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Abstract

In this paper we consider a class of integral operators on L2(0,∞) that are unitarily
equivalent to little Hankel operators between weighted Bergman spaces. We calculate
the norms of such integral operators and as a by-product obtain a generalization of
the Hardy-Hilbert’s integral inequality. We also consider the discrete version of the
inequality which give the norms of the companion matrices of certain generalized
Bergman-Hilbert matrices. These results are then generalized to vector valued case
and operator valued case.
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1 Introduction

Let C+ = {z ∈ C : Rez > 0} be the right half plane. Let dÃ(s) = dxdy be the area measure.
Let L2(C+,dÃ) be the space of complex valued, square-integrable, measurable functions
on C+ with respect to the area measure. Let L2

a(C+) be the closed subspace of L2(C+,dÃ)
consisting of those functions in L2(C+,dÃ) that are analytic. The space L2

a(C+) is referred
to as the Bergman space of the right half plane. Let P+ denote the orthogonal projection
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of L2(C+,dÃ) onto L2
a(C+). The functions Kw(z) = 1

(w+z)2 ,z ∈ C+ are the reproducing kernel
[6] for L2

a(C+). Let L∞(C+) be the space of complex-valued, essentially bounded, Lebesgue
measurable functions on C+. For φ ∈ L∞(C+), the little Hankel operator h̃φ is a mapping

from L2
a(C+) into L2

a(C+) defined by h̃φ f = P+(φ f ),where P+ is the projection operator from

L2(C+,dÃ) onto L2
a(C+) = { f : f ∈ L2

a(C+)}. Let S̃ φ be the mapping from L2
a(C+) into L2

a(C+)
defined by S̃ φ f = P+(J̃(φ f )) where J̃ is the mapping from L2(C+,dÃ) into L2(C+,dÃ) such
that J̃ f (s)= f (s).Notice that J̃ is unitary and J̃S φ f = J̃(P+(J̃(φ f )))= J̃P+ J̃(φ f )= P+(φ f )=
h̃φ f for all f ∈ L2

a(C+). Let Γ̃φ be the mapping from L2
a(C+) into L2

a(C+) defined by Γ̃φ f =
P+M̃φ J̃ f , where M̃φ is the mapping from L2(C+,dÃ) into L2(C+,dÃ) defined by M̃φ f = φ f .
Thus Γ̃φ f = P+M̃φ J̃ f = P+(φ(s) f (s)) = P+(J̃(φ(s) f (s))) = S̃ J̃φ f for all f ∈ L2

a(C+). Hence

Γ̃φ = S̃ J̃φ.

For α > −1, let L2
a(C+, xαdÃ(s)) be the space of complex analytic functions F on C+

such that
∫
|F(s)|2xαdÃ(s) <∞, where s = x+ iy. One can also define little Hankel operators

S̃ φ on this space as we did in L2
a(C+,dÃ(s)). We shall use the same notation S̃ φ, Γ̃φ, h̃φ to

denote little Hankel operators on L2
a(C+, xαdÃ(s)) and it will be clear from the context on

which space we are considering these operators. Finally, let L2
(
(0,∞), dt

tα+1

)
be the space of

complex-valued, absolutely square-integrable, measurable functions on (0,∞) with respect
to the measure dt

tα+1 .

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C. Let L2(D,dA)
be the space of complex-valued, square-integrable, measurable functions on D with re-
spect to the normalized area measure dA(z) = 1

πdxdy. Let L2
a(D) be the closed subspace

consisting of those functions in L2(D,dA) that are analytic. The space L2
a(D) is called

the Bergman space of the open unit disk D. The functions {en(z)}∞n=0 = {
√

n+1zn}∞n=0 form
an orthonormal basis for L2

a(D). The function K(z,w) = 1
(1−zw)2 , z,w ∈ D is the reproduc-

ing kernel [21] of L2
a(D). If f (z) =

∞∑
n=0

anzn is holomorphic in D, a simple calculation

show that
∫
D
| f (z)|2dA(z) =

∞∑
n=0

|an|
2

n+1
. Consequently, f ∈ L2

a(D) if and only if the last ex-

pression is finite. The scalar product of f and g(z) =
∞∑

n=0

bnzn, f ,g ∈ L2
a(D), is given by

〈 f ,g〉L2
a(D) =

∞∑
n=0

anbn

n+1
. The polynomials are dense in L2

a(D). If f (z) =
∞∑

n=0

anen(z) ∈ L2
a(D)

then an is called the nth Fourier coefficient of f . Let L∞(D) be the space of complex-valued,
essentially bounded, Lebesgue measurable functions on D. For φ ∈ L∞(D), the little Hankel
operator hφ is a mapping from L2

a(D) into L2
a(D) defined by hφ f = P(φ f ),where P is the pro-

jection operator from L2(D,dA) onto L2
a(D) = { f : f ∈ L2

a(D)}. Let S φ be the mapping from
L2

a(D) into L2
a(D) defined by S φ f = P(J(φ f )) where J is the mapping from L2(D,dA) into

itself such that J f (z) = f (z). Notice that J is unitary and JS φ f = J(P(J(φ f ))) = JPJ(φ f ) =
P(φ f ) = hφ f for all f ∈ L2

a(D). Let Γφ be the mapping from L2
a(D) into L2

a(D) defined
by Γφ f = PMφJ f , where Mφ is the mapping from L2(D,dA) into L2(D,dA) defined by
Mφ f = φ f . Thus Γφ f = PMφJ f = P(φ(z) f (z)) = P(J(φ(z) f (z))) = S Jφ f for all f ∈ L2

a(D).
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Hence Γφ = S Jφ.

For −1 < α <∞, let dAα be the probability measure on D defined by

dAα(z) = (α+1)(1− |z|2)αdA(z).

Let L2(D,dAα) be the space of all measurable functions on the unit disk D for which the
norm

|| f ||2α = (α+1)
∫
D
| f (z)|2(1− |z|2)αdA(z) <∞.

The weighted Bergman space L2
a(D,dAα) is the subspace of functions in L2(dAα) that are

analytic and L2
a(dAα) is a closed subspace of L2(dAα). For convenience, we shall write

L2(D,dAα) = L2,α(D) and L2
a(D,dAα) = L2,α

a (D). Let Pα be the orthogonal projection from
the Hilbert space L2(dAα) onto the closed subspace L2

a(dAα), given by

Pα f (z) =
∫
D

Kα(z,w) f (w)dAα(w),

where Kα(z,w) = K(z,w)1+ α2 = 1
(1−zw)α+2 ,z,w ∈ D is the reproducing kernel of L2

a(dAα). Let
φ be a measurable function on D. The little Hankel operator with symbol φ denoted by hφ
is defined by hφ f = Pα(φ f ), f ∈ L2

a(dAα) where Pα is the orthogonal projection from the

Hilbert space L2(dAα) onto L2
a(dAα), conjugates of functions in L2

a(dAα). Let L∞(dAα) be
the space of complex-valued, essentially bounded, measurable functions on D with respect
to the measure dAα and H∞(dAα) be the subspace consisting of those functions that are
analytic in L∞(dAα). In this paper we shall consider only those symbols φ that are bounded
and lie in H∞+H∞, where H∞(dAα) constitutes the conjugates of functions in H∞(dAα). If
φ ∈H∞, then hφ = 0. Let Γφ be the map from L2

a(dAα) into L2
a(dAα) such that Γφ f = Pα(φJ f )

for all f ∈ L2
a(dAα) where J is the mapping from L2(dAα) onto L2(dAα) such that J f (z) =

f (z). Note that J is unitary. It can be checked that the operators Γφ is unitarily equivalent to
an operator hψ for some ψ ∈ L∞(dAα).

