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Abstract

We consider a system of quasilinear parabolic type equations involving operator curl
associated with the Maxwell equations in a multi-connected domain. The paper is a
continuation of the author’s previous paper. We deal with a variational inequality with
curl constraint. It is an extension of the results of Miranda et al. for p-curl system.
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1 Introduction

In the previous paper Aramaki [4], we considered the Maxwell equations in an electromag-
netic field. If we denote the electric and the magnetic fields by E and H, respectively, it is
well known that E and H satisfy the classical Maxwell equations

eE;+oj=curlH,
uH; +curlE=F,
edivE =g,

divH =0

(1.1)

in Q7 :=(0,T) x Q where Q is a bounded domain in R3, ¢ is the permittivity of the electric
field, i is the permeability of the magnetic field, o is the electric conductivity of the mate-
rial, j is the total current density and ¢ is the density of electric charge. Since the displace
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current eE, is small in comparison of eddy currents, we neglect the term. We use the non-
linear extension of Ohm’s law |j|P~2j = o E where o is the electric conductivity. Then H
satisfies the following equation

1 p—2 =
{uH,+curl[G|cur1H| curlH] = F, (12)

divH =0in Q7.
Natural tangent boundary conditions are
H-n=0,Exn=GonXr:=I'x(0,7T)

where I' = 0Q is the boundary of Q and n denotes the outer normal unit vector field to
I'. Here the second boundary condition corresponds to consider a superconductive wall.
Putting v = 1/0-, we must consider the following problem.

uH, + curl [v|curl H|P2curlH]=F,

divH =0 in Or,
H-n=0,vicurlHP?>curlHxn=G onZXr,
H(0)=H, in Q.

(1.3)

For such formulation, see Yin et al. [15], Yin [14], Miranda et al. [10] and Aramaki [3, 4].

We consider a constitutive law arising in type-II superconductors and we know it as an
extension of the Bean critical-state model in Prigozhin [11]. In this case the current density
cannot exceed the critical value W(x,) > 0 and we have

_ vicurl HP%2curl H  if [curl H| < W(x, 1),
Tl PP 2+ DcurlH if [curl H| = Y(x, 1)

where v = v(x) > 0 and A = A(x, t) > 0 is an unkown Lagrange multiplier.

The authors of [10] considered the system of equations containing such problem. They
replaced the term viulP~2u with u = curl H in (1.3) with a Carathéodry function a(x,t,u)
which satisfies some structure conditions, and they showed the existence theorem. They
also examine the variational inequality with evolutional curl constraint for the case where
a(x,t,u) = a(x,u) = vlu|P~2u. This associates with the solution to the Bean model. However,
they assumed that Q is a simply-connected domain Q.

In this paper, we extend the results of the variatonal inequality to the case where Q
is multi-connected domain with tangential or normal boundary conditions. Furthermore,
it will be seen that the results in [10] are extended. The authors of [10] treated only the
case a(x,t,u) = v(x)lulP~2u, but we shall extend the result to the more general form of
a(x,t,u) = a(x,u).

The paper is organized as follows. In section 2, since we allow the domain Q to be
multi-connected and we need some Poincaré type inequalities, we must set the domain ap-
propriately. Moreover, since we consider more general formulation a(x, ¢, u) than ViulP~2u,
we must impose the structure conditions for a(x,t,u). Furthermore, we shall review the ex-
istence theorem and the regularity of solution which will be used in section 3. In section 3,
we show that the variational inequality with evolutional curl constraint. We shall extend the
results of [10] who considered only the case a(x,u) = vlulP~2u. Section 4 is devoted with
the continuous dependence on the data. Finally, in section 5, we consider the limit problem
as the time variable tending to infinity.
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2 Preliminaries

In this section, we state some preliminaries and the existence and regularity theorems which
were proved in the previous paper [4] (cf. also [10]) for the genelarized system containing
the system (1.2) with some boundary and initial conditions.

Since we allow that Q is multi-connected, we assume that Q) has the following condi-
tions as in Amrouche and Seloula [1] (cf. also see Amrouche and Seloula [2], Dautray and
Lions [6] and Girault and Raviart [7]). Let Q c R3 be a bounded domain of class C"! with
the boundary I' = 0Q and Q is locally situated on one side of I'.

(1) T has a finite number of connected components Lo, Ty, .0 with 'y denoting the
boundary of the infinite connected component of R? \ Q.

(ii) There exist n connected open surfaces X;, (j = 1,...,n), called cuts, contained in Q
such that
(a) X; is an open subset of a smooth manifold M;.
(b) 0Z;cI' (j=1,...,n) and %, is non-tangential to I".
©) LiNZ;=0(# j)
(d) The open set Q =Q\ (UL, %)) is simply connected and Lipschitz.
Put Q7 = Qx(0,7), Xy =I'x(0,7). Leta: Qr xR> > R3 be a Carathéodry func-

tion with values in R? satisfying the following structure conditions. There exist constants
a.,a*>0and 1 < p < co such that for all (x,#) € Qr and u,v € R3,

a(x,t,u)-u > a.lul?, 2.1
la(x,t,w)| < alul’~", 2.2)
(a(x,t,u)—a(x,t,v))-(u—v)>0ifu v, (2.3)

or
a.|lu—v|? if p>2,
a.(ul+ )P 2u—-v? ifp<2.

(a(x,t,u)—a(x,t,v))-(u—v) > { 2.3

Here for any vectors u,v € R?, we denote the Euclidean inner product by u -v. Note that
(2.3)" implies (2.3).

Example 2.1. If a(x,t,u) = v(x, H)lu|’~>u where v(x,t) is a measurable function in Qx(0,T)
satisfying 0 < v, < v(x,t) < V" < oo, then a satisfies (2.1)-(2.3). Furthermore a also satisfies
(2.3).

For the proof, see Aramaki [4].
We consider the following two systems.

0:h + curl [a(x,t,curl h)] = f(x,t) in O,

divh =0 in QOr,
n-h(x,tH)=0 on Xr, 2.4)N
a(x,t,curlh) X n = g(x,1) onXr,

h(x,0) = ho(x) in Q
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where n is the unit outer normal vector field to T

Oh +curla(x,t,curlh)] = f(x,t) in QOr,

divh=0 in Qr,

nxXh(x,t)=0 onXr, . Q247
a(x,t,curlh) = g(x,1) on X7,

h(x,0) = ho(x) in Q.

Throughout this paper, if E is a function space, we denote the vector space E> by E. Define
the following closed subspaces of W'P(Q) where W'P(Q) is the standard Sobolev space.

