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Abstract

The boundary value problems for coupled systems of parabolic and ordinary differ-
ential equations, where all equations contain time depended delay and degenerate at
initial moment, are considered. Existence and uniqueness of classical solutions of
these problems are proved. A priori estimates are obtained.
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1 Introduction

Evolution differential equations with time delay arise in modeling many dynamical real life
problems, when response of the system is affected by the current state of the system as
well as the past states of the system. The response of the system can be delayed, or de-
pend on the past history of the system in a more complicated way and cause a time lag.
Areas, where equations with delay are applied, include the study of materials with memory
(viscoelastic materials); dynamics of artificial neural networks which have transmission de-
lays, mathematical demography, and population dynamics. Delay terms can be of different
types: constant, time dependent, state dependent etc. Ordinary differential equations with
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time delay are well studied for both constant and variable delay (see, e.g., [2], [5], [4], [6],
[14], [17], [19], [20] and others). But in the case of partial differential equations (PDE) with
delay, situation with there investigating is not that good. While PDE with constant delay are
quite well studied ( see, e.g., [3], [21], [22], [25], [26], [34] and others), PDEs with variable
delay are still not widely investigated ([10], [11], [16], [33]).

Degenerate nonlinear differential equations used in modeling of different processes, in-
cluding desalination seawater movement of liquids and gases in porous media. Such equa-
tions arise in theory of elasticity, relativity and optimization ([15]). Parabolic degenerate
equation and problem for them are investigated in many papers (see., e.g., [12], [13], [15],
[27])

Among mathematical models of process, in example, bacterial and cellular growth pat-
terns, tumor growth and tissue development, some can be described by coupled systems.
By coupled system we mean systems that contain equations of different type, in particular,
systems of parabolic and ordinary differential equations (see, e.g., [1], [8], [11], [18], [24],
[29], [35] and references therein). Significant researches of such systems were made by
C.V. Pao (see, e.g., [30], [31], [32] and others). In particular, in the paper [30] the time-
delayed coupled system was investigated using the method of upper-lower solution and the
associated monotone iterations. This method allows obtain existence-comparison theorems.
Similar results were obtained also in the papers [7], [18] and others. Note that a lot of re-
sults for parabolic equations with constant delay are obtained with the aid of the semi-group
theory. Coupled systems with time dependent delay are studied in [11].

In this paper the initial-boundary problems for coupled systems of parabolic and ordi-
nary differential equation, where all equations degenerate at initial time and contain time de-
pended delay, are considered. This work can be considered as continuation of [11]. Unique-
ness and existence of the classical solution of the problem are proved, the a priori estimates
are obtained. The method similar as in [9] is used.

The paper is organized as follows. In Section 2 main notations and auxiliary facts are
given. Statement of the problem and main result are given in Section 3. In Section 4 some
auxiliary results are proved. In Section 5 the main results are proved.

2 Notations and Auxiliary Facts

Let Rk, where k ∈ N, be the standard linear space of ordered collections z = (z1, ...,zk) of
real numbers with the norm |z| := (|z1|

2 + . . .+ |zk|
2)1/2. By notation z1 ≤ z2 (respectively,

z1 < z2 ), where z1,z2 ∈ Rk, we mean that z1
i ≤ z2

i (respectively, z1
i < z2

i ) for all i ∈ {1, ...,k}.
By notation z ≤ 0 (respectively, z ≥ 0 ), we mean that zi ≤ 0 (respectively, zi ≥ 0 ) for all
i ∈ {1, ...,k}.

Denote by C(H), where H is an arbitrary domain in Rk, the linear space of continuous
on H functions. If K is a compact set in Rk, then C(K) is a Banach space with the norm
‖u‖C(K) := max

z∈K
|u(z)|. A sequence of functions {um}

∞
m=1 converges to u in C(H), where H

is arbitrary noncompact set in Rk, if ||um − u||C(K) →
m→∞

0 (i.e., um →
m→∞

u in C(K)) for any
compact K ⊂ H.

Let α ∈ (0,1], n ∈ N, K is a compact set in Rn+1 := {(x, t) | x ∈ Rn, t ∈ R}. Denote by
Cα,α/2(K) the Banach subspace of space C(K) of the functions u(x, t), (x, t) ∈ K, with the
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finite norm

‖u‖Kα,α/2 := ‖u‖C(K)+ sup
(x,t),(x′,t)∈K

|u(x, t)−u(x′, t)|
|x− x′|α

+ sup
(x,t),(x,t′)∈K

|u(x, t)−u(x, t′)|
|t− t′|α/2

.

The space Cα,α/2(K) is the Banach space and it is called the Hölder space (see, e.g. [28]).
By Cα,α/2loc (H), where H is an arbitrary noncompact domain in Rn+1, we denote the space

of functions u such that u ∈Cα,α/2(K) for any K ⊂ H.
Denote by C2,1(G)

(
respectively, C0,1(G)

)
, where G is a domain Rn+1, a linear space

of functions v(x, t), (x, t) ∈ G, which along with their derivatives vxk ,vxk xl (k, l = 1,n), vt

(respectively, with their derivative vt) are define and continuous on G. Define C2+α,1+α/2(D)
(respectively, Cα,1+α/2(D)), where D is bounded domain in Rn+1, a Banach space of such
functions v from C2,1(D) (respectively, C0,1(D)) with finite norm

||v||D2+α,1+α/2 = ‖v‖C(D)+

n∑
k=1

‖vxk‖
D
α,α/2+

n∑
k,l=1

‖vxk xl‖
D
α,α/2+ ‖vt‖

D
α,α/2

(respectively, ||v||Dα,1+α/2 = ‖v‖
D
α,α/2 + ‖vt‖

D
α,α/2). Denote by C2+α,1+α/2

loc (G) (respectively,

Cα,1+α/2loc (G)), where G is a domain Rn+1 or a merge of a domain with part of its bound-
ary, a space of such functions v that v ∈ C2+α,1+α/2(D) (respectively, Cα,1+α/2(D)) and for
any arbitrary bounded domain D such that D ⊂G.

A direct corollary from the Arzela-Ascoli theorem is the following statement.

Proposition 2.1. Let K be a compact set in Rn+1 and {um}
∞
m=1 be a bounded in Cα,α/2(K)

sequence of functions, i.e., ||um||
K
α,α/2 ≤C1, m ∈N, where C1 > 0 is a constant independent

of m. Then there exist a function u ∈ Cα,α/2(K) and a subsequence {um j}
∞
j=1 of sequence

{um}
∞
m=1 such that um j →j→∞

u in C(K).

Using the diagonal method and Proposition 2.1 one can easily prove the following state-
ment.