Let z = 1−s
1+s . Hence 2Res = 2(1−|z|2)

|1+z|2 . Recall that an analytic function F ∈ L2,α
a (C+) if and

only if
∫
C+

|F(s)|2xαdxdy <∞. Let f (z) = F
(

1−z
1+z

)
, s = 1−z

1+z . Thus F ∈ L2,α
a (C+) if and only if

∫
D
| f (z)|2

(1− |z|2)α

|1+ z|2α
4

|1+ z|4
dA(z) <∞.

This is possible if and only if
∫
D

∣∣∣∣∣ 2 f (z)
|1+ z|α+2

∣∣∣∣∣2 (1−|z|2)αdA(z) <∞.Hence F ∈ L2,α
a (C+) if and

only if 2 f (z)
(1+z)α+2 ∈ L2,α

a (D). Therefore f ∈ L2,α
a (D) if and only if 2α+1

(1+s)α+2 F(s) ∈ L2,α
a (C+). For

G ∈ H∞(C+), the little Hankel operator

Γ̃G : L2
a(C+, xαdÃ(s))→ L2

a(C+, xβdÃ(s))

is defined by
(̃ΓGU)(s) = Pαβ(G(s)U(s))

where U ∈ L2
a(C+, xαdÃ(s)) where Pαβ is the orthogonal projection of L2

a(C+, xαdÃ(s)) onto
L2

a(C+, xβdÃ(s)). The operator Γ̃G is bounded. For proof see [11].
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For h(t) ∈ L2((0,∞),dt),we define the Laplace transform H(s)= (Lh)(s)=
∫ ∞

0 e−sth(t)dt.
Then (L−1H)(t) = 1

2πi

∫
Ω

H(s)estds, where Ω is the contour {Res = γ} for any γ > 0.
The layout of this paper is as follows: In §2, we consider a class of integral operators

(Kgu)(t) =
∫ ∞

0

t
β+1

2 τ
α+1

2

(t+τ)
α+β+2

2

g(t+τ)u(τ)dτ, α,β > −1

defined on L2(0,∞) and show that these integral operators Kg are unitarily equivalent to the

little Hankel operators Γ̃G defined from L2,α
a (C+) into L2,β

a (C+), where G = L
(
t
β−α

2 g(t)
)

and

the little Hankel operator Γ̃G is unitarily equivalent to the little Hankel operator Γφ defined

from L2,α
a (D) into L2,β

a (D) where φ(z) =
(

1+z
1+z

)α+2
G(Mz). In §3, we calculate the norm of

the integral operator Kg and obtain a generalization of Hardy-Hilbert’s integral inequality.
Applications of the inequality are also established . In §4, we concentrate on weighted
Bergman-Hilbert matrices. We obtain the corresponding discrete version Hardy-Hilbert
inequality which gives the norm of the companion matrices of the weighted Bergman-
Hilbert matrices. We show that the Bergman-Hilbert matrix A has no maximizing vector
and ||A|| < π2

6 as an operator from l2 into itself and the corresponding companion matrix B
has norm 1. In section §5 and §6 we obtain generalizations of Hardy-Hilbert inequality for
vector-valued functions and operator-valued functions.

2 Little Hankel operators between weighted Bergman spaces

In this section we consider a class of bounded integral operators defined on L2(0,∞) (called
weighted Hankel integral operators) and show that these operators are unitarily equivalent
to little Hankel operators between weighted Bergman spaces of the open unit disk D. The
weighted Hankel integral operator Kg from L2((0,∞),dt) into itself is defined by

(Kgu)(t) =
∫ ∞

0

t
β+1

2 τ
α+1

2

(t+τ)
α+β+2

2

g(t+τ)u(τ)dτ.

We have shown that these operators are unitarily equivalent to little Hankel operators be-
tween weighted Bergman spaces of the disk. In Theorem 2.1, we show that for g ∈ L1∩L2,

the operator Kg is bounded and ||Kg|| ≤ ||g||1.

Theorem 2.1. If g(t) ∈ L1((0,∞),dt)∩ L2((0,∞),dt) then the weighted Hankel integral op-
erator Kg is well-defined and bounded with ||Kg|| ≤ ||g||1.

Proof. Let f ,h ∈ L2((0,∞),dt) be such that || f ||L2 ≤ 1 and ||h||L2 ≤ 1. Then,∣∣∣∣∣∫ ∞

0
(Kg f )(t)h(t)dt

∣∣∣∣∣ =
∣∣∣∣∣∣∣
∫ ∞

0

∫ ∞

0

t
β+1

2 τ
α+1

2

(t+τ)
α+β+2

2

g(t+τ) f (τ)h(t)dtdτ

∣∣∣∣∣∣∣ .
This result follows from [8] since the modulus of t

β+1
2 τ

α+1
2

(t+τ)
α+β+2

2
does not exceed 1. �
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In Theorem 2.2, we show that for G ∈ H∞(C+), the little Hankel operator Γ̃G from
L2

a(C+, xαdÃ(s)) into L2
a(C+, xβdÃ(s)), with β > α > −1 is unitarily equivalent to the integral

operator Kg where G =L
(
t
β−α

2 g(t)
)
.

Theorem 2.2. For β > α > −1, the little Hankel operator Γ̃G from L2
a(C+, xαdÃ(s)) into

L2
a(C+, xβdÃ(s)) with symbol G ∈ H∞(C+) is unitarily equivalent to the integral operator Kg

defined above where G =L
(
t
β−α

2 g(t)
)
.

Proof. For α > −1, notice that 1
tα+1 = L(xα)(2t). Let S : L2((0,∞),dt)→ L2

(
(0,∞), dt

tα+1

)
be

such that
(S f )(t) = t

α+1
2 f (t).

Let T : L2
(
(0,∞), dt

tβ+1

)
→ L2((0,∞),dt) be such that

(T f )(t) = t−
β+1

2 f (t).

It can easily be checked that S and T are unitary maps. Let K̃h be the operator unitarily
equivalent to Kh by the relation

K̃h = T−1KhS −1.

Then the operator

K̃h : L2
(
(0,∞),

dt
tα+1

)
→ L2

(
(0,∞),

dt
tβ+1

)
satisfies

(K̃hu)(s) = (T−1KhS −1u)(s)

=

∫ ∞

0

sβ+1

(s+ t)
α+β+2

2

h(s+ t)u(t)dt.

Let G(s) =L
(
t
β−α

2 g(t)
)
,U(s) =L

(
t
α+1

2 u(t)
)

and (̃ΓGU)(s) = Pαβ(G(s)U(s)) = R(s). Then

〈G(s)U(s),F(s)〉 = 〈R(s),F(s)〉

for all F ∈ L2
a(C+, xβdÃ(s)). Thus

〈G(s),U(s)F(s)〉 = 〈R(s),F(s)〉

for all F ∈ L2
a(C+, xβdÃ(s)). Also U(s) =L

(
t
α+1

2 u
)
(s). Thus∫ ∞

0
t
β−α

2 g(t)
(
t
α+1

2 u(t)
)
∗

(
t
β+1

2 f (t)
) dt
tβ+1

=

∫ ∞

0
t
β+1

2 r(t)t
β+1

2 f (t)
dt

tβ+1



6 Namita Das, Jitendra Kumar Behera

where ∗ denotes convolution, t
β+1

2 f (t) =L−1{F(s)}, t
β+1

2 r(t) =L−1{R(s)} and

(
t
α+1

2 u(t)
)
∗

(
t
β+1

2 f (t)
)
=

∫ t

0
τ
α+1

2 u(τ)(t−τ)
β+1

2 f (t−τ)dτ

=

∫ t

0
τ
α+1

2 u(τ)(t−τ)
β+1

2 f (t−τ)dτ.