WZ(Q) = e WH(Q):divi=0in Q,v-n=0on I{v-nl)s,=0,i=1,...,n},
and

WE(Q) = {v e WP(Q);dive =0in Qvxn=00nT,(v-nl)r,=0,j=1,...,m)}.
Then we have

Proposition 2.2. Let 1 < p < co. Then W} (Q) and W5.(Q) are reflexive, separable Ba-
nach spaces, and the semi-norm ||curlv||pr(q) is the norm in Wﬁ,(Q) and WI;(Q), and it is
equivalent to the norm ||v||W1.p(Q).

For the proof, see Brezis [5] and [1, 2].
From now, we write W2 (Q) for WZ(Q) or W‘;(Q) and |Vllyr ) = llcurlv||Lr ).
It is well known that the following Sobolev type inequalities and the trace theorem hold.

Proposition 2.3. There exist positive constants Cy4 and C, such that for all v € W2(Q),

g<3p/B3-p) ifl<p<3,
IVllLaq) < Cyllcurly||prq) with { any g < oo if p=3,
q=00 ifp>3,
and
r<2p/3-p) ifl<p<3,
Il < Crllcurly||prq) with  any r < oo if p=3,
=00 ifp>3,

In particular, if p > 6/5, then the embedding WY (Q) into L*(Q) is continuous.

Throughout this paper, we assume that p > 6/5 for the brevity.
Define L2(Q) = the closure of W2 (Q) in L?*(Q). Then we have

W2(Q) c LA(Q) ¢ WH(QY

where W’ (Q)’ is the dual space of W2(Q). Here we note W2 (Q) is dense in LE(Q) and the
inclusion maps are continuous.
For a.e. t € (0,T), define an operator A(f) : W.(Q) — W2 (Q) by

(A(DHh,P) = fa(x, t,curl h) - curl ¢ dx for all h,¢ € WL(Q).
Q
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Then we see that A(¢) is a bounded operator, and

1

AW Rl oy < @ licurl RIl7, .

In fact, by the structure condition (2.2) and the Holder inequality, we have

A

KA(h,¢)| < fa*lcurlhlp_llcurlqildx
Q

1/p 1/p
a (f |curlh|pdx) (f |cur1¢|pdx)
Q o

* _1
a ||Cur1h||[£p(g)||cur1¢||LP(Q)-

IA

Here and hereafter, for any 1 < p < oo, we denote the conjugate index by p’, that is, 117 + pi =
1.

Since the function a(x,t,u) is the Carathéodry function, we easily see that A(¢) is hemi-
continuous, i.e., for any h, @,y € WP(Q),1eR, (A(H)(h + A@), ) is continuous with respect

to 1. Moreover, we can see that A(¢) is coercive, i.e., for v € W2 (Q), (A(t)v,v) > allvll&l,,(g)

for some a > 0. In fact, from structure condition (2.1), we have

(A(t)y,v) = fa(x, t,curly)-curlvdx > a, f |curlv|? dx = a*llvllgvp(g).
Q Q :

Let f(r) € L (0,T; L7 (Q)), g(¢) € L” (0,T;L” (I')) where p’,q’ and r are conjugate index
of p,q and r, respectively, and g and r are as in Proposition 2.3. For a.e., ¢ € (0,T), define
L.(t) € W (Q) where * = N or » =T by

L) = [ fo-pdx+ [ g0-gas
for ¢ € W2(Q). Here we denote

o [gn  ifx=N,
g(t)_{nxg(t) ifx=T 25

Well-definedness follows from Proposition 2.2 and following inequalities.

jg; |f(t) ' ¢|dx < ”f(t)”Lq’(Q)H‘pHLq(Q) < C||f(t)||Lq'(Q)||¢||Wf(Q)

and
flg*(t) ¢|dx < ”g(t)”Lr'(r)”¢”Lr(F) < Cl|g(t)||Lr’(r)||¢”Wf(Q)
r

Therefore we can apply the result of Zheng [16, Theorem 3.2.1] (see also Lions [9]) as
follows. For any hg € L2(Q), L.() € EP(0,T; WP (Q)), the system
Oih+A(Dh =L.() in Qr, 2.6)
h(0) = hyg in Q
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has a unique solution & € C([0, T1;L2(Q))NLP(0, T; WP (Q)), and 6,h = h, € L7 (0, T;WP(Q))
in the sense of L? (0, T; W”(Q)). That is to say, for all ¢ € LP(0,T; WZ(Q)),

T T
f fht-¢dxdt+f fa(x,t,curlh(t))-curl¢(t)dxdt
0 Ja 0 Ja
T T
= f f S @) - o) dxdt + f f g0 -¢p(ndSdt (2.7)
0 Ja 0 Jr

where dS denotes the surface area of I and we interpret h; - ¢ as the duality of W2 (Q)’
and WZ(Q). If we choose any ¢ € W (Q) and ny € Cy(0,T) and take ¢(r) = n(1)¢ as a test
function in (2.7), we can see that (2.7) means that for a.e. 1 € (0,7),

fg h,-¢dx+ fg a(x,t,curl h()) - curlddx

= [, f@©)-dx+ [ g*(1)-pdS for all $ € WI(Q), (2.8).
h(0) = hy.

The first term of the left hand side in the first equation of (2.8). is satisfied in the duality
sense. This is the weak formulation of (2.4)y or (2.4)r.

We have the following existence theorem of unique solution of (2.4), and an estimate
(cf. [10] or [4]).

Theorem 2.4. Assume that (2.1)-(2.3) hold and let f € LV (0,T; LY (Q)), g € L” (0,T; L" (1)), ho €

LE(Q). Then the problem (2.4). has a unique solution
h € LP(0,T;WE(Q) N C([0,T1;L(Q)), d;h € L7 (0,T; W(Q))
in the sense of (2.8).. Moreover there exists a constant C > 0 independent of T such that

2 P < I P 2
WIS 2 )+ leUrL B S CUPI, o F VI o + W0l )

When a(x,t,u) is independent of ¢, we can get more regularity. In order to do so, we
assume that a(x,t,u) = a(x,u) is a Carathéodry function on Q X R3 satisfying (2.1)-(2.3).
Moreover we assume that there exists a scalar function b(x,u) which is measurable in x and
C! class in u such that

Vub(x,u) = a(x,u). (2.9)

We may assume that b(x,0) = 0. By a simple calculations, we have

1 1,

—a.[ul? <b(x,u) < —a*ul’.

p p
Example 2.5. If a(x,u) = v(x)[ul’~>u satisfies that 0 < a, < v(x) < a* < co, then b(x,u) =
%v(x)lul” satisfies (2.9).

