)‖K‖ < 1.

Then due to Theorem 1.1 we have

max
k=0,1,...

‖(AB)k‖ ≤ maxk=0,1,... ‖AkBk‖
1−‖K‖ζ∞(ζ∞ −1)

,

max
k=0,1,...

‖(AB)k−AkBk‖ ≤ ‖K‖(ζ∞ −1)ζ∞
1−‖K‖ζ∞(ζ∞ −1)

max
k=0,1,...

‖Ak Bk‖,

(1.3)

∞∑
k=0

‖(AB)k‖ ≤ ζ∞
1−‖K‖ζ∞(ζ∞ −1)

and

∞∑
k=0

‖(AB)k−AkBk‖ ≤ ‖K‖(ζ∞ −1)ζ2
∞

1−‖K‖ζ∞(ζ∞ −1)
.

Corollary 1.2. Let condition (1.2) hold. Then rs(AB)< 1 and therefore the difference equa-

tion

xk+1 = ABxk (k = 1,2, ...)

is exponentially stable, i.e. ‖xk‖ ≤ const ρk (0 < ρ < 1) for any its solution xk (k = 1,2, ...) .

Indeed, from (1.3) it follows that ‖(AB)k‖→ 0 as k→∞, provided condition (1.2) holds.

Hence due to the spectral mapping theorem rk
s(AB) ≤ ‖(AB)k‖ → 0. So really rs(AB) < 1.

Furthermore, from the well-known representation

Ak =
1

2πi

∫
|z|=rA

zk(zI −A)−1dz (k = 1,2, ...),
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for any rA > rs(A) it follows that ‖Ak‖ ≤ cArk
A

(cA = const ≥ 1). Similarly,‖Bk‖ ≤ cBrk
B

(rB >

rs(B);cB = const ≥ 1). Assuming that rs(A)rs(B) < 1 we can take rArB < 1. Besides,

ζ∞ ≤ cAcB

∞∑
k=0

(rArB)k =
cAcB

1− rBrA

.

So, if

(1.4)
‖K‖cAcB

(1− rBrA)2
(cAcB−1+ rA) < 1,

then rs(AB) < 1 due to Corollary 1.2.

2 Proof of Theorem 1.1

Put Xm = (AB)m and Ym = AmBm for m = 1,2, ... , X0 = Y0 = I, and

Jm =

m−1∑
j=1

j−1∑
k=0

‖Ak‖‖A j−k‖‖B j‖ (m = 2,3, ...).

Lemma 2.1. If

(2.1) ‖K‖Jm < 1

for some integer m ≥ 2, then

max
0≤k≤m

‖Xk‖ ≤
max0≤k≤m ‖Yk‖

1−‖K‖Jm

and

max
0≤k≤m

‖Xk −Yk‖ ≤
maxk≤m ‖Yk‖‖K‖Jm

1−‖K‖Jm

.

Proof. We have

(2.2) Xm+1 = ABXm (m = 0,1, ...)

and

Ym+1 = Am+1Bm+1 = AAmBBm = ABAmBm+A[Am,B]Bm,

where [Am,B] = AmB−BAm. Hence,

(2.3) Ym+1 = ABYm+Fm (m = 0,1, ...),

with

Fm = A[Am,B]Bm (m ≥ 1),F0 = 0.

Subtracting (2.2) from (2.3), we get

Ym+1−Xm+1 = AB(Ym−Xm)+Fm (m = 2,3, ...)
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with Y1−X1 = 0. By induction we can write

(2.4) Ym−Xm =

m−1∑
j=1

(AB)m− j−1F j =

m−1∑
j=1

Xm− j−1F j (m ≥ 2),

and therefore,

(2.5) ‖Xm −Ym‖ ≤
m−1∑
j=1

‖Xm−1− j‖‖F j‖ (m ≥ 2).

As is checked in [7, formula (2.4)],

(2.6) [A j,B] := A jB−BA j =

j−1∑
k=0

A j−k−1[A,B]Ak ( j = 1,2, ...).

Consequently,

F j =

j−1∑
k=0

A j−kKAk B j, j ≥ 1,

and

(2.7)

m−1∑
j=1

‖F j‖ ≤ ‖K‖Jm .

Put

xν := max
0≤m≤ν

‖Xm‖,yν := max
0≤m≤ν

‖Ym‖.

Since X0 = Y0 = I,X1 = Y1 = AB, due to (2.5) and (2.7),

(2.8) max
0≤m≤ν

‖Xm−Ym‖ = max
2≤m≤ν

‖Xm−Ym‖ ≤ xν‖K‖Jν (ν = 2,3, ...),

Consequently, xν ≤ yν + ‖K‖xνJν (ν = 2,3, ...). According to (2.1)

xν ≤
yν

1−‖K‖Jν
.