Hence ∫ ∞

0
t
β−α

2 g(t)
(
t
α+1

2 u(t)
)
∗

(
t
β+1

2 f (t)
) dt
tβ+1

=

∫ ∞

0
t
β−α

2 g(t)
(∫ t

0
τ
α+1

2 u(τ)(t−τ)
β+1

2 f (t−τ)dτ
)

dt
tβ+1

=

∫ ∞

x=0

∫ ∞

τ=0
(x+τ)

β−α
2 g(x+τ)τ

α+1
2 u(τ)x

β+1
2 f (x)

dτ
(x+τ)β+1 dx

=

∫ ∞

x=0

∫ ∞

τ=0

(x+τ)
β−α

2

(x+τ)β+1 g(x+τ)τ
α+1

2 u(τ)

 x
β+1

2 f (x)dx

=

∫ ∞

x=0

1
xβ+1

(
K̃g

(
x
α+1

2 u
))

(x)x
β+1

2 f (x)dx

=

∫ ∞

x=0

(
K̃g

(
x
α+1

2 u
))

(x)x
β+1

2 f (x)
dx

xβ+1

=

〈(
K̃g

(
x
α+1

2 u
))

(x), x
β+1

2 f (x)
〉

L2
(
(0,∞), dt

tβ+1

) .

Thus
〈(

K̃g
(
x
α+1

2 u
))

(x), x
β+1

2 f (x)
〉

L2
(
(0,∞), dt

tβ+1

) = 〈
x
β+1

2 r(x), x
β+1

2 f (x)
〉

L2
(
(0,∞), dt

tβ+1

).
Hence

(
K̃g

(
x
α+1

2 u
))

(x)= x
β+1

2 r(x)=L−1{R(s)}, andL
(
K̃g

(
x
α+1

2 u
))

(s)=R(s)= (̃ΓGU)(s). �

In Theorem 2.3, we have shown that for G ∈ L∞(C+), the little Hankel operator Γ̃G from
L2,α

a (C+) into L2,β
a (C+) is unitarily equivalent to the little Hankel operator Γφ from L2,α

a (D)

into L2,β
a (D), where φ(z) =

(
1+z
1+z

)α+2
G(Mz).

Theorem 2.3. Let G(s) ∈ L∞(C+). Then the little Hankel operator Γ̃G defined from L2,α
a (C+)

into L2,β
a (C+) by G is equivalent to the little Hankel operator Γφ from L2,α

a (D) into L2,β
a (D)

determined by the function φ(z) =
(

1+z
1+z

)α+2
G(Mz).

Proof. Let W : L2,α
a (D)→ L2,α

a (C+) be defined by

(Wg)(s) =
2
α
2+1
√
π

g(Ms)
1

(1+ s)α+2 ,

where Ms = 1−s
1+s . The inverse map W−1 : L2,α

a (C+)→ L2,α
a (D) satisfies

(W−1G)(z) = 2
α
2+1 √πG(Mz)

1
(1+ z)α+2 ,
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where Mz= 1−z
1+z . Further, we shall define V : L2,β

a (C+)→ L2,β
a (D) by (VG)(z)= 2

β
2+1 √πG(Mz) 1

(1+z)β+2

where Mz= 1−z
1+z . The inverse map V−1 : L2,β

a (D)→ L2,β
a (C+) satisfies (V−1g)(s)= 2

β
2 +1
√
π

g(Ms) 1
(1+s)β+2 .

It can easily be checked that V and W are unitary maps. Notice that the operator W can
also be defined from L2,α(D) into L2,α(C+) and similarly V can be defined from L2,β(C+)

into L2,β(D) and are also unitary on these spaces. Then ν2
n,α = ||z

n||2α = (α+ 1)
∫
D
|z|2n(1−

|z|2)αdA(z) = (α+1)
∫ 1

0
xn(1− x)αdx = (α+1)

Γ(n+1)Γ(α+1)
Γ(n+α+2)

∼ (n+1)−α−1. Hence νn,α ∼

n−
α+1

2 ,n ≥ 1 and
{

zn

νn,α

}
is an orthonormal basis for L2,α

a (D).

Let P̃αβ be the orthogonal projection of L2,α
a (C+) onto L2,β

a (C+) and Pαβ be the orthog-
onal projection of L2,α

a (D) onto L2,β
a (D). Define the map J̃ : L2,α(C+)→ L2,α(C+) such that

J̃ f (s) = f (s). We shall show that VΓ̃GW
(

zn

νn,α

)
= Γφ

(
zn

νn,α

)
. That is, Γ̃GW

(
zn

νn,α

)
= V−1Γφ

(
zn

νn,α

)
.

Notice that

Γ̃GW
(

zn

νn,α

)
= P̃αβGJ̃

(
W

(
zn

νn,α

))
= P̃αβGJ̃

(
2
α
2 +1
√
π

1
νn,α

(Ms)n 1
(1+s)α+2

)
= P̃αβGJ̃

(
2
α
2 +1
√
π

1
νn,α

(
1−s
1+s

)n 1
(1+s)α+2

)
= P̃αβG

(
2
α
2 +1
√
π

1
νn,α

(
1−s
1+s

)n 1
(1+s)α+2

)
= V−1PαβW−1

(
G(s) 2

α
2 +1
√
π

1
νn,α

(
1−s
1+s

)n 1
(1+s)α+2

)
= V−1Pαβ

(
2
α
2 +1
√
π

1
νn,α

2
α
2+1 √π

(
1− 1−z

1+z

1+ 1−z
1+z

)n
1(

1+ 1−z
1+z

)α+2 G(Mz) 1
(1+z)α+2

)

= V−1Pαβ
(
2α+2 1

νn,α
zn

(
1+z

2

)α+2
G(Mz) 1

(1+z)α+2

)
= V−1Pαβ

(
G(Mz)

(
1+z
1+z

)α+2
J
(

zn

νn,α

))
.

Let φ(z) =G(Mz)
(

1+z
1+z

)α+2
. Then

Γ̃GW
(

zn

νn,α

)
= V−1Pαβ

(
φJ

(
zn

νn,α

))
= V−1Γφ

(
zn

νn,α

)
.

Thus VΓ̃GW
(

zn

νn,α

)
= Γφ

(
zn

νn,α

)
and Γ̃G is unitarily equivalent to Γφ. �
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3 Hardy-Hilbert’s integral inequality

In this section we calculate the norm of the integral operator Kg and obtain a generalization
of Hardy-Hilbert’s integral inequality. Applications of the inequality are also established.
If p > 1, 1

p +
1
q = 1 and f (t),g(t) ≥ 0,0 <

∫ ∞
0 f p(t)dt <∞ and 0 <

∫ ∞
0 gq(t)dt <∞, then

∫ ∞

0

∫ ∞

0

f (x)g(y)
x+ y

dxdy <
π

sin( πp )

(∫ ∞

0
f p(t)dt

) 1
p
(∫ ∞

0
gq(t)dt

) 1
q

, (3.1)

where the constant factor π
sin( πp ) is still best possible (see [10]). The integral inequality

(3.1) is known as Hardy-Hilbert’s integral inequality. The inequality plays an important
role in analysis and its application (see [14]). In the last decade many generalizations and
refinements of the inequality were also obtained. We formulate the β−function as (see [13]):

B(p,q) =
∫ ∞

0

1
(1+ t)p+q tp−1dt = B(q, p), p,q > 0. (3.2)

Further, the Hölder’s inequality with weight (see [13]) is as follows:
If p > 1, 1

p +
1
q = 1,ω(t) > 0, f ,g ≥ 0, f ∈ Lq

ω(E) and g ∈ Lq
ω(E), then

∫
E
ω(t) f (t)g(t)d(t) ≤

{∫
E
ω(t) f p(t)d(t)

} 1
p
{∫

E
ω(t)gq(t)d(t)

} 1
q

; (3.3)

if p < 1(p , 0); with the above assumption, the reverse of (3.3) holds, where the equality
in the above two cases holds if and only if there exists non-negative real numbers c1 and c2
such that they are not all zero and

c1 f p(t) = c2gq(t),a.e. in E.