Theorem 2.6. Assume that a(x,u) satisfies (2.1)-(2.3) and (2.9). Let f € L' (0,T; L7 Q)N
L*(Q7), g € L0, T;L" (T)) N W ' (0,T;L" (), hy € WE(Q). Then the solution in Theo-
rem 2.4 satisfies that

d;h € L*(Qr), curlh € L®(0,T; LP(Q)).

For the proof, see [4] (cf. see also [10]).
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3 Variational inequality with evolutional curl constraint.

In this section, we consider a variational inequality with evolutional curl constraint. In order
to do so, we assume that a(x, t,u) = a(x,u) satisfies (2.1), (2.2), (2.3)’ and (2.9). The authors
in [10] only considered the case where a(x,u) = v(x)|u|P>u, however we shall extend their
results to the more general function a(x,u).

Let W(x,1) € Wh(0,T; L (Q)) with ¥(x,1) > a > 0 for some constant & > 0 and define
fora.e. t€(0,7),

K(f) = {y e WI(Q); b(x,curly) < ¥(x,7)” a.e. in Q).

Our problem is as follows: for given f € L” (0, T;L7 (Q)NL*(Qr), g€ L0, T;L" ()N
WP’ (0, T;L" (IN) and hy € K(0), find a function A in a suitable class such that k(t) € K(r)
ae. t€(0,7), h(0) = hy and

f Oh(t)-(p—h(®))dx+ f a(x,curl k(1)) - curl (¢ — h(1))dx
Q Q

2J;f(t)~(¢—h(t))dX+ﬁg(t)-(¢—h(t))d5 (3.1

for any ¢ € K(¢) a.e. t € (0,7).
We will consider an approximation of the solution 4. In order to do so, forany 0 <e< 1,
choose a function k. : R — R* which is continuous and increasing such that

1 s<0,
ko(s)=1{ € e<s<l/e—e,
e 5> 1/e,

and define
a.(x,t,u) = ko(b(x,u) —¥(x,0)")a(x,u)

where b(x,u) is a function as in (2.9). We note that a.(x,t,u) satisfies the structure condition
(2.1), (2.2) and (2.3)’ with a* replaced with e/’ a*. In fact, since 1 < k, < e!/¢’,

a.(x,t,u)-u>a(x,u) -u>aul’,

and 2 2
las(x. L) < e/ laeu)| < e/ a”.

Thus it is clear that (2.1) and (2.2) hold. For (2.3)’, we have

(aé‘(x’ f, u) - a&‘(x’ f, v)) : (u - v)
= (ko(b(x,u) —¥(x,)")a(x,u) — ko (b(x,v) = ¥(x,H)P)a(x,v))- @ —v). (3.2)

We claim that if b(x,u) > b(x,v), then a(x,u)-(u —v) > 0. Because, if a(x,u)-(u—v) <0,
then we have

1
b(x,u) —b(x,v)=(u—-v)- f Vub(x,v +6(u —v))do
0

1
=u-v)- f a(x,v+60(u —v))do. (3.3)
0
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From the monotonicity of a,
(alx,u)—a(x,y+0(u—v))-u—y+6m—-v)) >0,

SO

alx,y+6u—-v))-u—-v)<alx,u)-(u-v)<0

for 8 < 1. Thus from (3.3), we have b(x,u) — b(x,v) < 0. This is a contradiction. Therefore
it follows from (3.2) and the increasingness of k. that

(as(x,t,u)—a,(x,t,v))-w—v) > (ko(b(x,v)—¥(x,0)P) a(x,u)—a(x,v)) - uw—v)

(a(x,u)—a(x,v)-(u—v).

\%

Thus if a(x,u) satisfies (2.3)’, then a.(x,t,u) also satisfies (2.3)’. The case where b(x,u) <
b(x,v) is similar.

Thus from Theorem 2.4 with a(x,t,u) = a.(x,t,u), there exists a unique solution h, €
LP(0,T; WP (Q)NC([0,T];L(Q)), 8;he € LP (0, T; W (Q)) such that for a.e. t € (0,T),

f@,hg(t)-¢dx+fag(x,t,curlhg(t))-curl¢dx=ff(t)-¢dx+fg*(t)'(pdS 3.4
Q Q Q r

for any ¢ € W/(Q).
Lemma 3.1. There exists a constant C > 0 independent of 0 < & < 1 and T > 0 such that
lIke(b(x, curl he(£)) =¥ (x, 7)1 0,
1 / ’
p P 14 2
< Ci( 91 g, + 1 8L o 7opr e H IO )

LV (0,T;LY () LY (0,T;L”

Proof. 1f we take ¢ = h.(¢) as a test function of (3.4), then using Holder inequality we have

1d
_= f \h(D)Pdx+ f a.(x,t,curl hy(1)) - curl h(t)dx
2 dt Q Q

;fWAMWM+fmwmmm
Q T

< ”f(t)”Lq'(Q)”hs(t)”Lq(Q) + “g(t)”Lr'(r)”hs(t)HLr(F)-

From the monotonicity of a, we have

1d
—— f \ho(D)|>dx + a. f ke(b(x,curl h () —P(x, 1)?)|curl ho(0)|Pdx
2dt Jo Q

< Cllf Ol e g llcurl s (Dl @) + CAIEON 7 o llcurl B (Dl ey (3.5)
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Integrating over (0,7") and using Holder inequality, for any ¢ > 0,

T
! f \he(T)dx + a. f f ke(b(x, curl k(1)) — ¥ (x, H)P)lcurl ho ()P dxdt

17p’ 1/p
<C (f “f(t)”L‘f @ ) (f ||Curlhg(l)||Lp(Q) )
1/p’ 1/p 1
oo f e, ) | f feur e ]+ 5 [ afa

<Cys f ||f(z)||m @1+ Crs j; ||g(t)||p:_,(l_)dt+6 fo fQ lcurl b (1)|P dxdt
- f lho|>dx
<Cys f ||f(t)||Lq (Q)dt+Cra f IIg(t)IIL,,(D

1
+6f fks(b(x,curlhg(t))—‘I’(x,t)”)lcurlhg(t)lpdxdt+Eflholzdx.
0 Ja Q

Choosing 6 = a./2 and using b(x,curl h.(?)) <5 a®|curl hg(1)|P, we have

ff ko(b(x,curl ho(2)) — P (x,H)P)b(x, curl hy(2))dxdt
Or

<cf” +lgll” +|lholl; (3.6)

LV (0,T):L7 () LV (0,T;L" (I)) LX(Q)

where C is a constant independent of 0 < £ < 1 and 7. On the other hand, if we put