Proposition 2.2. Let H be an arbitrary noncompact set in Rn+1 , and H =
∞⋃

i=1
Ki, where

{Ki}
∞
i=1 is a family of compact sets such that Ki ⊂ Ki+1 for all i ∈N. Suppose that {um}

∞
m=1 is a

sequence of functions from Cα,α/2loc (H) such that, for any i ∈N the sequence of restrictions of
the elements um on Ki is bounded in Cα,α/2(Ki), i.e., ||um||

Ki
α,α/2 ≤C2, m ∈N,where C2 > 0 is

a constant independent of m, but can depend on Ki. Then there exist a subsequence {um j}
∞
j=1

of the sequence {um}
∞
m=1 and a function u ∈Cα,α/2loc (H) such that um j →j→∞

u in C(H).

3 Statement of the Problem and Main Results

Let n,M,L be natural numbers; Ω be a bounded domain in Rn (n ≥ 1) with the boundary
∂Ω; T > 0; Q := Ω× (0,T ], Q̃ := Ω× (0,T ], Σ := ∂Ω× (0,T ].
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Consider a system

Piw(x, t) := pi(x, t)
∂ui(x, t)
∂t

−

n∑
k,l=1

ai,lk(x, t)
∂ui(x, t)
∂xk∂xl

+

n∑
k=1

ai,k(x, t)
∂ui(x, t)
∂xk

+ai(x, t)ui(x, t)−gi
(
x, t,w(x, t),wτ(x, t)

)
= fi(x, t), (x, t) ∈ Q, i = 1, ...,M, (3.1)

PM+ jw(x, t) := q j(x, t)
∂v j(x, t)
∂t

+b j(x, t)v j(x, t)

−gM+ j
(
x, t,w(x, t),wτ(x, t)

)
= fM+ j(x, t), (x, t) ∈ Q̃, j = 1, ...,L, (3.2)

where wτ(x, t) :=
(
u1(x, t−τ1(t)), . . . ,uM(x, t−τM(t));v1(x, t−τM+1(t)), . . . ,vL(x, t−τM+L(t))

)
,

and τs (s = 1, ...,M + L) are continuous nonnegative functions on (0,T ] such that τs(t) < t
for all t ∈ (0,T ], s ∈ {1, . . . ,M+L}.

By W we denote the set of vector-functions w = (u1, . . . ,uM;v1, . . . ,vL) such that ui ∈

C(Q̃)∩C2,1(Q) (i = 1, ...,M), v j ∈C0,1(Q̃) ( j = 1, ...,L).
Consider the problem of finding a vector-function w ∈ W that satisfies system (3.1),

(3.2), boundary conditions

wi(x, t) = hi(x, t), (x, t) ∈ Σ, i = 1, ...,M, (3.3)

and analogy of initial conditions

limsup
t→0+

(
max
x∈Ω
|wr(x, t)|

)
<∞, r = 1, . . . ,M+L (3.4)

(note that condition (3.4) is equal to condition sup
(x,t)∈Q̃

|wr(x, t)| <∞, r = 1, . . . ,M+L).

We assume that the initial data of problem (3.1)–(3.4) satisfy the following conditions:
(A1) ai,kl = ai,lk, ai,k, ai (i = 1, ...,M; k, l = 1, ...,n) are continuous functions on Q, and for

each i ∈ {1, . . . ,M}

n∑
k,l=1

ai,kl(x, t)ξkξl ≥ µi(t)
n∑

k=1

ξ2k ∀(x, t) ∈ Q, ∀ξ ∈ Rn, where µi(t) ≥ 0 ∀t ∈ (0,T ];

b j ( j = 1, ...,L) are continuous functions on Q̃;
(A2) pi : Q→ R, q j : Q̃→ R are continuous positive functions such that lim

t→0
pi(x, t) =

0, x ∈ Ω, lim
t→0

q j(x, t) = 0, x ∈ Ω, and there exists a function ϕ ∈ C((0,T ]), which satisfies

conditions: ϕ(t) > 0 when t ∈ (0,T ],∫ T

0
ϕ(s)ds = +∞, sup

t∈(0,T ]

∫ t

t−τk(t)
ϕ(s)ds <∞ (k = 1, ...,M+L) (3.5)

and sup
(x,t)∈Q

piϕ <∞, sup
(x,t)∈Q̃

q jϕ <∞ (i = 1, ..,M, j = 1, ...,L).
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(A3) gi(x, t, ξ,η), (x, t, ξ,η) ∈ Ω × (0,T ] × RM+L × RM+L (i = 1, . . . ,M), gM+ j(x, t, ξ,η),
(x, t, ξ,η) ∈ Ω× (0,T ]×RM+L ×RM+L ( j = 1, . . . ,L), are continuous, and continuously dif-
ferentiable by the variables ξ and η, functions, and there exist functions g1

r,s,g
2
r,s (r, s =

1, . . . ,M+L) such that

0 ≤
∂gr

∂ξs
(x, t, ξ,η) ≤ g1

r,s(x, t) ∀(x, t) ∈ Q, ∀ξ,η ∈ RM+L,

0 ≤
∂gr

∂ηs
(x, t, ξ,η) ≤ g2

r,s(x, t) ∀(x, t) ∈ Q, ∀ξ,η ∈ RM+L,

inf
(x,t)∈Q

[ai(x, t)−
M+L∑
s=1

g1
i,s(x, t)] =: a−i > 0, i = 1, . . . ,M, (3.6)

inf
(x,t)∈Q̃

[b j(x, t)−
M+L∑
s=1

g1
M+ j,s(x, t)] =: b−j > 0, j = 1, . . . ,L, (3.7)

sup
(x,t)∈Q

M+L∑
s=1

g2
r,s(x, t) =: g2,+

r <∞, r = 1, . . . ,M+L;

moreover, gr(x, t,0,0) = 0, (x, t) ∈ Q (r = 1, . . . ,M+L);
(A4) fi ∈C(Q) (i = 1, . . . ,M), fM+ j ∈C(Q̃) ( j = 1, . . . ,L), hi ∈C(Σ) (i = 1, . . . ,M), more-

over, functions fr,hi are bounded (r = 1, . . . ,M+L, i = 1, . . . ,M).
Denote

Pw := (P1w, . . . ,PMw,PM+1w, . . . ,PM+Lw), Rw := (R1w, . . . ,RMw),

f := ( f1, . . . , fM, . . . , fM+L), h := (h1, . . . ,hM).