In Theorem 3.1, we obtain a generalization of Hardy-Hilbert’s integral inequality.

Theorem 3.1. Suppose 1
p +

1
q = 1,1< p<∞, f ∈ Lp(0,∞),g ∈ Lq(0,∞),α >−1

q ,β >−
1
p , f ,g≥

0. Then∫ ∞

0

∫ ∞

0

xαyβ

(x+ y)α+β+1 e−(x+y) f (x)g(y)dxdy

≤ B
(
α+

1
q
,β+

1
p

)(∫ ∞

0
f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q

(3.4)

and the constant factor B
(
α+ 1

q ,β+
1
p

)
is the best possible.

Proof. We shall first establish that if p > 1, 1
p +

1
q = 1,α > −1

q ,β > −
1
p , f ,g ≥ 0, satisfy 0 <∫ ∞

0 f p(x)dx <∞ and 0 <
∫ ∞

0 gq(x)dx <∞ then
∫ ∞

0

∫ ∞

0

xαyβ

(x+ y)α+β+1 f (x)g(y)dxdy

< B
(
α+

1
q
,β+

1
p

)(∫ ∞

0
f p(x)dx

) 1
p
(∫ ∞

0
gq(x)dx

) 1
q

; (3.5)
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where the constant factor B
(
α+ 1

q ,β+
1
p

)
is the best possible.

By Hölder’s inequality (3.3), we obtain∫ ∞

0

∫ ∞

0

xαyβ

(x+ y)α+β+1 f (x)g(y)dxdy

=

∫ ∞

0

∫ ∞

0

xαyβ

(x+ y)α+β+1

(
x
y

) 1
pq

f (x)
( y

x

) 1
pq

g(y)dxdy

≤

∫ ∞

0

∫ ∞

0

xα+
1
q yβ−

1
q

(x+ y)α+β+1 f p(x)dxdy


1
p

(3.6)

∫ ∞

0

∫ ∞

0

xα−
1
p yβ+

1
p

(x+ y)α+β+1 gq(y)dxdy


1
q

(3.7)

=

∫ ∞

0

∫ ∞

0

xα+
1
q yβ−

1
q

(x+ y)α+β+1 dy

 f p(x)dx


1
p
∫ ∞

0

∫ ∞

0

xα−
1
p yβ+

1
p

(x+ y)α+β+1 dx

gq(y)dy


1
q

.

If equality holds in (3.6), then there exists non-negative constants c1 and c2, such that
they are not all zero and

c1
xα+

1
q yβ−

1
q

(x+ y)α+β+1 f p(x) = c2
xα−

1
q yβ+

1
q

(x+ y)α+β+1 gq(y), a.e. in (0,∞)× (0,∞).

It follows therefore that

c1x f p(x) = c2ygq(y) = c3,a.e.in (0,∞)× (0,∞),

where c3 is a constant. Without loss of generality, suppose that c1 , 0. Then we have∫ ∞

0
f p(x)dx =

c3

c1

∫ ∞

0

1
x

dx =∞,

which contradicts our assumption that 0 <
∫ ∞

0 f p(x)dx <∞. Hence strict inequality holds
in (3.6). Putting t = y

x , we get from (3.2) that∫ ∞

0

xα+
1
q yβ−

1
q

(x+ y)α+β+1 dy =
∫ ∞

0

1
(1+ t)α+β+1 t(β+ 1

p )−1dt = B
(
α+

1
q
,β+

1
p

)
. (3.8)

Similarly, we have∫ ∞

0

xα−
1
p yβ+

1
p

(x+ y)α+β+1 dx =
∫ ∞

0

1
(1+ t)α+β+1 t(β+ 1

p )−1dt = B
(
α+

1
q
,β+

1
p

)
. (3.9)

Then from (3.6), we get (3.5). For the best constant factor, let for 0 < ε < q(β+ 1
p ),

fε(x) =

 0 if x ∈ (0,1),
x−

1+ε
p if x ∈ [1,∞).
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gε(x) =

 0 if x ∈ (0,1),
x−

1+ε
q if x ∈ [1,∞).

Then (∫ ∞

0
f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q

=
1
ε
. (3.10)

Also∫ ∞

0

∫ ∞

0

xαyβ

(x+ y)α+β+1 fε(x)gε(y)dxdy

=

∫ ∞

1

∫ ∞

1

xαyβ

(x+ y)α+β+1 x−
1+ε

p y−
1+ε

q dxdy

=

∫ ∞

1
xα−

1+ε
p

∫ ∞

1

yβ−
1+ε

q

(x+ y)α+β+1 dy

dx

=

∫ ∞

1
x−(1+ε)

∫ ∞

1
x

tβ−
1+ε

q

(1+ t)α+β+1 dt

dx (Setting t =
y
x
, x > 1)

=

∫ ∞

1
x−(1+ε)dx

∫ ∞

0

tβ−
1+ε

q

(1+ t)α+β+1 dt

−∫ ∞

1
x−(1+ε)

∫ 1
x

0

tβ−
1+ε

q

(1+ t)α+β+1 dt

dx

= I1− I2 (say).

By (3.2), we have

I1 =
1
ε

B
(
α+

1
q
+
ε

q
,β+

1
p
−
ε

q

)
and

I2 ≤

∫ ∞

1
x−(1+ε)

∫ 1
x

0
tβ−

1+ε
q dt

dx

=
1

β+ 1
p −

ε
q

∫ ∞

1

∫ ∞

0
x−(1+β+ 1+ε

p )dx

=
1

(β+ 1
p −

ε
q )(β+ 1

p +
ε
q )

=©(1).

Hence∫ ∞

0

∫ ∞

0

xαyβ

(x+ y)α+β+1 fε(x)gε(y)dxdy ≥
1
ε

B
(
α+

1
q
+
ε

q
,β+

1
p
−
ε

q

)
−©(1). (3.11)

If the constant factor B
(
α+ 1

q ,β+
1
p

)
in (3.5) is not the best possible, then there exists a pos-

itive constant C < B
(
α+ 1

q ,β+
1
p

)
, such that (3.5) is still valid if we replace B

(
α+ 1

q ,β+
1
p

)
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by C. In particular, by (3.10) and (3.11), we have

B
(
α+

1
q
+
ε

q
,β+

1
p
−
ε

q

)
− ε© (1)

≤ ε

∫ ∞

0

∫ ∞

0

xαyβ

(x+ y)α+β+1 fε(x)gε(y)dxdy

< εC
(∫ ∞

0
f p
ε (x)dx

) 1
p
(∫ ∞

0
gq
ε (x)dx

) 1
q

.

Hence B
(
α+ 1

q ,β+
1
p

)
≤ C as ε → 0+. This contradiction leads to the conclusion that the

constant factor in (3.5) is the best possible. It now follows from (3.5) that∫ ∞

0

∫ ∞

0

xαyβ

(x+ y)α+β+1 e−(x+y) f (x)g(y)dxdy

=

∫ ∞

0

∫ ∞

0

xαyβ

(x+ y)α+β+1 e−x f (x)e−yg(y)dxdy

≤ B
(
α+

1
q
,β+

1
p

)(∫ ∞

0
e−px f p(x)dx

) 1
p
(∫ ∞

0
e−qygq(y)dy

) 1
q

(3.12)

≤ B
(
α+

1
q
,β+

1
p

)(∫ ∞

0
f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q

.