D, {(x,1) € Or;b(x,curl hy (1)) < P(x, 0P},
E, {(x,1) € Or;b(x,curl hy (1)) > P(x, )P},

and we note that k.(s) = 1 for s <0 and k.(s)s > 0, we have

f f ko(b(x,curl hy (1)) —P(x, 1) )(b(x,curl hy (1)) — P (x, )P )dxdt
Or

fo b(x,curlhg(t))dxdt—ff ‘P(x,t)pdxdtz—ff Y(x,t)Pdxdt.
D, D, Or

Thus we have

f f ke(b(x,curl ho (1)) — P (x, )P )(P(x, 1) — b(x,curl h(1)))dxdt
Or

< f f W(x,t)’dxdt. (3.7)
Or
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Since W(x,1) > @ > 0 and using (3.6) and (3.7),
f f ko(b(x,curl hy (1)) —PP)dxdt
T le
< ff ko(b(x,curl ho(2)) —PP)—dxdt
Or ar
= % ff ke(b(x,curl (1)) — PP)(P?P - b(x, curl h.(¢))dxdt
+i f f ko(b(x,curl b (1)) — P (x, HP)b(x, curl hy(1))dxdt
Or

||\P||LP(QT> +CqUAI7,

14
oy €] Mol )

LY (0,T;L” (')

Lemma 3.2. There exists a constant C > 0 independent of 0 <& <1 and T such that

||h8||L°0(0,T;L2(Q)) +|lcurl h8||[£p(Q )

< i I g, + I +llholl

+lgll” o)

L2 (0.T:L7 (Q)) LY (0,T;L” ()

Proof. We use (3.5). Integrating (3.5) over (0,¢) and using k; > 1 and Proposition 2.3, we

have
1 !
- f lho(D))>dx + a. f f lcurl s (7)|Pdxdt
2 Q 0 Q

!
< qu()‘ “f(T)”Lq'(Q)chrlhg(T)”Lp(Q)dT

!
1
+C, f @l lleurl he(@lsdr+ 3 lholl 2oy

1/p 1/p
<c ( [rn, g, ) ( [ et o g e )
» 1/p 1/p 1
o< (g, o ] [ et )+ Sl

< Cys f lg@I,, 1 d7+ Crs f lg@I?, . d

+6f ||curlhg(T)||L,,(Q)dT+ §||h0||L2(Q)

for any 6 > 0. Choosing 6 = a./2, and then taking supremum of both hand side, we see
that there exists a constant C > 0 independent of 0 < £ < 1 and T such that the conclusion
holds. ]

Lemma 3.3. There exists a constant C > 0 depending only on |[¥|Lro), ISl OT:L7 @)y
||g||L,,/(O T:L” () and ||h0||Lz(Q) but independent of 0 < € < 1 such that

||8,hg||Lz(QT) <C, esssupllcurl h ()|lrrq) < C.

0<t<T
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Proof. By tha Galerkin approximation, we may take 0,k as a test function of (3.4). Inte-
grating (3.4) with ¢ = h, over (0,1),

f f |(9Th£(‘l')|2dxd‘l'+ f f a.(x,t,curl h (7)) - d.curl h (T)dxdt
O o

=f f(T)'aThg(T)dxdT+ff g"(1)-0:h(r)dSdr. (3.8)
Q[ 2]

If we define
Bu(s) = f k(s
0

then we have

0:¢:(b(x,curl (7)) —¥P(x,7)")
= ko(b(x,curl ho (7)) — W (x,7))0-(b(x,curl ho (7)) — P (x, 7))
= ke (b(x, curl (1)) = ¥ (x, 7)) (a(x, curl he(1)) - d-curl hy(7) — pP(x, 1) 10, ¥ (x, 1)).

Thus from (3.8), we see that

f 0 ho(T)Pdxdt + f f 3:05(b(x,curl hy(t) —¥(x,1)P)dxdt
O O
+ f f pko(b(x,curl ho (7)) — ¥ (x, 7)P)¥(x,7)P 10, ¥(x,7)dxdr
(o

=ff f(T)'aThg(T)dxdT+ff 2" (1) 0:h(7)dS d.
Q[ zf

Here we have

f f 0:¢:(b(x,curl b (t) —¥(x,)")dxdr
= f ds(b(x,curl ho (1)) —P(x,0)P)dx — f ds(b(x,curl hy) —P(x,0)”)dx.
Q Q
Since

=s ifs<0,
>s ifs>0,

%(S){
and hg € K(0), i.e., b(x,curl hy) — ¥(x,0) <0, we have
f 0:¢:(b(x,curl ho(7)) —P(x,1)")dxdr
O

1
z f (b, curl () =¥ (x,0"dx > —a. f lcurl he()lP dx— WO, g
Q Q



12 Junichi Aramaki

On the other hand, it follows from Lemma 3.1 that

U (ke(b(x,curl (1) = P (x, 7)) (6, DP9, W (x, )l
O
< IMes(b(x, curl be) = P06 )l I~ o 19:¥ll=or)
1 , ,
J— p )4 P
< C(= ¥y HIA o 18I

-1
Hlhol g NI, 0Pl 01

Moreover, we can see that for any ¢ > 0,

<Cs f f \f () dxdt +6 f f 10-h(7)*dxdr.
O O

‘f f(0)-0:h(T)dxdr
O

By the integration by parts,

f f g (1) 0-ho(T)dxdr = f g () he(D)dS — f g7(0)- hodS
P T r

—ff 0:2°(1)- h(t)dS dr.
%

Here from Proposition 2.3, the Holder and Young inequalities,

<C©lgll” +6llcurl A (0|

p
L=(0,T;L” () Lr(Qy

f g (t)-ho(t)dS
r
‘ f g°(0)- hodS
r

ff 0:2" (1) h(t)dS dr
%

Here it follows from Lemma 3.2 that [|curl h.||zr(q) < C where C is a constant depending
only on [[¥|lzr(0;) ”f”LP’(o,T;L'/(Q)y Hg”LP'(O,T;Lr/(F)) and ||h0||L2(Q)- If we choose ¢ > 0 small
enough, we can see that

f f 10:he(T)[>dxdt + f lcurl b (1)|Pdx < C
O Q

where C depends only on [[¥||zr(g,). IIfIILp/(O’T;LqI(Q», gl o.7.17 @y and Aol 2 (- O

< ”g”L“(O,T;L’/(F))chrl hOHL”(Q)’

and

<1108l o.r.7 rylleurl elleror)-

Theorem 3.4. Assume that
f e’ O,T;L Q)N L*(Qr),g € L™(0,T; L (C) n W7 (0,T; L (1)), ko € K(0).
Then the variational inequality (3.1) has a unique solution

he LP(0,T;W™(Q)) N H'(0,T; LA(Q)).
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Proof. From Lemma 3.2 and 3.3,
hell . .12 + llcurl hell=o,1:Lr@) < C.