Theorem 3.1. Let conditions (A1) – (A3) be satisfied and

a−i −g2,+
i > 0, b−j −g2,+

M+ j > 0 (i = 1, . . . ,M; j = 1, . . . ,L). (3.8)

Suppose that w1,w2 are solutions of problems that differ from problem (3.1)–(3.4) only in
having f 1,h1 and f 2,h2 instead of f ,h, respectively, with the properties as in (A4) for f ,h,
respectively. Then the following inequalities hold

min
{ 1

a−i −g2,+
i

inf
(y,s)∈Q

(
f 1
i (y, s)− f 2

i (y, s)
)
, inf
(y,s)∈Σ

(
h1

i (y, s)−h2
i (y, s)

)
,0
}

≤ u1
i (x, t)−u2

i (x, t)

≤max
{ 1

a−i −g2,+
i

sup
(y,s)∈Q

(
f 1
i (y, s)− f 2

i (y, s)
)
, sup
(y,s)∈Σ

(
h1

i (y, s)−h2
i (y, s)

)
,0
}
,

(x, t) ∈ Q, i ∈ {1, . . . ,M}, (3.9)

min
{ 1

b−j −g2,+
M+ j

inf
(y,s)∈Q̃

(
f 1
M+ j(y, s)− f 2

M+ j(y, s)
)
,0
}
≤ v1

j(x, t)− v2
j(x, t)

≤max
{ 1

b−j −g2,+
M+ j

sup
(y,s)∈Q̃

(
f 1
M+ j(y, s)− f 2

M+ j(y, s)
)
,0
}
, (x, t) ∈ Q̃, j ∈ {1, . . . ,L}. (3.10)
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Corollary 3.2. Let conditions of Theorem 3.1 hold and, besides,

f 1
r (x, t) ≤ f 2

r (x, t) ∀(x, t) ∈ Q (r = 1, . . . ,M+L),

h1
i (x, t) ≤ h2

i (x, t) ∀(x, t) ∈ Σ (i = 1, . . . ,M).

Then inequalities w1
r (x, t) ≤ w2

r (x, t) ∀(x, t) ∈ Q (r = 1, . . . ,M+L) hold.

Corollary 3.3. Let conditions (A1)–(A4) and (3.8) hold. Then a solution w = (u1, ...,uM;
v1, ...,vL) of problem (3.1)–(3.4) satisfies the following estimate

∀i ∈ {1, . . . ,M} : min
{ 1

a−i −g2,+
i

inf
(y,s)∈Q

fi(y, s), inf
(y,s)∈Σ

hi(y, s),0
}

≤ ui(x, t) ≤max
{ 1

a−i −g2,+
i

sup
(y,s)∈Q

fi(y, s), sup
(y,s)∈Σ

hi(y, s),0
}
, (x, t) ∈ Q, (3.11)

∀ j ∈ {1, . . . ,L} : min
{ 1

b−j −g2,+
M+ j

inf
(y,s)∈Q̃

fM+ j(y, s),0
}

≤ v j(x, t) ≤max
{ 1

b−j −g2,+
M+ j

sup
(y,s)∈Q̃

fM+ j(y, s),0
}
, (x, t) ∈ Q̃. (3.12)

Corollary 3.4. Let conditions (A1)–(A4) and (3.8) hold. Then the solution of problem
(3.1)–(3.4) is unique.

Denote by Cα,α/2loc (Q) a space of functions v ∈ C(Q) such that for any strictly internal
subdomain Ω′ of domain Ω (e.i., Ω′ ⊂ Ω) and any number δ ∈ (0,T ) a restriction of v on
Ω′× [δ,T ] belongs to C2+α,1+α/2(Ω′× [δ,T ]), and by Cα,α/2loc (Q̃) (respectively, Cα,α/2loc (Σ)) – a
space of functions v ∈C(Q̃) (respectively, C(Σ)) such that for any number δ ∈ (0,T ) a restric-
tion of v on Ω× [δ,T ] (respectively, ∂Ω× [δ,T ]) belongs to Cα,α/2(Ω× [δ,T ]) (respectively,
Cα,α/2(∂Ω× [δ,T ])).

Denote by C2+α,1+α/2
loc (Q) (respectively, Cα,1+α/2loc (Q̃)) a space of functions v ∈ C2,1(Q)

(respectively, v ∈ C0,1(Q̃)) such that their derivatives vxk , vxk xl (k, l = 1,n), vt (respectively,
derivative vt) belong to Cα,α/2loc (Q) (respectively, Cα,α/2loc (Q̃)).

Denote by Cα,α/2,1,1loc (Ω×(0,T ]×RM+L×RM+L) a space of continuous functions g̃(x, t, ξ,η),
(x, t, ξ,η) ∈ Ω× (0,T ]×RM+L ×RM+L, that are continuously differentiable by the variables
ξ,η and these derivatives are bounded, and for any δ ∈ (0,T ), for some constant L ≥ 0 and
for any(x, t), (x′, t′) ∈Ω× [δ,T ], (ξ,η) ∈ RM+L×RM+L satisfy the inequality∣∣∣̃g(x, t, ξ,η)− g̃(x′, t′, ξ,η)

∣∣∣ ≤ L(|x− y|α+ |t− s|α/2).

Denote by Liploc((0,T ]) a space of functions, which satisfy Lipschitz condition on each
closed interval on (0,T ].

Theorem 3.5. Let conditions (A1)–(A4) and (3.8) hold. Suppose that for some α ∈ (0,1]
(B1) ∂Ω ∈C2+α,
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(B2) pi, ai,kl, ai,k, ai, q j, b j ∈ Cα,α/2loc (Q̃), gr ∈ Cα,α/2,1,1loc (Ω× (0,T ]×RM+L ×RM+L), fr ∈
Cα,α/2loc (Q̃), hi ∈C2+α,1+α/2

loc (Σ) (r = 1, . . . ,M+L; i = 1, . . . ,M; j = 1, . . . ,L).
Moreover,
(B3) ∂ai,kl/∂xr ∈C(Q) (k, l,r = 1, . . . ,n; i = 1, . . . ,M),
(B4) τs ∈ Liploc((0,T ]) (s = 1, . . . ,M+L), inf

t∈(0,T ]
µi(t) > 0 (i = 1, . . . ,M).

Then there exists the unique solution w = (u1, . . . ,uM;v1, . . . ,vL) of problem (3.1)–(3.4),
and ui ∈ Cα,α/2loc

(
Q̃
)
∩C2+α,1+α/2

loc (Q), v j ∈ Cα,α/2
(
Q̃
)
∩Cα,1+α/2loc (Q̃) (i = 1, . . . ,M; j = 1, . . . ,L)

and also estimates (3.11), (3.12) hold.

4 Auxiliary Results

Consider problem of finding a vector-function w = (u1, . . . ,uM, v1, . . . ,vL) ∈W, which satis-
fies the system

pi(x, t)
∂ui(x, t)
∂t

−

n∑
k,l=1

ai,lk(x, t)
∂ui(x, t)
∂xk∂xl

+

n∑
k=1

ai,k(x, t)
∂ui(x, t)
∂xk

+ai(x, t)ui(x, t)

−

M+L∑
s=1

g̃1
i,s(x, t)ws(x, t)−

M+L∑
s=1

g̃2
i,s(x, t)ws,τs(x, t) = fi(x, t), (x, t) ∈ Q, i = 1, . . . ,M, (4.1)

q j(x, t)
∂v j(x, t)
∂t

+b j(x, t)v j(x, t)−
M+L∑
s=1

g̃1
M+ j,s(x, t)ws(x, t)