It thus remains to show that the constant factor 1 in the inequality∫ ∞

0
e−px f p(x)dx ≤

∫ ∞

0
f p(x)dx (3.13)

is the best possible.
Suppose there exists a constant k,0 < k < 1 such that∫ ∞

0
e−px f p(x)dx < k

∫ ∞

0
f p(x)dx (3.14)

for all f ∈ Lp(0,∞).
Setting

f †(x) =

 1, 0 ≤ x ≤ 1
p log 1

k
0, x > 1

p log 1
k ,

we have
∫ ∞

0
( f †)p(x)dx =

∫ 1
p log 1

k

0
dx =

1
p

log
1
k

; hence f † ∈ Lp(0,∞). Now

∫ ∞

0
(e−px− k)( f †)p(x)dx =

1
p
+

k
p

log
(
k
e

)
. (3.15)



12 Namita Das, Jitendra Kumar Behera

Consider the function g(t) = −e−pt + 1− kpt, t ∈ [0,∞). Then g′(t) = pe−pt − kp = 0 for t =
1
p log 1

k and g′′(t) = −p2e−pt < 0 for t = 1
p log 1

k . Hence g(t) > g(0) for t = 1
p log 1

k . Therefore
1+ k log( k

e ) > 0. Now from (3.15) we get∫ ∞

0
(e−px− k)( f †)p(x)dx > 0.

This is a contradiction to the assumption (3.14) and we thus show that the constant factor
1 in the inequality (3.13) is the best possible. Again the constant factor π

sin( πp ) is the best
possible in the Hardy-Hilbert’s integral inequality (3.1). Hence the result follows.

�

Corollary 3.2. If f ,g ∈ L2(−∞,∞), then∣∣∣∣∣∫ ∞

∞

[cosh(t− s)]−2 f (s)g(t)dsdt
∣∣∣∣∣ ≤ 2|| f ||L2(−∞,∞)||g||L2(−∞,∞).

Proof. Consider the mapW : L2(0,∞)→ L2(−∞,∞) defined by

W f (t) =
√

2et f (e2t).

The operatorW is an unitary operator . Let f be a continuous function with compact support
in (0,∞) and h(x+ y) = 1

(x+y)2 , x = e2t,y = e2s. Define Kh : L2(0,∞) −→ L2(0,∞) by

(Kh f )(x) =
∫ ∞

0

√
x
√

y
(x+ y)2 f (y)dy. (3.16)

We proceed to show that Kh =W
∗CW, where C : L2(−∞,∞) −→ L2(−∞,∞) is defined as

(C f )(t) = 1
2

∫ ∞

−∞

[cosh(t− s)]−2 f (s)ds.

Notice that

(Kh f )(x) =
∫ ∞

0

√
x
√

y f (y)
(x+ y)2 dy

=

∫ ∞

−∞

etes f (e2s)2e2s

(e2t + e2s)2 ds

= 1√
2et

∫ ∞

−∞

√
2etetes f (e2s)2e2s

(e2t + e2s)2 ds

= 1√
2et

∫ ∞

−∞

√
2es f (e2s)2e2se2t

(e2t + e2s)2 ds

= 1
2
√

2et

∫ ∞

−∞

W f (s)ds(
e2t+e2s

2etes

)2

= 1
2
√

2et

∫ ∞

−∞

W f (s)ds(
et−s+es−t

2

)2

= 1
2
√

2et

∫ ∞

−∞

[cosh(t− s)]−2W f (s)ds

= (W∗CW f )(x),
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since if g ∈ L2(−∞,∞) then g(t)
√

2et =
1√
2x

g
(

1
2 log x

)
=W∗g(x). Thus Kh =W

∗CW, where C is

the convolution with (cosh t)−2

2 . That is,

(C f )(t) =
1
2

∫ ∞

−∞

[cosh(t− s)]−2 f (s)ds.

Since Kh and C are unitarily equivalent hence ||C|| = 1 and

|〈C f ,g〉| ≤ || f ||L2(−∞,∞)||g||L2(−∞,∞).

Thus ∣∣∣∣∣∫ ∞

∞

[cosh(t− s)]−2 f (s)g(t)dsdt
∣∣∣∣∣ ≤ 2|| f ||L2(−∞,∞)||g||L2(−∞,∞).

�

Theorem 3.3 shows also that the integral operator (Ku f )(x) =
∫ ∞

0
u(x,y) f (x)dx, where

u(x,y)= e−(
√

x+
√

y)

x+y is also bounded from Lp(0,∞) into Lq(0,∞) and ||Ku||=
π

sin π
p
,where 1

p +
1
q =

1.

Theorem 3.3. Let 1
p +

1
q = 1,1 < p <∞, f ∈ Lp(0,∞),g ∈ Lq(0,∞), f ,g ≥ 0, then∫ ∞

0

∫ ∞

0

e−(
√

x+
√

y)

x+ y
f (x)g(y)dxdy ≤

π

sin( πp )

(∫ ∞

0
f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q

and the

constant factor π
sin( πp ) is the best possible.

Proof. Using Hardy-Hilbert’s inequality (3.1), we obtain∫ ∞

0

∫ ∞

0

e−(
√

x+
√

y)

x+ y
f (x)g(y)dxdy

<
π

sin( πp )

(∫ ∞

0
e−p
√

x f p(x)dx
) 1

p
(∫ ∞

0
e−q
√

ygq(y)dy
) 1

q

≤
π

sin( πp )

(∫ ∞

0
f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q

as e−p
√

t ≤ 1 for t ∈ (0,∞). It remains to show that the constant factor 1 in the inequality∫ ∞

0
e−p
√

x f pdx ≤
∫ ∞

0
f p(x)dx (3.17)

is the best possible. Suppose there exists a constant k,0 < k < 1, such that∫ ∞

0
e−p
√

x f pdx < k
∫ ∞

0
f p(x)dx (3.18)

for all f ∈ Lp(0,∞). Setting

f †(x) =

 1, 0 ≤ x ≤
(

1
p log 1

k

)2

0, x >
(

1
p log 1

k

)2
,
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we have
∫ ∞

0
( f †)p(x)dx =

∫ (
1
p log 1

k

)2

0
dx =

(
1
p

log
1
k

)2

. Hence f † ∈ Lp(0,∞). Now

∫ ∞

0
(e−p

√
x− k)( f †)p(x)dx =

2
p
+

k
p

(
log

k
e

)
.

Consider the function

g(t) = −2
(
√

te−p
√

t +
1
p

e−p
√

t
)
+

2
p
− kpt; hence g(0) = 0.

Further,

g′(t) = −2

e−p
√

t

2
√

t
+

√
t e−p

√
t(−p)

2
√

t
+

(−p)e−p
√

t

2p
√

t

− kp

= −2
[

1

2
√

t
−

p
2
−

1

2
√

t

]
e−p
√

t − kp

= pe−p
√

t − kp.

Therefore g′′(t) = pe−p
√

t(−p) · 1
2
√

t
. Now putting t =

(
1
p log 1

k

)2
, we have

g′′
(

1
p

log
1
k

)2

= pe−p( 1
p log 1

k )(−p) ·
1

2( 1
p log 1

k )

=
−p2

2
k

 1
− 1

p log 1
k


=
−p2

2
k

1
1
p (− logk)

=
p3k

2logk
< 0.