Thus {h,} is bounded in L*(0,7;W!!(Q)). By Sobolev embedding theorem, the injec-
tion Wh(Q) — L'(Q) is compact. It follows from Lemma 3.3 that {h.} is bounded in
H'(0,T;L*(Q)). We apply Simon [12, Corollary 5] with X = Wh'(Q),B =Y = L} (Q),
p=oco,5=1,r=2. Since {h,} is bounded in L*(0, T; W"'(Q))n W20, T; L' (Q)), we can
see that {h.} is relatively compact in the space C([0, T1; LY (Q)). Passing to a subsequence,
we may assume that h, — h weak star in L°°(0,T;L2(Q)), strongly in C([O, T];LI(Q)),
curl b, — curlh weakly in LP(Qr), 8,;h, — 0,h weakly in L*(Qr). Let ¢ € K(r). Then
b(x,curl @) < ¥(x,1)?. By the monotonicity of a.(x,t,u), we have

(as(x,t,curl ho()) — a.(x,t,curl §)) - (curl ho(¢) — curl ¢) > 0.
Since k.(b(x,curl ¢) —¥(x,1)?) = 1, we can see that
a.(x,t,curl h(1)) - curl (¢ — h.(¢)) < a(x,curl @) - (curl ¢ — curl h.(t)). 3.9

Taking ¢ — h(¢) as a test function in (3.4),
fQ Buho(t)- (§— hy(0)dx + fg @, curl (1) ($— o(t)) dx
= [ s0-@-nonar+ [ g0 @-hamas.
Using (3.9), we have
f fQ BO,h (1) - ( — ho(1))dxdr + f fQ a(x,curl @) - (¢ — ho())dxdt
> | 0@ = huordnar+ L 2 (0)-(B—ho(1)dSdi. (3.10)

Since h, — h weak star in L*(0,T; L*(Q)), ho(T) — h(T) weakly in L*(Q), we have

limsupff Othe - (¢ — h)dxdt
-0 Oor

1 1
= limsup f f d;h - ¢pdxdt — = liminf f \ho(T)dx + = f |ho|*dx.
£50 or 2 &0 Q 2 Q

Since ¢ e K(¢) and p > 6/5, ¢ € LZ(Q). Moreover, since d;h; — d;h weakly in LZ(QT),

f O0/h. - ddxdt — f 0:h - pdxdt as € — 0.
Or Or

Thus we have

lim sup ff O0thg - (¢ — h)dxdt
-0 Or

< f ath-¢dxdt—l f |h(T)|2dx+l f |ho[>dx = f f dh-(p—h)dxdr. (3.11)
Or 2 Ja 2 Ja Or
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Since f € L2(0,T;L*(Q)) c LY0,T;L*(Q)) and h. — h weak star in L=(0,T; L*(Q)), we

have
fLTf(t)-@—hg)dxdt—)foTf(;).@_h)dde

Moreover, since curl ki, — curl i weakly in L”(Q7) and |a(x, curl ¢)| < a*|curl ¢|P~' € L? (O7),
we have

ff a(x,curl@)-curl (¢ — h,)dxdt — ff a(x,curl@) - curl (¢ — h)dxdt.
Or Oor

Since curl h, — curlh weakly in LP(Qr), h, — h weakly in LP(0,T;L"(I')). Since g €
L”(0,T;L” (), we have

ff g*-(¢—h€)det—>ff g - (p—h)dSdt.
Xr >r

Therefore, from (3.10) and (3.11), we get

ff 8,h-(¢—h)dxdt+ff a(x,curl@) - curl (¢ — h)dxdt
Or Or

fo f-(¢—h)dxdt+ff g - (d—h)dSdt. (3.12)
or Sr

If we assume that h(¢) € K(¢) a.e. t € (0,T) which will be shown in the next lemma, we have
ae. re(0,7),

fQ (D) - (¢ — h(1))dx + fg a(x, curl ¢(1)) - curl (¢ — h(t)dx
> [ f0-@-nondxs [ g0 @-hnds.
If we replace ¢ with i+ A(¢— 1) (0 < 1 < 1), we have
fQ O,h(t)- (¢ — h(D)dx+ fg aCx, curl h(5) + A(curl (¢ — k(D)) - curl (¢ — h(t))dx
> [ o-@-noniss [ g0 @-nons.
Since a(x,x) is a Carathéodory function, letting A — 0, we finally get
L 0h(t)- (¢ —h(t))dx+ L a(x,curl h(z)) - curl (¢ — h(2))dx
> fQ F0)- @ - h(e)dx-+ fr &' (1) ($— h)dS

for any ¢ € K(¢) a.e. 1 € (0,7).



Variational Inequality with Evolutional Curl Constraint 15

Finally we show the uniqueness of solution. Let h', h? be two solutions of (3.1). Then
by 3.1) with h =h',¢ = h*> or h = h*>,¢ = h', we have

fQ A (1) - (h*(t)— h' (1))dx + fg a(x,curl h' (1)) - curl (h*(t) — h' (1))dx
> fg f@)- (BP0 —h' (O)dx+ fr g - (W1~ h' (1)dS
and
fQ Ah* () - (h' (1) — K> (D)dx + fg a(x,curl k(1)) - curl (k' () — h?(1))dx
> fg f@)-(h' ()~ K (O)dx+ fr (- (h' ()= h*(1)dsS.
If we put w(r) = h'(t) — h*(r), w satisfies
fQ Aw(t)-w(t)dx+ fg (a(x,curl B! (1)) — a(x,curl k(1)) - curl (k' (¢) — K*(1))dx < 0.

a.e. 1 € (0,T). Since a is monotone, we have

d 2
— < .
tflw(t)l dx<0

f w(t)[>dx < f w(0)]>dx = 0
Q Q

so we have w(r) = 0. O

Thus

Lemma 3.5. Let h, be the solution of (3.4) and h, — h weakly in LP(0,T;WP(Q))N
HY(0,T;L*(Q)). Then h(f) € K(t) a.e. t € (0,T).

Proof. Define

Ay = {(x,0) € Or;b(x,curl ho(x,1)) —P(x, 1)’ < Ve,
B, = {(x,0)€ Qr; Ve < b(x,curl ho(x,1)—P(x,0)P < 1/g},
Ce = {(x,0) € Or;b(x,curl hy(x,1)—P(x,0)" > 1/&}.