−

M+L∑
s=1

g̃2
M+ j,s(x, t)ws,τs(x, t) = fM+ j(x, t), (x, t) ∈ Q̃, j = 1, . . . ,L, (4.2)

and conditions (3.3), (3.4).
Suppose that functions pi,ai,kl,ai,k,ai, q j,b j, fr, τr, hi (r = 1, . . . ,M+L; i = 1, . . . ,M; j =

1, . . . ,L; k, l= 1,n) satisfy conditions (A1), (A2), (A4) and functions g̃1
r,s, g̃

2
r,s (r, s= 1, . . . ,M+

L) satisfy condition
(A∗3) g̃1

i,s, g̃
2
i,s ∈C(Q), g̃1

M+ j,s, g̃
2
M+ j,s ∈C(Q̃),

g̃1
i,s ≥ 0, g̃2

i,s ≥ 0 on Q, g̃1
M+ j,s ≥ 0, g̃2

M+ j,s ≥ 0 on Q̃ (i = 1, . . . ,M; j = 1, . . . ,L; s =
1, . . . ,M+L; ),

inf
(x,t)∈Q

(
ai(x, t)−

M+L∑
s=1

g̃1
i,s(x, t)

)
=: ã−i > −∞ (i = 1, . . . ,M),

inf
(x,t)∈Q̃

(
b j(x, t)−

M+L∑
s=1

g̃1
M+ j,s(x, t)

)
=: b̃−j > −∞ ( j = 1, . . . ,L),

sup
(x,t)∈Q

M+L∑
s=1

g̃2
r,s(x, t) =: g̃2,+

r < +∞ (r = 1, . . . ,M+L).

Proposition 4.1. Let conditions (A1), (A2), (A∗3), (A4) and

ã−i − g̃2,+
i > 0, b̃−j − g̃2,+

M+ j > 0 (i = 1, . . . ,M; j = 1, . . . ,L). (4.3)
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Then a solution w of problem (4.1), (4.2), (3.3), (3.4) satisfies the following estimate

∀i ∈ {1, . . . ,M} : min
{ 1

ã−i − g̃2,+
i

inf
(y,s)∈Q

fi(y, s), inf
(y,s)∈Σ

hi(y, s),0
}

≤ ui(x, t) ≤max
{ 1

ã−i − g̃2,+
i

sup
(y,s)∈Q

fi(y, s), sup
(y,s)∈Σ

hi(y, s),0
}
, (x, t) ∈ Q, (4.4)

∀ j ∈ {1, . . . ,L} : min
{ 1

b̃−j − g̃2,+
M+ j

inf
(y,s)∈Q̃

fM+ j(y, s),0
}

≤ v j(x, t) ≤max
{ 1

b̃−j − g̃2,+
M+ j

sup
(y,s)∈Q̃

fM+ j(y, s),0
}
, (x, t) ∈ Q̃. (4.5)

Proof. We set the following notations:

θ(t) :=

t∫
T

ϕ(ρ)dρ, κs(t) :=

t∫
t−τs(t)

ϕ(ρ)dρ, t ∈ (0,T ], s = 1, . . . ,M+L. (4.6)

It is obvious that θ(t)≤ 0 for all t ∈ (0,T ], and θ is monotonously growing on (0,T ], θ(T )= 0,
θ(t)→−∞ when t→−∞; κs(t) ≥ 0 for all t ∈ (0,T ], and κs are bounded (s = 1, . . . ,M+L).

Let w be a solution of problem (4.1), (4.2), (3.3), (3.4). Denote by M ≥ 0 a constant
such that

|w(x, t)| ≤ M, (x, t) ∈ Q̃, (4.7)

and by wµ we denote a function such that

wµ(x, t) = w(x, t)eµθ(t), (x, t) ∈ Q̃, (4.8)

that is, w(x, t) = wµ(x, t)e−µθ(t), (x, t) ∈ Q̃, where µ > 0 is, for now, an arbitrary number.
From equalities (4.1), (4.2), taking into account equalities

wr,t(x, t) = wµr,t(x, t)e−µθ(t)−µϕ(t)wµr (x, t)e−µθ(t), r = 1, . . . ,M+L,

ui,xk (x, t) = uµi,xk
(x, t)e−µθ(t), ui,xk xl(x, t) = uµi,xk xl

(x, t)e−µθ(t), k = 1, . . . ,n, i = 1, . . . ,M,

ws,τs(x, t) = wµs,τs(x, t)e
−µ

t−τs(t)∫
T
ϕ(ρ)dρ

≡ eµκs(t)wµs,τs(x, t)e−µθ(t), s = 1, . . . ,M+L,

we obtain

pi(x, t)
∂uµi (x, t)
∂t

−

n∑
k,l=1

ai,lk(x, t)
∂uµi (x, t)
∂xk∂xl

+

n∑
k=1

ai,k(x, t)
∂uµi (x, t)
∂xk

+aµi (x, t)uµi (x, t)

−

M+L∑
s=1

g̃1
i,s(x, t)wµs (x, t)−

M+L∑
s=1

g̃2,µ
i,s (x, t)wµs,τs(x, t) = f µi (x, t), (x, t) ∈ Q, i = 1, . . . ,M,

q j(x, t)
∂vµj (x, t)

∂t
+bµj (x, t)vµj (x, t)−

M∑
s=1

g̃1
M+ j,s(x, t)wµs (x, t)

−

L∑
s=1

g̃2,µ
M+ j,s(x, t)wµs,τs(x, t) = f µM+ j(x, t), (x, t) ∈ Q̃, j = 1, . . . ,L, (4.9)
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where

aµi (x, t) := ai(x, t)−µpi(x, t)ϕ(t) (i = 1, . . . ,M),

bµj (x, t) := b j(x, t)−µq j(x, t)ϕ(t) ( j = 1, . . . ,L),

g̃2,µ
r,s (x, t) := g̃2

r,s(x, t)eµκs(t), f µr (x, t) := fr(x, t)eµθ(t) (r, s = 1, . . . ,M+L). (4.10)

From condition (3.3) and correlation (4.8) we obtain

uµi (x, t) = hµi (x, t), (x, t) ∈ Σ, (4.11)

where hµi (x, t) := hi(x, t)eµθ(t), (x, t) ∈ Σ (i = 1, . . . ,M).
Let ε ∈ (0,T ) be an arbitrary number. Denote by Es,ε (s = 1, . . . ,M + L) a set, which

contains of numbers t−τs(t) such that t−τs(t) < ε when t ≥ ε, and also number ε. Denote

Qε := Ω× (ε,T ], Qε := Ω× [ε,T ], Σε := ∂Ω× (ε,T ].