Hence g′(t) = 0 for t =
(

1
p log 1

k

)2
and g′′(t) < 0 for t =

(
1
p log 1

k

)2
. Thus g(t) > g(0) for t =(

1
p log 1

k

)2
. Therefore

∫ ∞

0
(e−p

√
x− k)( f †p)dx > 0. This is a contradiction to the assumption

(3.1) which shows that the constant factor 1 in the inequality (3.17) is the best possible.
Again the constant factor π

sin( πp ) is the best possible in the Hardy-Hilbert’s integral inequality.
The result follows: �

In Corollary 3.4, we further generalize the inequality obtained in Corollary 3.2.

Corollary 3.4. If f ,g ∈ L2(−∞,∞) and α,β > −1, then∣∣∣∣∣∫ ∞

0
[cosh(t− s)]−(α+β+1) f (s)g(t)dsdt

∣∣∣∣∣ ≤ 2α+β|| f ||L2(−∞,∞)||g||L2(−∞,∞).
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Proof. Consider the map W : L2(0,∞)→ L2(−∞,∞) defined by W f (t) =
√

2et f (e2t). The
operatorW is an unitary operator. Let f be a continuous function with compact support in
(0,∞) and x = e2t,y = e2s. Then

(Kh f )(x) =
∫ ∞

0

xαyβ f (y)dy
(x+ y)α+β+1

=

∫ ∞

−∞

e2αt · e2βs · f (e2s) ·2e2sds
(e2t + e2s)α+β+1

= 1√
2

∫ ∞

−∞

√
2es f (e2s) ·2es · e2αt · e2βsds

(e2t + e2s)α+β+1

= 1√
2

∫ ∞

−∞

W f (s)ds · e(2β+1)s ·2e2αt

(e2t + e2s)α+β+1

= 1√
2
· 1

2α+β ·
1
et

∫ ∞

−∞

W f (s)ds · e(2β+1)s ·2e(2α+1)t ·2α+β+1

(e2t + e2s)α+β+1

= 1√
2
· 1

2α+β ·
1
et

∫ ∞

−∞

W f (s) · e(2β+1)s · eα−β ·2e(2α+1)t · eβ−α

(e2t + e2s)α+β+1

= 1√
2et ·

1
2α+β

∫ ∞

−∞

W f (s)ds(
e2t+e2s

2etes

)α+β+1

= 1√
2et ·

1
2α+β

∫ ∞

−∞

[cosh(t− s)]−(α+β+1) ·W f (s)ds

= (W∗CW f )(t),

since if g ∈ L2(−∞,∞), then g(t)
√

2et =
1√
2x

g( 1
2 log x) =W∗g(x). Thus Kh =W

∗CW, where C is

the convolution with (cosh t)−(α+β+1). That is,

(C f )(t) =
1

2α+β

∫ ∞

−∞

[cosh(t− s)]−(α+β+1) f (s)ds.

Since Kh and C are unitarily equivalent, hence ||C|| = 1 and

|〈C f ,g〉| ≤ || f ||L2(−∞,∞)||g||L2(−∞,∞).

Thus
∣∣∣∣∣∫ ∞

0
[cosh(t− s)]−(α+β+1) f (s)g(t)dsdt

∣∣∣∣∣ ≤ 2α+β|| f ||L2(−∞,∞)||g||L2(−∞,∞). �

For α,β > 0, Aleksandrov and Peller [1] studied the integral operator

(=α,βh f )(x) =
∫ ∞

0
h(xα+ yβ) f (y)dy. (3.19)

Clearly, if h is a locally integrable function on (0,∞), the right hand side of (3.19) is well
defined for smooth functions f with compact support in (0,∞). The integral on the right
hand side of (3.19) also makes sense if h is an infinitely differentiable function with com-
pact support in (0,∞). Integral operator =α,βh are called distorted Hankel integral operators.
These operators are studied in detail in Aleksandrov and Peller [1].
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For α = β = 1, the operator =α,βh coincides with the Hankel integral operator ˜̃
Kh, where˜̃

Kh : L2(0,∞) −→ L2(0,∞) is defined as ( ˜̃Kh f )(x) =
∫ ∞

0
h(x+ y) f (y)dy. For a locally inte-

grable function h on (0,∞), the weighted Hankel integral operator Kα,β
h is defined by

(Kα,β
h f )(x) =

∫ ∞

0
xαyβh(x+ y) f (y)dy,

where h(x+y) = e−(x+y)

(x+y)2 for smooth functions f with compact support in (0,∞). The operator

Kα,β
h are analogous of weighted Hankel matrices form {( j+1)α(k+1)βψ̂( j+ k)} j,k≥0, where

Ψ is a function analytic in the unit disk. For α = β = 0, the operator Kα,β
h =

˜̃
Kh. Let α,β > 0.

We introduce the unitary operator Aα on L2(0,∞) defined by

(Aα f )(x) =
1
√
α

x
1

2α−
1
2 f (x

1
α ), f ∈ L2(0,∞).

Suppose h is a locally integrable function on (0,∞). Then

K
1

2α−
1
2 ,

1
2β−

1
2

h =
√
αβ Aα=

α,β
h A

∗
β.

This can be verified as follows: Observe that (A∗β f )(x) =
√
β x

β
2−

1
2 f (xβ). Hence

(Aα=
α,β
h A

∗
β f )(x) = Aα=

α,β
h

√
β x

β
2−

1
2 f (xβ)

=
√
β Aα

(∫ ∞

0
h(xα+ yβ)y

β
2−

1
2 f (yβ)dy

)
=

√
β
√
α

x
1

2α−
1
2

∫ ∞

0
h(x+ yβ)y

β
2−

1
2 f (yβ)dy

=

√
β
√
α

1
β

∫ ∞

0
x

1
2α−

1
2 z

1
β ( β2−

1
2 )h(x+ z) f (z)z

1
β−1dz

=
1
√
αβ

∫ ∞

0
x

1
2α−

1
2 z

1
2β−

1
2 h(x+ z) f (z)dz

=
1
√
αβ

(
K

1
2α−

1
2 ,

1
2β−

1
2

h

)
(x).

As a result of this it is not difficult to find the norm of a weighted Hankel integral operator
if we can calculate the norm of the corresponding distorted Hankel operator and vice versa.

4 Norm of the Bergman Hilbert matrix

LetH2(U) be the Hardy space of functions which are holomorphic in the upper half palne
U and for which

|| f ||2
H2(U) = sup

y>0

∫ ∞

−∞

| f (x+ iy)|2dx <∞.
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For 0 < p <∞ and α > −1, let Apα be the Bergman space of functions f which are holomor-
phic in U and which satisfy

|| f ||ppα =
∫

U
| f (x+ iy)|pyαdxdy <∞.

We define integration of arbitrary order using the Fourier transform. For any complex
number w with Re(w) > 0 and function f in any of the Apα we define the integral of f of
order w,Iw f , by

(Iw f )̂ (t) = t−w f̂ (t).

Here f̂ is the Fourier transform of the distributional boundary values lim
y→0

f (x+ iy). These

operators have the expected action on basic building blocks. That is,

Iw((z− ζ)−a) = c(z− ζ)−a+w,

where c is a constant. We define the general differentiation operators Dw by Dw = I−w.

Rochberg [17] studied the Schatten class properties of weighted Hankel integral operators
for complex α,β. He showed that the operator Kα,β

b acting on functions defined on (0,∞) by

(Kα,β
b f )(x) =

∫ ∞

0

sαtβ

(s+ t)α+β
b̂(s+ t) f (t)dt

is equal to DαHcDβ with Dα+βc = b and Hc is the Hankel operator defined on H2(U) by
Hc f =Q(c f ) and Q is the orthogonal projection from L2(R,dx) ontoH2(U)=

{
f : f ∈ H2(U)

}
.