Then
ff Vedxdt < VelQr] = 0as e — 0,
Ag

and from Lemma 3.1,

1 1 ke (b(x,curl ho(x,1) —¥(x,1)P 1 _
ff _dthS_ff S 81(/):2) 1) )dxdtsC—e 118 0 as & — 0.
C, € e X e e

For small £ > 0, on B,

ke(b(x,curl he(x, 1)) = P(x, 1)) > ko(VE) = €'/ V2.
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Thus using again Lemma 3.1,

k(b 1h 1) —Y(x, 1P
|Bs| = ff 1d dt<ff bl eurlhe(60) =WHD7) | o UNE L g as 6 0.

o1/ Ve

Moreover, —IBSI <cl 4 ~1/¥¢ 5 0as & — 0. Since curl b, — curl h weakly in L”(0,T; LP(Q)),

we have
f f b(x,curl h)dxdt < hmlnf f f b(x,curl hy)dxdt.
Or Or

f (b(x,curl h) —¥YP)" dxdt
Or

Therefore,

<11m1nfff (b(x,curl h,) — ‘I”’)/\ V Vedxdt
Or

1
=1imi(l)lf ff \/dedt+ff (b(x,curlhg)—‘l’p)dxdt+ff gdxdt)

—hmlnff (b(x,curl h) — PP )y, dxdt
.1

< liminf —|Bg| = 0.
e—0 &

Hence we have b(x,curl h(x,1)) < W(x,1)? a.e. in Q7. That is, h(t) e K(¢) a.e. t € (0,7). O

4 Continuous dependence on the data

In this section, we examine the continuous dependence on the data of the solution of (3.1).
Let ¥; € Wh(0,T; L¥(Q)) satisfy W;(x,7) > & > 0 for i = 1,2, and let

f;€LP(0,T; LY (Q)NL*(Qr), g; € L¥(0,T;L" (D) N W' (0,T; L" ().
Define
K;(¢) = (v € WZ(Q); b(x,curlv) < ¥;(x,7)? a.e. in Q},
and let k;y € K;(0).

Lemma 4.1. If hy € LP(0,T; W(Q)) satisfies h(f) € K (1) a.e. t €(0,T), then there exists
’ﬁz € LP(0,T; W2 (Q)) such that ﬁz(t) e Ky(?) a.e. t€(0,T), and there exists a constant C > 0
such that _

llcurl (k1 — ho)llLr o) < ClIY1 —Yallzo(0p)-

Proof. Let (1) = ||¥1 —¥allr~(q) and (1) = @/(a + (1)) and define ﬁz(t) =n(t)Ph,(¢). Since
b(x,u) is convex in u, b(x,0) =0 and 0 < n(¢) < 1, we have

b(x, curlﬁz(t)) = b(x,n(H)Pcurl k1 (1)) < n(@)Pb(x,curl b (1)) < (n(H)¥P1(x, ).

Now we have
Y1) _ 0 - +¥a) 0 _arBO) _ 1

Wa(r) Ya(n) @ @ ()
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Thus n(£)¥1(¢) < W,(¢). Therefore we have b(x, curliz\g(t)) <W¥,(1)?, that is, 71\2(l) €Ky (1) ae.
t € (0,T). Moreover, we have

lleurl (-1 () = Ba (I ) = f lcurl k(1) — curl ho(1)Pdx
Q

f |curl iy (¢) —n()P curl by (1)|Pdx
Q

f (1 =n(P)P|curl ki ()P dx.
Q

Here

a? (@ +B®)’ -af

(@+Bm)y — (a+B1)P
If we put C1 = [[¥1llz=0p) + [W2llz=(0;), taking B(7) < C; into consideration, we have

1
Lon@ =1- < Law f pla-+65(0)""db.
aP 0

-1
1—ney < KO gy,
(0%

pla+C)P™!
aP

llcurl (A1 (2) _ZZ(t)HLP(Q) < CB@)|Ilcurl A1 (Dl Lr @)

Thus if we put C = , we get

O

Remark 4.2. If we replace hy by h, we can construct the corresponding function denoted
by h] .

Our variational inequality problem is as follows: for i = 1,2, find h; satisfying h;(¢) €
Ki(t) a.e. t € (0,T) and h;(0) = h;y such that

f Orhi(t)- (¢ — hi()dx + f a(x,curl k(1)) - curl (¢ — hi(1))dx
Q Q
> fg Ji®)- (¢ = hi(n))dx + fr g (- (p—hi(ndS (4.1

for any ¢ € K;(7) a.e. t € (0,T) where g7 (t) = g,(1) if * = N and g/ (1) = nXx g;(t) if « =T.
Then we have the following theorem.

Theorem 4.3. Let h; (i = 1,2) be solutions of (4.1). Then there exists a constant C > 0 such
that

_ 2 _ pV2
My = Roll 72y + leurl G = B)IE

< _ p'A2 _ P'A2
<C(lf, fz”LP'(O,T;L‘/(Q)) +llg gz“u’(o,T;U’(r))

+l1h10 = hooll} ) + 11 = ¥2llz=(0p)-

Here and hearafter we denote aVv b = max{a,b} and a A b = min{a, b} for any real numbers

aand b.
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Proof. 1If we take ¢ = ’h\l (?) as a test function in (4.1)1, we have

fQ 8hy (1) - (hy (D) — .y (1)dx + fg a(x,curl ity (1)) - curl (b1 (£) — 1 ())dx
< fg F10)(hy (0 =y (1)dx+ fr g1 (hi () - hy())ds.
Thus we have
fgathl(t)-(hl(t)—hz(t))dx+La(x,curlhl(t))-curl(hl(t)—hz(t))dx
< [ £10-t=naonds [ g1t -haoas
+ fQ 8k (1) - (hy (1) — ho(1)dx + fg a(x,curl by (1)) - curl (hy () — ho(t))dx
# [ 110t~ opdr+ [ g0 thato=Tnconas.
Similarly, if we take ¢ = ’h\z(t) as a test function in (4.1),, we have
fgc’),hz(t)-(hz(t)—hl(t))dx+La(x,curlhz(t))-curl(hz(t)—hl(t))dx
< fg Fo(0)- (ho(0) = hy (1)dx + fr &30 (ho(t) = hy (1)dS
+ fQ 8o (1) - (ha () — by (1))dx + fg a(x,curl hy(t)) - curl (o () — by (£))dx
+ fQ Fo(0)- (i (6) = (1)) dx + fr g5(t)- (hi () - hy()dS.
Therefore we have
| 811~ a0 s = a0
+ fQ (a(x,curl b (1)) — a(x,curl hy(1)) - curl (b1 (f) — hy(1))dx
< fQ (f1(0) = F2(0) - (1 (1) = hy(0))dx + fr (&](1) = g5(0)- (1 (1) — ho(1)dS +0() (4.2)
where
o = fg 8k (1) - (hy () — ho(1))dx + fg a(x,curl hy (£)) - curl (k1 () — hao(1))dx
+ fg F10) (ho(0) =Ty (1)dx + fr g1(0) (ha()— hy(1)dS
+ fQ 8, (1) - (ha () — by (1))dx + fg a(x,curl hy(t)) - curl (o () — b (£))dx