Consider a problem of finding a function wµ,ε = (uµ,ε1 , . . . ,u
µ,ε
M ;vµ,ε1 , . . . ,v

µ,ε
L ) such that

uµ,εi ∈C
(
Ω× (Ei,ε∪ (ε,T ])

)
∩C2,1(Qε) (i= 1, ...,M), vµ,εj ∈C

(
Ω× (EM+ j,ε∪ (ε,T ])

)
∩C0,1(Qε)

( j = 1, ...,L), and which satisfies system

pi(x, t)
∂uµ,εi (x, t)
∂t

−

n∑
k,l=1

ai,lk(x, t)
∂uµ,εi (x, t)
∂xk∂xl

+

n∑
k=1

ai,k(x, t)
∂uµ,εi (x, t)
∂xk

+aµi (x, t)uµ,εi (x, t)

−

M+L∑
s=1

g̃1
i,s(x, t)wµ,εs (x, t)−

M+L∑
s=1

g̃2,µ
i,s (x, t)wµ,εs,τs(x, t) = f µi (x, t), (x, t) ∈ Qε, i = 1, . . . ,M,(4.12)

q j(x, t)
∂vµ,εj (x, t)

∂t
+bµj (x, t)vµ,εj (x, t)−

M+L∑
s=1

g̃1
M+ j,k(x, t)wµ,εs (x, t)

−

M+L∑
s=1

g̃2,µ
M+ j,k(x, t)wµ,εs,τs(x, t) = f µM+ j(x, t), (x, t) ∈ Qε, j = 1, . . . ,L, (4.13)

boundary condition

uµ,εi (x, t) = hµi (x, t), (x, t) ∈ Σε, i = 1, . . . ,M, (4.14)

and initial condition

wµ,εr (x, t) = wµr (x, t), (x, t) ∈Ω×Er,ε, r = 1, . . . ,M+L. (4.15)

In this problem the equations are not degenerated, therefore we can use results from
[11]. Ensure that for problem (4.12)–(4.15), with small enough values of µ, conditions of
Corollary 2 [11] are valid.

It is obvious that from conditions g̃2
r,s ≥ 0 follow conditions g̃2,µ

r,s ≥ 0 (r, s = 1, . . . ,M+L)
for all µ> 0. We shall show that there exists such µ∗ > 0 that ãµ,−i − g̃2,µ+

i > 0 (i= 1, ...,M) and

b̃µ,−j − g̃2,µ,+
M+ j > 0 ( j = 1, ...,L) for any µ ∈ (0,µ∗], where ãµ,−i := inf

(x,t)∈Q

(
aµi (x, t)−

M+L∑
s=1

g̃1
i,s(x, t)

)
,
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b̃µ,−j := inf
(x,t)∈Q

(
bµj (x, t)−

M+L∑
s=1

g̃1
M+ j,s(x, t)

)
, g̃2,µ,+

r := sup
(x,t)∈Q

M+L∑
s=1

g̃2,µ
r,s (x, t). For this purpose, we

put

(piϕ)+ := sup
(x,t)∈Q

(
pi(x, t)ϕ(t)

)
, (q jϕ)+ := sup

(x,t)∈Q

(
q j(x, t)ϕ(t)

)
, κ+ := max

s∈{1,...,M+L}
sup

t∈(0,T ]
κs(t).

It is obvious that for each µ > 0

ãµ,−i = inf
(x,t)∈Q

(
ai(x, t)−

M+L∑
s=1

g̃1
i,s(x, t)−µpi(x, t)ϕ(t)

)
≥ ã−i −µ(piϕ)+, (4.16)

b̃µ,−j = inf
(x,t)∈Q

(
b j(x, t)−

M+L∑
s=1

g̃1
M+ j,s(x, t)−µq j(x, t)ϕ(t)

)
≥ b̃−j −µ(q jϕ)+, (4.17)

and

g̃2,µ,+
r = sup

(x,t)∈Q

(M+L∑
s=1

g̃2
r,s(x, t)eµκs(t)) ≤ g̃2+

r eµκ
+

, µ > 0. (4.18)

From (4.16) – (4.18) for all µ > 0 we have

ãµ,−i − g̃2,µ,+
i ≥ ã−i − g̃2+

i eµκ
+

−µ(piϕ)+, b̃µ,−j − g̃2,µ,+
M+ j ≥ b̃−j − g̃2,+

M+ je
µκ+ −µ(q jϕ)+.

For each i ∈ {1, . . . ,M} consider a function li(µ) := ã−i − g̃2+
i eµκ

+

− µ(piϕ)+, µ ∈ [0,+∞). It
is obvious that it is continuous and li(0) = ã−i − g̃2+

i > 0. From here it follows existence of
such µi > 0 that li(µ) > 0 for µ ∈ [0,µi]. For each j ∈ {1, . . . ,L} consider a function lM+ j(µ) :=
b̃−j − g̃2+

M+ je
µκ+ −µ(q jϕ)+, µ ∈ [0,+∞). It is obvious that it is continuous and lM+ j(0) = b̃−j −

g̃2+
M+ j > 0. From here it follows existence of such µM+L > 0 that lM+ j(µ)> 0 for µ ∈ [0,µM+ j].

Let us take µ∗ =min{µ1, . . . ,µM+L}. From above it follows

ãµ,−i − g̃2,µ,+
i ≥ li(µ) > 0, b̃µ,−j − g̃2,µ,+

M+ j ≥ lM+ j(µ) > 0 for µ ∈ [0,µ∗]. (4.19)

Hence, for µ ∈ [0,µ∗] conditions of Corollary 2 [11] for problem (4.12)–(4.15) are valid.
From (4.9) and (4.11) it follows that restriction wµr onΩ×(Er,ε∪(ε,T ]) (r = 1, . . . ,M+L)

is a solution of problem (4.12)–(4.15). Therefore, according to Corollary 2 [11] for µ ∈
[0,µ∗] we have an estimate

min
{ 1

ãµ,−i − g̃2,µ,+
i

inf
(y,s)∈Qε

f µi (y, s), inf
(y,s)∈Σε

hµi (y, s), inf
(y,s)∈Ω×Ei,ε

wµ(y, s), 0
}
≤ uµi (x, t)

≤max
{ 1

ãµ,−i − g̃2,µ,+
i

sup
(y,s)∈Qε

f µi (y, s), sup
(y,s)∈Σε

hµi (y, s), sup
(x,s)∈Ω×Ei,ε

wµ(y, s),0
}
, (x, t) ∈ Qε,(4.20)

min
{ 1

b̃µ,−j − g̃2,µ,+
M+ j

inf
(y,s)∈Qε

f µM+ j(y, s), inf
(y,s)∈Ω×EM+ j,ε

wµ(y, s), 0
}
≤ vµj (x, t)

≤max
{ 1

b̃µ,−j − g̃2,µ,+
M+ j

sup
(y,s)∈Qε

f µM+ j(y, s), sup
(x,s)∈Ω×EM+ j,ε

wµ(y, s),0
}
, (x, t) ∈ Qε. (4.21)
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It is obvious that for any ε ∈ (0,T ) we have

inf
(y,s)∈Qε

f µr (y, s) ≥ inf
(y,s)∈Q

f µr (y, s), inf
(y,s)∈Σε

hµi (y, s) ≥ inf
(y,s)∈Σ

hµi (y, s), (4.22)

sup
(y,s)∈Qε

f µr (y, s) ≤ sup
(y,s)∈Q

f µr (y, s), sup
(y,s)∈Σε

hµi (y, s) ≤ sup
(y,s)∈Σ

hµi (y, s). (4.23)