Hence, by (2.8) we finish the proof. �

Lemma 2.2. If condition (2.1) holds for some m ≥ 2, then

(2.8)

m∑
k=0

‖Xk‖ ≤
1

1−‖K‖Jm

m∑
k=0

‖Yk‖

and

(2.9)

m∑
k=0

‖Xk −Yk‖ ≤
‖K‖Jm

1−‖K‖Jm

m∑
k=1

‖Yk‖.
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Proof. Since X1 = Y1 and X0 = Y0, from (2.5) we have

ν∑
m=2

‖Xm−Ym‖ ≤
ν∑

m=2

m−1∑
j=1

‖Xm−1− j‖ ‖F j‖ =
ν∑

m=2

m∑
i=2

‖Xm−i‖ ‖Fi−1‖ =

ν∑
i=2

ν∑
m=i

‖Xm−i‖‖Fi−1‖ =
ν∑

i=2

‖Fi−1‖
ν−i∑
k=0

‖Xk‖ ≤
ν−1∑
t=1

‖Ft‖
ν∑

k=0

‖Xk‖ (ν ≥ 2).

Hence, due to (2.7)
ν∑

m=0

‖Xm−Ym‖ ≤ Jν‖K‖
ν∑

k=0

‖Xk‖.

Thus,
ν∑

m=0

‖Xm‖ ≤
ν∑

m=0

‖Ym‖+ Jν‖K‖
ν∑

m=0

‖Xm‖.

Now (2.1) implies
ν∑

m=0

‖Xm‖ ≤
1

1− Jν‖K‖

ν∑
m=0

‖Ym‖

and
ν∑

m=0

‖Xm −Ym‖ ≤
Jν‖K‖

1− Jν‖K‖

ν∑
m=0

‖Ym‖,

as claimed. �

Furthermore,

Jm =

m−1∑
j=1

j−1∑
k=0

‖Ak‖‖A j−k‖‖B j‖ =
m−2∑
t=0

t∑
k=0

‖Ak‖‖At+1−k‖‖Bt+1‖ =

m−2∑
k=0

‖Ak‖
m−2∑
t=k

‖At+1−k‖‖Bt+1‖ =
m−2∑
k=0

‖Ak‖
m−2−k∑

s=0

‖As+1‖‖Bs+k+1‖

≤
m−2∑
k=0

‖Ak‖‖Bk‖
m−2∑
s=0

‖As+1‖‖Bs+1‖.

Thus Jm ≤ ζm−1(ζm − 1). Now the assertion of Theorem 1.1 follows from Lemmas 2.1 and

2.2, and the obvious inequality
m∑

k=0

‖Yk‖ ≤ ζm+1.

�
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3 Particular cases

3.1 Operators in a Euclidean space

In this subsection A and B are n× n-matrices. Introduce the quantity (the departure from

normality of A)

g(A) = [N2
2 (A)−

n∑
k=1

|λk(A)|2 ]1/2,

where λk(A) (k = 1, ...,n) are the eigenvalues of A taking with their multiplicities, and

N2(A) = (trace (AA∗))1/2 is the Hilbert-Schmidt (Frobenius) norm of A. The following

relations are checked in [6, Section 2.1]:

g2(A) ≤ N2
2 (A)− |trace (A2)| and g2(A) ≤

N2
2
(A−A∗)

2
.

If A is a normal matrix: AA∗ = A∗A, then g(A) = 0. By Corollary 2.7.2 from [6] we have

‖Am‖ ≤
n−1∑
k=0

m!gk(A)rm−k
s (A)

(m− k)!(k!)3/2
(m = 1,2, ...).

Note that 1/(k!) = 0 if k < 0. Thus ζ∞ ≤ ζ̂∞,n, where

ζ̂∞,n :=

∞∑
m=0

n−1∑
j,k=0

g j(A)gk(B)(m!)2r
m− j
s (A)rm−k

s (B)

( j!k!)3/2(m− j)!(m− k)!
.

Now we can directly apply Corollary 1.2, provided ζ̂∞,n(ζ̂∞,n − 1)‖K‖ < 1. If A is normal,

then

ζ̂∞,n :=

∞∑
m=0

n−1∑
k=0

gk(B)m!rm
s (A)rm−k

s (B)

(k!)3/2(m− k)!
.

If both A and B are normal, then

ζ̂∞,n =
∞∑

m=0

rm
s (A)rm

s (B) =
1

1− rs(A)rs(B)
.

3.2 Operators in a Hilbert space

In this subsection,X is a Hilbert space, A,B ∈ B(X) and, in addition, =A = (A−A∗)/2i,=B

are Hilbert-Schmidt operators, i.e. N2(=A) = (trace (=A)2)1/2 < ∞, N2(=B) < ∞. As is

shown in [6, Example 7.15.5],

‖Am‖ ≤
m∑

k=0

m!uk(A)rm−k
s (A)

(m− k)!(k!)3/2
(m = 1,2, ...),

where u(A) =
√

2N2(=A). Thus ζ∞ ≤ ζ̂, where

ζ̂ :=

∞∑
m=0

m∑
j,k=0

(m!)2u j(A)r
m− j
s (A)uk(B)rm−k

s (B)

(k! j!)3/2(m− k)!(m− j)!
.
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Now we can directly apply Corollary 1.2, provided ζ̂(ζ̂−1)‖K‖ < 1. If A is selfadjoint, then

ζ̂ =

∞∑
m=0

m∑
k=0

m!rm
s (A)uk(B)rm−k

s (B)

(k!)3/2(m− k)!
.

If both A and B are selfadjoint, then ζ̂ = 1/(1− rs(A)rs(B)).

I am very grateful to the referee of this paper for his (her) really helpful remarks
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