Alternatively, these operators Kα,β
b can be regarded as Hankel type operators on the Bergman

space Apα. Fractional integration gives a unitary equivalence of Apα and H2(U) and hence
can be used to pull these operators over to H2(U). When this is done (by straight forward
Fourier transform calculation) the resulting operators are of the form Kα,β

b . For g ∈ L1∩L2,

Partington [15] has shown that the integral operator

( ˜̃Kg f )(x) =
∫ ∞

0
g(x+ y) f (y)dy

on L2(0,∞) is unitarily equivalent to the Hankel operator Γ̃G defined on H2(C+) where
G = Lg and Γ̃G is unitarily equivalent to the Hankel operator Γφ defined on H2(D), where
φ(z) = G(Mz)

z .

In this paper we establish that for α,β > −1 the integral operator

(Kg f )(x) =
∫ ∞

0

xαyβ

(x+ y)α+β
g(x+ y) f (y)dy

defined on L2(0,∞) is unitarily equivalent to the little Hankel operator Γ̃G defined from

L2,α
a (C+) into L2,β

a (C+) where G =L
(
t
β−α

2 g
)

and Γ̃G is unitarily equivalent to the little Hankel

operator Γφ defined from L2,α
a (D) into L2,β

a (D) where φ(z) =
(

1+z
1+z

)α+2
G(Mz). From Theorem

2.2 and Theorem 2.3, it follows that for h ∈ L1 ∩ L2, the integral operators Kα,β
h ,α,β >
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−1 on L2(0,∞) are unitarily equivalent to little Hankel operators Γφ = S zφ defined from

the weighted Bergman space L2,α
a (D) into L2,β

a (D). For φ ∈ H∞(D),φ(z) =
∞∑

n=0

φ̂(−n)zn, the

matrix of S φ with respect to the orthonormal basis {en(z)}∞n=0 =
{√

n+1zn
}∞
n=0

of L2
a(D) is

given by

〈S φe j,ei〉 =

√
i+1

√
j+1

i+ j+1
φ̂(−(i+ j)), i, j ≥ 0.

Thus S φ = D2Bψ̃D2, where ψ̃(eiθ) =
∞∑

k=0

1
k+1

φ̂(−k)e−ikθ = φ̃∗ φ̃1. The function ψ̃ is the con-

volution on the circle of φ̃=
∞∑

k=0

φ̂(−k)e−ikθ (the boundary value function of φ) with the func-

tion φ̃1(eiθ) =
∞∑

k=0

1
k+1

e−ikθ, Bψ̃ is the operator on L2
a(D) having a classical Hankel matrix

with respect to the standard orthonormal basis of L2
a(D) with symbol ψ̃ and D2e j =

√
j+1e j

for all j ≥ 0. Hence

〈S zφe j,ei〉 =

√
i+1

√
j+1

i+ j+2
φ̂(−(i+ j+1)), i, j ≥ 0.

For example, if we take φ̃(eiθ) = −i(π− θ),0 ≤ θ < 2π. Then φ̃ ∈ L∞(T), where T be the unit
circle and if

φ̃(eiθ) =
∞∑

n=−∞

aneinθ,

then

an =

{
0 if n = 0;
−1

n if n , 0,

and the matrix of Seiθφ̃ with respect to the orthonormal basis ofH2(T) is the Hilbert matrix

Γ =
[

1
i+ j+1

]∞
i, j=0

. Let φ2 = zφ be the harmonic extension of eiθ φ̃ into D. That is, φ̃2 = eiθφ̃(the
boundary value function of φ2). Notice that the matrix of the little Hankel operator S zφ with
respect to the standard orthonormal basis of L2

a(D) is equal to

A = [ai j] = 〈D2Beiθφ̃∗φ̃1
D2e j,ei〉 =

√
i+1

√
j+1

(i+ j+1)2 , i, j ≥ 0

which is called the Bergman Hilbert matrix. Thus A is the Schur multiplication of the

matrices [mi j] and the Hilbert matrix Γ =
[

1
i+ j+1

]
. Let B = [bi j], where bi j =

√
i+1
√

j+1
(i+ j+2)2 .

The matrix B is called the homogeneous companion of A. Notice that ai j = mi j
1

i+ j+1 and
0 < mi j ≤ 1 for all i and j. Since ||Γ|| = π (see [4]), hence ||A|| ≤ ||Γ||. It is not difficult to
see that the Hilbert matrix Γ as an operator on l2(Z+) is unitarily equivalent to the integral
operator

( ˜̃K h̃ f )(x) =
∫ ∞

0
h̃(x+ y) f (y)dy, f ∈ L2(0,∞),
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where h̃(x) = e−x

x . On the other hand, the Carleman’s operator on L2(0,∞) given by

(Gh f )(x) =
∫ ∞

0
h(x+ y) f (y)dy,

where h(x) = 1
x and the operator Gh is unitarily equivalent to the Hankel operator H defined

onH2(T) whose matrix representation with respect to the standard orthonormal basis is

S = 2



1 0 1
3 0 1

5 · · ·

0 1
3 0 1

5 · · · · · ·
1
3 0 1

5 · · · · · · · · ·

0 1
5 · · · · · · · · · · · ·

1
5 · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·


.

LetM denotes the Mellin transform on L2(0,∞) defined by

M f (s) =
∫ ∞

0
xs−1 f (x)dx.

and

(E f )(x) =
∫ ∞

0

√
x
√

y
(x+ y)2 f (y)dy,

for f ∈ L2(0,∞). It is easy to see thatME f (s) = m(s)M f (s). This can be verified as follows:
Notice that

ME f (s) =
∫ ∞

0
xs−1(E f )(x)dx

=

∫ ∞

0

∫ ∞

0
xs−1

√
x
√

y
(x+ y)2 f (y)dydx

=

∫ ∞

0

xs− 1
2

(1+ x)2 dx
∫ ∞

0
ys−1 f (y)dy.

ThusME f (s) = m(s)M f (s), where

m(s) =
∫ ∞

0

xs− 1
2

(x+1)2 dx

=

(
1
2
− s

)
π cosec π

(
s−

1
2

)
.

Hence

σ(E) = closure of range
{

m
(
1
2
+ it

)
: t ∈ R

}
= Range{tcosech t : t ∈ (0,∞)} = [0,1].

The operator B is not unitarily equivalent to the integral operator E and the kernel
√

x
√

y
(x+y)2 is

not a decreasing function in either variable.
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Let H be a separable Hilbert space and let L(H) denote the set of all bounded linear
operators from the Hilbert space H into itself and LC(H) denote the set of all compact
operators in L(H). Let T ∈ L(H). A maximizing vector for T is a non-zero vector x ∈ H
such that ||T x||= ||T || ||x||. Thus a maximizing vector for T is one at which T attains its norm.
On a Banach space, even rank 1 operators need not have maximizing vectors. The operator
Mx(t) = tx(t),0 < t < 1, is bounded on L2(0,1) but has no maximizing vector. However,
compact operators on Hilbert spaces do have maximizing vectors.

Suppose T ∈ L(L2
a(D)) and σ(T ) denote the spectrum of T. To determine ||T ||, one may

investigate the spectrum of the operator T ∗T. Since T ∗T is self-adjoint, its spectral radius
equals ||T ∗T || = ||T ||2. We define the essential norm of T ∈ L(L2

a(D)) denoted by ||T ||e as

||T ||e = inf{||T −K|| : K ∈ LC(L2
a(D))}.