It easy to show, using estimate (4.7) and monotonicity of θ, that

sup
(y,s)∈Ω×Eε

|wµr (y, s)| ≤ sup
(y,s)∈Ω×(0,ε]

|wr(y, s)eµθ(s)| ≤ Meµθ(ε) −→
ε→+0

0. (4.24)

According to (4.22) – (4.24), taking ε→ 0 in (4.20), (4.21) we obtain

min
{ 1

ãµ,−i − g̃2,µ,+
i

inf
(y,s)∈Q

f µi (y, s), inf
(y,s)∈Σ

hµi (y, s), 0
}
≤ uµi (x, t)

≤max
{ 1

ãµ,−i − g̃2,µ,+
i

sup
(y,s)∈Q

f µi (y, s), sup
(y,s)∈Σ

hµi (y, s),0
}
, (x, t) ∈ Q, (4.25)

min
{ 1

b̃µ,−j − g̃2,µ,+
M+ j

inf
(y,s)∈Q̃

f µM+ j(y, s), 0
}
≤ vµj (x, t)

≤max
{ 1

b̃µ,−j − g̃2,µ,+
M+ j

sup
(y,s)∈Q̃

f µM+ j(y, s),0
}
, (x, t) ∈ Q̃. (4.26)

Let Qr,− := {(x, t) ∈ Q | f µr (x, t) < 0}, Qr,+ := {(x, t) ∈ Q | f µr (x, t) > 0},
Σi,− := {(x, t) ∈ Q | hµi (x, t) < 0}, Σi,+ := {(x, t) ∈ Q | hµi (x, t) > 0}.

In case Qr,− , ∅, implying inequality 0 < eµθ(ρ) ≤ 1, ρ ∈ (0,T ], we obtain

inf
(y,s)∈Q

f µr (y, s) = inf
(y,s)∈Qr,−

freµθ(ρ) ≥ inf
(y,s)∈Qr,−

fr(y, s) = inf
(y,s)∈Q

fr(y, s),

and so (see (4.19)) we have

1
ãµ,−i − g̃µ,+i

inf
(y,s)∈Q

f µi (y, s) ≥
1

ãµ,−i − g̃µ,+i

inf
(y,s)∈Q

fi(y, s) ≥
1

li(µ)
inf

(y,s)∈Q
fi(y, s). (4.27)

Hence, in this case in the left part of inequality (4.20) first term can be replace with
1

li(µ)
inf

(y,s)∈Q
fi(y, s). It is obvious that same replacement can be done in case Qi,− =∅, because

in this case first term of inequality (4.20) is nonnegative, and therefore, does not determine
the value of the left side of inequality (4.20).

After similar transformations regarding the rest of the terms of inequalities (4.25), (4.26)
we obtain

min
{ 1
li(µ)

inf
(y,s)∈Q

fi(y, s), inf
(y,s)∈Σ

hi(y, s), 0
}
≤ ui(x, t)eµθ(t)

≤max
{ 1
li(µ)

sup
(y,s)∈Q

fi(y, s), sup
(y,s)∈Σ

hi(y, s),0
}
, (x, t) ∈ Q, µ ∈ (0,µ∗], (4.28)
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min
{ 1
lM+ j(µ)

inf
(y,s)∈Q

fM+ j(y, s),0
}
≤ v j(x, t)eµθ(t) ≤max

{ 1
lM+ j(µ)

sup
(y,s)∈Q

fM+ j(y, s),0
}
, (4.29)

(x, t) ∈ Q̃, µ ∈ (0,µ∗].

Fixing arbitrary taken point (x, t) ∈ Q, and taking a limit in (4.28), (4.29) with µ→ +0. As a
result, taking into account li(µ)−→

µ→0
ã−i − g̃2,+

i , lM+ j(µ)−→
µ→0

b̃−j − g̃2,+
M+ j, we get estimates (4.4),

(4.5). �

Lemma 4.2. For any (x, t) ∈ Q, ξ1, ξ2,η1,η2 ∈ RM+L following equality is valid

gr(x, t, ξ1,η1)−gr(x, t, ξ2,η2)

=

M+L∑
s=1

(
ξ1s − ξ

2
s
)
G1

r,s(x, t, ξ1, ξ2,η1,η2)+
M+L∑
s=1

(
η1

s −η
2
s
)
G2

r,s(x, t, ξ1, ξ2,η1,η2),

where

G1
r,s(x, t, ξ1, ξ2,η1,η2) :=

1∫
0

∂gr

∂ξs

(
x, t,z(ξ1− ξ2)+ ξ2,z(η1−η2)+η2

)
dz, (4.30)

G2
r,s(x, t, ξ1, ξ2,η1,η2) :=

1∫
0

∂gr

∂ηs

(
x, t,z(ξ1− ξ2)+ ξ2,z(η1−η2)+η2

)
dz, (4.31)

moreover

0 ≤Gi
r,s(x, t, ξ1, ξ2,η1,η2) ≤ gi

r,s(x, t) (i = 1,2). (4.32)

Proof. Equalities (4.30), (4.31) follows directly from the Hadamard Lemma, and (4.32)
follows from condition (A3). �

5 Proof of the Main Results

Proof of Theorem 3.1. Consider problems for w1 = (u1;v1) and w2 = (u2;v2).Denote by ŵ=
(̂u; v̂) a vector-function, which components are ŵi(x, t) = ûi := u1

i (x, t)−u2
i (x, t), (x, t) ∈ Q̃,

for i = 1, ...,M, and ŵM+ j(x, t) = v̂ j := v1
j(x, t)− v2

j(x, t), (x, t) ∈ Q̃, for j = 1, ...,L. Consid-
ering a difference between Pw1 and Pw2, and using Lemma 4.2, we obtain equalities

Piŵ(x, t) := pi(x, t)
∂̂ui(x, t)
∂t

−

n∑
k,l=1

ai,lk(x, t)
∂̂ui(x, t)
∂xk∂xl

+

n∑
k=1

ai,k(x, t)
∂̂ui(x, t)
∂xk

+ai(x, t)̂ui(x, t)

−

M+L∑
s=1

g̃1
i,s(x, t)ŵs(x, t)−

M+L∑
s=1

g̃2
i,s(x, t)ŵs,τs(x, t) = f̂i(x, t), (x, t) ∈ Q, i = 1, . . . ,M, (5.1)
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PM+ jŵ(x, t) := q j(x, t)
∂̂v j(x, t)
∂t

+b j(x, t)̂v j(x, t)−
M+L∑
s=1

g̃1
M+ j,s(x, t)ŵs(x, t)

−

M+L∑
s=1

g̃2
M+ j,s(x, t)ŵs,τs(x, t) = f̂M+ j(x, t), (x, t) ∈ Q̃, j = 1, . . . ,L, (5.2)

Riŵ(x, t) := ûi(x, t) = ĥi(x, t), (x, t) ∈ Σ, i = 1, . . . ,M, (5.3)

limsup
t→0+

max
x∈Ω
|ŵr(x, t)| <∞, r = 1, . . . ,M+L, (5.4)

where
g̃1

r,s(x, t) =G1
r,s

(
x, t,w1(x, t),w2(x, t),w1

τ(x, t),w2
τ(x, t)

)
,

g̃2
r,s(x, t) =G2

r,s

(
x, t,w1(x, t),w2(x, t),w1

τ(x, t),w2
τ(x, t)

)
,

f̂ (x, t) := f 1(x, t)− f 2(x, t), ĥ(x, t) := w1(x, t)−w2(x, t).