+ fQ F(0)- (hy(1) = ha(t)dx + fr g5(0) - (hy (1) — ha(1))dS .
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The case p > 2. Integrating (4.2) over (0,?), taking essential supremum and using the
Young inequality, for any ¢ > 0, we have

1
5 I —hy|? +alcurl (hy — hy)|

p
L((0,7);:L () L?(Qr)

< C(Hf] _‘fZIIL//(()’T;Lq,(Q)) +11g - g2||LP'(O,T;L"'(I“)))
1 > g
Xlleurl (a1 = ko)lLrgr + 510 = Bl g + fo ©)ldt

< _ o
<CEOf1=Fall, o rre @y T 181~ 82M 0 67 )

1 T
p 2
+olleurl (hy = k)l )+ Ellhlo = hooll}2 ) + fo 1®@)ldt.

. T . . . .
We estimate the term fo |®(#)dt. First we note that since p > 2, it follows from Proposition
2.3 that

i1 () — o (1)l 2y < Clleurl iy () — o (D)l (.-
Now we have

T —_—
f f 10:h1(t) - (h1(t) — ha(2))|dxdt
0 Q

T
< fo 1940102 1 1) — oD 2y
T 1/2
<10:1ll 20 71202 ( fo ||h1(l‘)—h2(l‘)”iz(g)dl‘)

T 12
< C|0:hy ”L2((),T;L2(Q)) (L llcurl (h: () - h2([))”ip(g)dt)

< Crllo:hy ||L2(O,T;L2(Q))|Icurl (hy(1) - hZ(t))”L”(QT)
< C;"Hathl||L2(0’T;L2(Q))”\I]l _\P2||L°°(QT)-
By the Holder inequality and Lemma 4.1, we have

f la(x,curl k(1)) - curl (71\1 ()= hy())|dx
Q

T
< f f a*lcurlhl(t)lp_1 |curl (h(¢) — ho(2))|dxdt
0 Q
<a'lleurl by [1937, lleurl () = ho)llLror)

< C||curlh1||’L’ff(’QT)||‘P1 —Walle(0r)-

We also have

T e T e
[ [ tao-Roasar < [ 110l g lha6) =i Ol

A

A

T —_
< Cj; 11Dl o llcurl (ha (1) = Ry (D)l Lr ) dt

IA

C“f[ ”Lp’ (O,T;Lq, (Q))HCUI'I (h2 - hl)”LP(QT)
C“fl”Lp’(()’T;Lq’(Q))H\Pl - lP2||L""(QT)-

IA
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Similarly

T
[ [ i) thatty T < Cligy .11 - ¥olmcony
0 r

The other terms are also estimated by ||¥1 —‘P2llz=(0;)-
The case 6/5 < p < 2. It follows from (4.3) and (2.3)’ that

1
—esssup f |l (1) — ko ()P dx
2 0.1) Jo

+a, f (Icurl 1 (£)| + [curl By (0)))P~2|curl (hy (r) — ho (1) *d xdt
Or
< C(Hfl _lelLP,(O,T;Lq,(Q)) + “gl - g2||LP'(O,T;L’/(F)))||Cur1 (hy - hZ)”LP(QT)

1 T
+ Sl ool gy + fo Ot

We put _
Or =1{(x,1) € Or;curl by (x,t) # 0,curl hy(x,t) # 0},

and we use the inverse Holder inequality (cf. Sobolev [13, p. 8]):

f _lcurl hy — curl hy*(|curl k| + |curl k)P ~*dxdt
Or

2/p (p-2)/p
> (fA |curl —curlhzlpdxdt) (fA (|curlh1|+|curlh2|)pdxdt)
Or Or
2/p
= c(fﬁ |curl i —curlhzl”dxdt)
Or
2

= ¢||curl b — curl hZHL"(QT)'

By similar arguments as the case p > 2, we have
11 = hall o 71200y + leurl (By = B2,

T
< CUS 1 =Sl 0 rop iy T 181 = 821 7 oy 10 = P20l ) + fo ©()d.

(D))

The rest is similar as the case p > 2. O

S The asymptotic behavior as t — co of the solution of the vari-
able inequality

In this section, we shall show that the solution of the variationary inequality (3.1) converges
to a solution of the stable variable inequality.
Let Vo € L7(Q) satisfy W (x) > @ > 0 and define

Ko = (v € W2(Q); b(x,curlv) < Yoo () a.e. in Q).
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Let f, € L‘f’(Q) and g €L ' (I'). We consider the following problem: find k., € K, such
that

fa(x,curlhoo)-curl((p—hm)dx2ffoo-(¢—hoo)dx+fg’;o-(¢—hoo)d5 5.1
Q Q r

for any ¢ € K, where g&, =g if*=Nand gi, =nx g, ifx=T.
Then we have the following theorem.

Theorem 5.1. Let p > 6/5 and ho be a solution of (5.1). Moreover, assume that f €
L>(0,00; LYV2(Q)), g € W(0,00; L (T)), ¥ € W(0, 00; L*(Q)) and h(t) be a solution
of (3.1). Define

_ _ p'v2 _ p’'V2
EO =IO~ fligy + 1180 - gl
where s =2 if6/5<p<2ands=q if p>2. Assume that

t
Eydr — Oast—o ooifp>2,

t/2

t+1

Erydr — 0Oast— 0 if6/5<p<2.

t

Furthermore, we assume that there exists D > 0 such that
() = Yooll) < DY
where

32 ifp>2,
Y7V 12 if6/5<p<2.

Then we have ||h(t) — hooll 2 — 0 as t — oo.

Proof. Put B(t) = [I¥(t) — Pesllz(, 17(0) = @/(a +B(1)) and define h(r) = n(t)hoo, heolt) =
n(t)Ph(t). Then from Lemma 4.1, we can see that k() € K(¢),ho(t) € K a.e. 1€ (0,T).
From (4.2) with hy = h, hy = h,,

fQ 8i(h(1) = hoo) - (h(t) — hoo)dx + fg (a(x, curl h(1) — a(x, curl k) - curl (h(t) — hoo)dx
< L (f(0) = foo) - (h(t) = hoo)dx + fr (&° () - g5) - (h(H) — heo)dS +O(p)
where
o = fg 8,h(1) - (h(1) — hoo)dx + fg a(x,curl h(t)) - curl (h(z) — hoo)dx
+ fQ [@)- (heo = h(1))dx + fr £ (0 (heo = h(D)dS
+ fg a(x,curl he,) - curl (h(t) — h(1))dx

+ffoo'(h(t)—ﬁ(t))dX+fgi;'(h(t)—z(t))dS.
Q r
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Lemma 5.2. There exist constants C1,C, > 0 independent of t such that
19<hll 2, < Ci1'* +Ca.