Let us verify that conditions of Proposition 4.1 hold, that is, ensure, that g̃1
i,s ≥ 0, g̃2

i,s ≥ 0 on
Q, g̃1

M+ j,s ≥ 0, g̃2
M+ j,s ≥ 0 on Q̃ (i = 1, . . . ,M; j = 1, . . . ,L; s = 1, . . . ,M+L) and ã−i − g̃2,+

i > 0,

b̃−j − g̃2,+
M+ j > 0 (i = 1, . . . ,M; j = 1, . . . ,L). From Lemma 4.2 (see (4.32)) it follows that

g̃1
i,s(x, t) ≥ 0, g̃2

i,s(x, t) ≥ 0 for any (x, t) ∈ Q, and g̃1
M+ j,s(x, t) ≥ 0, g̃2

M+ j,s(x, t) ≥ 0 for any

(x, t) ∈ Q̃ (i = 1, . . . ,M; j = 1, . . . ,L; s = 1, . . . ,M+L) for any (x, t) ∈ Q. Using condition (A3)
and Lemma 4.2 (see (4.32)), we obtain

ã−i := inf
(x,t)∈Q

[
ai(x, t)−

M+L∑
s=1

g̃1
i,s(x, t)

]
≥ inf

(x,t)∈Q

[
ai(x, t)−

M+L∑
s=1

g1
i,s(x, t)

]
= a−i , i = 1, . . . ,M,

b̃−j := inf
(x,t)∈Q

[
b j(x, t)−

M+L∑
s=1

g̃1
M+ j,s(x, t)

]
≥ inf

(x,t)∈Q

[
b j(x, t)−

M+L∑
s=1

g1
M+ j,s(x, t)

]
= b−j , j = 1, . . . ,L,

g̃2,+
r := sup

(x,t)∈Q

M+L∑
s=1

g̃2
r,s(x, t) ≤ sup

(x,t)∈Q

M+L∑
s=1

g2
r,s(x, t) = g2,+

r , r = 1, . . . ,M+L.

Therefore, ã−i − g̃2,+
i ≥ a−i − g2,+

i > 0 (i = 1, ...,M), b̃−j − g̃2,+
M+ j ≥ b−j − g2,+

M+ j > 0 ( j = 1, ...,L).
Hence, conditions of Proposition 4.1 hold, this means that for function ŵ estimates (4.4),
(4.5), with replacement f ,h, ui (i= 1, . . . ,M), v j ( j= 1, . . . ,L) on f̂ , ĥ, ûi (i= 1, . . . ,M), v̂ j ( j=
1, . . . ,L), hold. From here it follows (3.9), (3.10). �

Proof of Corollary 3.2. From conditions of the statement we have f 1(x, t) − f 2(x, t) ≤ 0
∀(x, t) ∈ Q, h1(x, t)−h2(x, t) ≤ 0 ∀(x, t) ∈ Σ. From (3.9), (3.10) we have w1(x, t)−w2(x, t) ≤ 0,
i.e., w1(x, t) ≤ w2(x, t) ∀(x, t) ∈ Q. �

Proof of Corollary 3.3. This follows directly from Theorem 3.1, by substituting w1 =w and
w2 = 0. �
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Proof of Corollary 3.4. Suppose the opposite and let w1,w2 be two different solutions of
problem (3.1)–(3.4). Then, according to Theorem 3.1, we have 0 ≤ w1(x, t)−w2(x, t) ≤
0, (x, t) ∈ Q̃, that is, w1 = w2 on Q̃, a contradiction. Thus, the corollary is proved. �

Proof of Theorem 3.5. Let ε be an arbitrary number from interval (0,T/3), and notations
Qε, Σε, Eε same as in proof of Proposition 4.1.

Let us take a function θε ∈ C∞((0,T ]), which satisfies conditions: 0 ≤ θε(t) ≤ 1 for
t ∈ (0,T ], θε(t) = 0 for t ∈ (0,2ε] and θε(t) = 1 for t ∈ (3ε,T ]. Put

hεi (x, t):=θε(t)hi(x, t), (x, t)∈Σ, f εr (x, t):=θε(t) fr(x, t), (x, t)∈Q̃, i=1, ...,M, r=1, ...,M+L.

Note, that

|hεi (x, t)|≤ |hi(x, t)| ∀(x, t) ∈ Σ, | f εi (x, t)|≤ | fi(x, t)| ∀(x, t) ∈ Q̃, i=1, ...,M, r=1, ...,M+L.(5.5)

Consider a problem of finding a vector-function wε = (uε1, . . . ,u
ε
M; vε1, . . . ,v

ε
L) such that

uεi ∈ C
(
Ω× (Ei,ε ∪ (0,T ])

)
∩C2,1(Qε) (i = 1, ...,M), vεj ∈ C

(
Ω× (EM+ j,ε ∪ (0,T ])

)
∩C0,1(Qε)

( j = 1, ...,L), and which satisfies system

Piwε(x, t) = f εi (x, t), (x, t) ∈ Qε, i = 1, ...,M, (5.6)

PM+ jwε(x, t) = f εM+ j(x, t), (x, t) ∈ Qε, j = 1, ...,L, (5.7)

and conditions

uεi (x, t) = hεi (x, t), (x, t) ∈ Σε, i = 1, . . . ,M, (5.8)

wεr (x, t) = 0, (x, t) ∈Ω×Er,ε, r = 1, . . . ,M+L, (5.9)

where Pr (r = 1, . . . ,M+L) are differential operators defined in (3.1), (3.2).
From Theorem 2 [11] it follows existence of unique solution wε=(uε1, . . . ,u

ε
M; vε1, . . . ,v

ε
L)

of problem (5.6)–(5.9), such that ui ∈ Cα,α/2
(
Ω × (Ei,ε ∪ (ε,T ])

)
∩ C2+α,1+α/2

loc (Qε),
v j ∈ Cα,α/2

(
Ω× (EM+ j,ε ∪ (ε,T ])