Proof. From the proof of Lemma 3.3, we have

1
f f 10-h(7)dx+ —a., f lcurl ko (H)|Pdx
[oh p Q

< f f Pko(b(x, curl by (1)) =P (x, T)P)P(x,7) 0, P (x, T)|dxdt

+ff |f(‘r)-<9,h8('r)|dxd7'+ff lg" (1) - 0:ho(7)|dS dr.
O "

f f pko(b(x, curl (1)) = P (x, )P )P(x, 7)1 0. P (x, T)|dxdt

From Lemma 3.1,

< |lke(b(x, curl be(7) = ¥(x, 7l 0, IVl 10%1lL=(0.) < Ca.

p—1
L*(Qc)

For any 6 > 0,

A

f If (1) 0:he(Ddxdr < Cg f |f()*dxdt + 6 f |0:hs(T)*dxd
O O O

I

Cotllfll o0 00122y + 0 f f |0:ho(T)dxdr.
O

Using the integration by parts,

f f &(0) - 0rho(7)dS dt = f & (1) - ho(t)dS — f 2*(0)- hodS — f f 0,8"(7) - ho(1)dS dx.
¢ r r P

We estimate each term of the right hand side. For any ¢ > 0,

O P’ p
fr " heOldS < CONgI 1o +ollcurl Bl .

Moreover we have
flg*(o) “holdS < ”g”Loo(O’T;Lr’(Q))chrlhO”L”(Q) <C
r

Since it follows from Lemma 3.2 that

|lcurl Al <Cit+C

p
LP(Qr)
where C and C; are constants independent of #, we have

A

!
(Lo @ heeiasar < € [ 1org(ly o leurt el

t , 1/p t 1/p
)4 P
(fo ||5Tg(T)||Lr,(r)dT) (fo ||cur1hg(T)||L,,(Q)dT)

p/
C||8Tg||Lp,(0’t;L,,(r)) +Cllcurl Al

<Cit+ (.

IA

IA

p
L7(Qn)

IA
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Thus taking 6 > 0 small enough, we can see that

1kl 2, < Himinfllochell 2o, < i+ Cy.

This completes the proof. O
Define
O(t) = f |h(t) - hoo|*dx.
Q

When p > 2, it follow from (5.2) that

1
1d f |h(t) — hoo|*dx + a, f lcurl (h(2) — hoo)|Pdx
2dt Jo Q

<F® = foollpe @lr®) = heollLa) +118(1) = &ooll () 1(D) = hosllLr ) + O(F)

_ 14 _ 14 _ 4
< COUFO =Ll o +180 =gl )+ 6llcurl (h(D) = hesll g+ O).

Here we note that the each term of O(z) is estimated by (C; 172 4 OO () = Yoollz=(). By
Proposition 2.3, we can see that

a(t) ~ hsll 2y < Cllcurl ((D) ~ hoo)l2(y.

Thus we have
Q' (1) + ()P < I(1)

where ¢ > 0 is a constant and

_ _ p/ _ p/ _ " 1/2 _ .
0= C3US O = Lol o + 180 = 8ol + D = esllioia) + Cat IO = Wil

Here we have

[ ! ! !
f I(t)dt < C3 f E(T)dT+C;3 f Dt7dr+Cy f D" 24,
/2 /2 /2 t/2

When p > 2, since p’ <2, s =¢" and y > 3/2, we have

t
f l(t)dt > 0 ast — oo,
/2
If we apply Simon [12, Lemma 1, p. 591], we have
-2/(p-2) t
-2
f () — hooPdx < (Mr) +f I(T)dr — 0 as t — oo,
Q 4 %

When 6/5 < p <2, since p’ > 2, s =2, we have
Q' (1) +cD() < I(t)
where

10 = C3UFO = Folly g + 180 = 8oollyy ) + (D) = Psllz@) + Cat P I¥(0) = Yool
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Here we note that since p > 6/5, we can take ¢’ = 2. Since y > 1/2, we have

t+1
Df T2
t

D
— +3/2((l+ 1)—'y+3/2_t—7+3/2)
-

D 1
- —y+3/2f(t+9)‘7”/2d9
- 0

D2 S5 0ast — oo,

IA

t+1
f T2 IW(1) - Yool dr
t

IA

We apply the following variation of Lemma 4 in Haraux [8, p. 286] (cf. [10, Lemma 2.4]).

Lemma 5.3. Ler ¢(t) > 0 be absolutely continuous in any compact interval of R*, 0 < [() €
Ll (R*)and ¢ > 0. If the following inequality holds:

loc

&' () +co(t) <I(t) ae. t >0,

then for any ty,t with ty < t,

1 T+1
B(1) < O p(10) + — sup f l(o)do.
1 —e ¢ ™=l JT

The proof is elementary and given in the Appendix.
From this lemma, for fixed o > 0 and for all ¢ > ¢y, we have

) 1 T+1
f Ih(f) — hool?dx < 07D + sup f l(o)do
Q I—e ™=l JT
for some constant /1 > 0. If we take 7y > 0 large enough and let + — 0, then we can see that

f lh(f) — hool*dx — 0 as t — oo.
Q

O
A Proof of Lemma 5.3
In this appendix, we shall prove Lemma 5.3.
We put
T+1
C =sup f l(o)do
™= JT

and (1) = e <D p(1). Then ¢(¢) satisfies

W' (1) < e 00U, (A.1)

Integrating (A.1) over [1,7+ 1], we have

T+1
U(r+ 1) —y(7) < o) f o).

T



Variational Inequality with Evolutional Curl Constraint 25

From this, it follows that
d(t+1)< e “¢(1)+ C forany 7 > 0. (A2)

Let 7o < t and write t —ty = k+ 6 where k > 0 is an integer and ¢ € [0, 1). Then from (A.2),

o) < e “pt-1)+C
< e pt-2)+C)+C
= e XP(1-2)+C(1+e™°)
< e ®Pptg+6)+C(1+eC+-- +e "Dy,

Moreover, integrating (A.1) over [ty,#y + ], we have
B(to +6) < e~ p(tp) + C.

Thus we have

6@) < e FPtg+0)+C(1+e +---+e *10)
< e ke Cp(1)+ C) + C(l+e“+--+ e—(k—l)c)
< V(1) + C.

1—e¢

This completes the proof.
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