)
∩Cα,1+α/2(Qε) (i = 1, . . . ,M; j = 1, . . . ,L). According to

Corollary 2 [11] for restriction uεi on Ω× (Ei,ε∪ (ε,2ε]) we have an estimate

|uεi (x, t)| ≤max{
1

a−i −g2,+
i

sup
(y,s)∈Qε/Q2ε

| f εi (y, s)|, sup
(y,s)∈Σε/Σ2ε

|hεi (y, s)|}, (x, t) ∈ Qε/Q2ε, (5.10)

and for restriction vεj on Ω× (EM+ j,ε∪ (ε,2ε]) we have following estimate

|vεj(x, t)| ≤max{
1

b−j −g2,+
M+ j

sup
(y,s)∈Qε/Q2ε

| f εM+ j(y, s)|}, (x, t) ∈ Qε/Q2ε. (5.11)

From definitions of f ε and hε it follows that right parts of (5.10), (5.11) is equal to zero,
and, therefore, wεr (x, t) = 0 for each (x, t) ∈ Ω× (Er,ε ∪ (ε,2ε]) (r = 1, . . . ,M + L). Extend
wε by zero on whole Q̃ and leave for this extension notation wε. It is easy to show that wε
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is a solution of a problem, which differ from problem (3.1)–(3.4) only by having f ε and
hε instead of f and h, respectively. From here and according to Corollary 3.4 and (5.5) it
follows that

|uεi (x, t)| ≤max{
1

a−i −g2,+
i

sup
(y,s)∈Q

| fi(y, s)|, sup
(y,s)∈Σ

|hi(y, s)|}, (x, t) ∈ Q̃, (5.12)

|vεj(x, t)| ≤max{
1

b−j −g2,+
M+ j

sup
(y,s)∈Q

| fM+ j(y, s)|,0}, (x, t) ∈ Q̃. (5.13)

Let {εm}
∞
m=1 be a sequence of numbers from interval (0,T/2), such that εm ↓ 0 when

m→∞. Denote wm := wεm , f m
r := f εmr , hm

i := hεmi (i = 1, . . . ,M; r = 1, . . . ,M + L) for each
m ∈ N. From (5.12), (5.13) it follows that

sup
(x,t)∈Q̃

|wm
r (x, t)| ≤C3, r = 1, . . . ,M+L, m ∈ N, (5.14)

where C3 > 0 is a constant independent of m.
Let {δk}∞k=1 be a monotone sequence of numbers, such that δk ↓

k→∞
0, 0 < δk < T and

Ωk := {x ∈ Ω : dist{x,∂Ω} > δk} be a domain in Rn for each k ∈ N . Denote Ik := (δk,T ],
Qk := Ωk × Ik, Qk := Ω× Ik. Note, that Qk ⊂ Qk, Qk ⊂ Qk+1, Qk ⊂ Qk+1 for each k ∈ N;
∞

∪
k=1
Ωk = Ω,

∞

∪
k=1

Qk = Q,
∞

∪
k=1

Qk = Q̃.

Denote gm
r (x, t) := f m

r (x, t)+gr(x, t,wm(x, t),wm
τ (x, t)), (x, t) ∈ Q̃, for each r = 1, . . . ,M+L,

m ∈ N. From continuity of functions gr on Q̃×RM+L ×RM+L, f m
r ,w

m
r on Q̃ (r = 1, . . . ,M +

L; m ∈N), and estimates (5.5), (5.14) it follows that gm
r is continuous on Q̃ and for any k ∈N

following estimates hold

||gm
r ||C(Qk) 6C4, r = 1, . . . ,M+L, m ∈ N, (5.15)

where C4 > 0 is a constant independent of m, but it may depend on k.
From (5.6), (5.7) it follows that for each m ∈ N we have

pi(x, t)
∂um

i (x, t)
∂t

−

n∑
k,l=1

ai,lk(x, t)
∂um

i (x, t)
∂xk∂xl

+

n∑
k=1

ai,k(x, t)
∂um

i (x, t)
∂xk

+ai(x, t)um
i (x, t) = gm

i (x, t), (x, t) ∈ Q, i = 1, ...,M, (5.16)

q j(x, t)
∂vm

j (x, t)

∂t
+b j(x, t)vm

j (x, t) = gm
M+ j(x, t), (x, t) ∈ Q̃, j = 1, ...,L, (5.17)

and from (5.8) we obtain

um
i (x, t) = hm

i (x, t), (x, t) ∈ Σ, i = 1, . . . ,M. (5.18)

Since um
i is a classical solution of equation (5.16), which satisfies boundary condition (5.18),

and from conditions (B1), (B3), (B4) and estimates (5.14), (5.15), according to Theorem 1.1
of monograph [28, p. 476], we obtain following estimate

max
1≤i≤M

||um
i ||

Qk

α,α/2 ≤C5, m ∈ N, (5.19)
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where C5 > 0 is a constant independent of m, but it may depend on k.
Since vm

j is a classical solution of equation (5.17), analogically as in paper [18], follow-
ing can be shown

max
1≤ j≤L

||vm
i ||

Qk

α,α/2 ≤C6, m ∈ N, (5.20)

where C6 > 0 is a constant independent of m, but it may depend on k.
Note, that from conditions (A3), (A4), (B2), (B4) and estimates (5.19), (5.20) we have

max
1≤r≤M+L

||gm
r ||

Qk

α,α/2 6C7, m ∈ N, (5.21)

where C7 > 0 is a constant independent of m, but it may depend on k.
From (5.14), (5.21) and conditions of the Theorem, according to Theorem 10.1 of

monograph [28, p.400], for each k ∈ N we obtain

max
1≤i≤M

||um
i ||

Qk
2+α,1+α/2 6C7, m ∈ N, (5.22)

where C7 > 0 is a constant independent of m, but it depend on C5, C6.
From condition (B2) and estimates (5.14), (5.19)–(5.22), analogically as in paper [8],

following can be shown

max
1≤ j≤L

||vm
j ||

Qk

α,1+α/2 ≤C8, m ∈ N, (5.23)

where C8 > 0 is a constant independent of m, but it may depend on k.
From (5.22), (5.23), Proposition 2.2 (Section 1) and Theorem on differentiation of con-

vergent function sequence, it follows that there exists function w= (u;v) ∈ [C2+α,1+α/2
loc (Q)]M×

[Cα,1+α/2loc (Q̃)]L and a subsequence (which we also note {wm}∞m=1) of sequence {wm}∞m=1,
which converge to w in [C2,1(Q)]M × [C0,1(Q̃)]L. Now, note that hm → h when m → ∞
uniformly on each compact K ⊂ Σ. Also note, that from continuity of gr, f m

r we have
gm

r (x, t)→ fr(x, t)+gr(x, t,w(x, t),wτ(x, t)) when m→∞ for each (x, t) ∈Q (r = 1, . . . ,M+L).
According to said above, take in (5.16), (5.17), (5.18) limits with m→∞. As a result we
obtain identities, which mean that function w is a classical solution of system (3.1), (3.2)
and satisfies boundary condition (3.3). Fulfillment of condition (3.4) follows from (5.14).
Estimates (3.11), (3.12) follow from (5.12), (5.13). �
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