The essential spectrum of T (denoted by σe(T )) is defined to be the spectrum of the
element T +LC(L2

a(D)) in L(L2
a(D))/LC(L2

a(D)). The essential spectral radius of T, which
we write rσ(T ) = sup{|λ| : λ ∈ σe(T )}. If T is self-adjoint, σe(T ) consists of limit points of
σ(T ) or eigenvalues of infinite multiplicity and σ(T )\σe(T ) consists of isolated eigenvalues
of finite multiplicity. Further, ||T || = sup{|λ| : λ ∈ σ(T )} and ||T ||e = sup{|λ| : λ ∈ σe(T )}. It
is not difficult to see that σe(T ) ⊆ σ(T ). Whenever T is a normal operator, any point in the
spectrum of T that does not belong to σe(T ) must be an eigenvalue of finite multiplicity. It
is not difficult to show that ||T ∗T ||e = ||T ||2e for any bounded operator T. Hence rσ(T ) = ||T ||e
whenever T is self-adjoint. Similarly, the spectral radius of T = r(T ) = ||T ||, if T is a self-
adjoint operator.

Lemma 4.1. Let T ∈ L(L2
a(D)). The function f ∈ L2

a(D) is a maximizing vector for T if and
only if T ∗T f = ||T ||2 f .

Proof. Suppose T ∗T f = ||T ||2 f . Then

||T f ||2 = 〈T f ,T f 〉

= 〈T ∗T f , f 〉

= 〈||T ||2 f , f 〉

= ||T ||2|| f ||2.

Hence ||T f || = ||T || || f || and f is maximizing vector for T .
Conversely, suppose that ||T f || = ||T || || f ||. Then

||T ||2|| f ||2 = ||T f ||2

= 〈T f ,T f 〉

= 〈T ∗T f , f 〉

≤ ||T ∗T f || || f ||

≤ ||T ||2|| f ||2.

Thus T ∗T f is a scalar multiple of f and in fact ||T ∗T f || = ||T ||2|| f || and since T ∗T is a
positive operator, we obtain T ∗T f = ||T ||2 f . �
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Proposition 4.2. If T ∈ L(L2
a(D)) and ||T ||e < ||T || then T has a maximizing vector.

Proof. Consider the positive operator T ∗T. Notice that

rσ(T ∗T ) = ||T ∗T ||e = ||T ||2e < ||T ||
2 = ||T ∗T || = r(T ∗T ).

Therefore ||T ||2, the largest element of the spectrum of T ∗T, does not belong to the essential
spectrum. Since any self adjoint operator is normal, ||T ||2 must be an eigenvalue of finite
multiplicity. Consequently, T ∗T has an eigenvector corresponding to ||T ||2 on which the
operator T attains its norm. �

Lemma 4.3. Let R=
(
ri j

)∞
i, j=0

, is self-adjoint, ri j > 0 and
∞∑
j=0

ri j p j ≤Mpi for all i= 0,1,2, · · · .

Then R f = M f , f ∈ L2
a(D), implies 〈 f ,e j〉 = kp j, j = 0,1,2 · · · . for some constant k.

Proof. Let f j = 〈 f ,e j〉, j = 0,1,2, · · · . Then

∞∑
i=0

∣∣∣∣∣∣∣∣
∞∑
j=0

ri j f j

∣∣∣∣∣∣∣∣
2

=

∞∑
i=0

∣∣∣∣∣∣∣∣
∞∑
j=0

√
ri j
√

p j
√

ri j
f j
√p j

∣∣∣∣∣∣∣∣
2

≤

∞∑
i=0

 ∞∑
j=0

ri j p j


 ∞∑

j=0

ri j| f j|
2

p j


≤

∞∑
i=0

Mpi

∞∑
j=0

ri j
| f j|

2

p j

≤ M

 ∞∑
j=0

| f j|
2

p j


 ∞∑

i=0

ri j pi


≤ M2

 ∞∑
j=0

| f j|
2

 .
Now ||R f || = M|| f || implies

∞∑
j=0

(√
ri j
√

p j
) (√

ri j
f j
√p j

)
=

 ∞∑
j=0

ri j p j


1
2
 ∞∑

j=0

ri j| f j|
2

p j


1
2

. That is,

equality holds in the Cauchy-Schwarz inequality. Hence f j = kp j for all j = 0,1,2, · · · and
for some constant k. �

Lemma 4.4. The following hold: (i) ||A|| < π2

6 (ii) ||B|| = 1. (iii) The norm ||A|| is an isolated
eigenvalue of A of finite multiplicity. (iv) The operator A as an operator from l2 into l2 has
a maximizing vector.

Proof. To prove (i), let pi = qi =
1√
i+1
. Applying Schur test (see [3], p. 30), we obtain

∞∑
i=0

ai j pi =
√

j+1
∞∑

i=0

1
(i+ j+1)2

and
∞∑

i=0

bi j pi =
√

i+1
∞∑

i=0

1
(i+ j+2)2 .
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Since 1
r1−p

∑
k≥r

1
kp is a strictly decreasing function of r, we obtain

( j+1)
∞∑

i=0

1
(i+ j+1)2 ≤

∞∑
i=0

1
(i+1)2 =

π2

6
.

Thus it follows that
∞∑

i=0

ai j pi ≤

(
π2

6

)
p j. By symmetry,

∞∑
j=0

ai j p j ≤

(
π2

6

)
pi and ||A|| ≤

π2

6
.

Further, since
∞∑

i=0

1
(i+ j+2)2 ≤

1
j+1

, we obtain

√
j+1

∞∑
i=0

1
(i+ j+2)2 ≤

1√
j+1

.

Hence ||B|| ≤ 1. Now let K(x,y) =
√

x
√

y
(x+y)2 . The kernel K satisfies the hypothesis of Theorem

318 of [10] with p = 2 and

K =
∫ ∞

0
K(x,1)x−

1
2 dx =

∫ ∞

0

1
(1+ x)2 dx = 1.

Using [10] one can show that ||B|| ≥ 1. Therefore ||B|| = 1. This proves (ii).

Since a00 = 1,we have ||A||> 1. Let C = [ci j],where ci j = ai j−bi j. Thus ci j =

√
i+1
√

j+1
i+ j+1

2(i+ j)+3
(i+ j+1)(i+ j+2) .

Since
∞∑

i, j=0

c2
i j <∞, the matrix C is Hilbert-Schmidt.That is, B is a compact perturbation of

A. It is also not difficult to see that ||A||e = ||B||e = 1. To verify this, suppose ||B||e < ||B|| = 1.

Then it follows that 1 is an eigenvalue of B. Now, since
∞∑
j=0

p2
j =

∞∑
j=0

1
j+1

is divergent, it

follows from Lemma 4.3 that this is impossible. Thus ||A||e = ||B||e = 1 and ||A−C|| = ||A||e,
giving the best compact approximant of A. We also have 1 = ||A||e < ||A|| and hence there are
points in σ(A) which do not belong to σe(A). In particular, ||A|| is such a point. Since A is
self-adjoint, all these points are eigenvalues of A. It follows from Proposition 4.2 that the
operator A has a maximizing vector and ||A|| is an isolated eigenvalue of finite multiplicity.
This proves (iii) and (iv). It follows by Lemma 4.3 that π2

6 cannot be an eigenvalue and
hence ||A|| < π2

6 . This proves (i). �

Remark 4.5. The matrix B as an operator on l2 is self-adjoint, positive, σ(B) = σe(B) =
σe(A) = [0,1] and B dose not have isolated eigenvalues of finite multiplicity in [0,1].

In general, one can consider the generalized companion matrices
(

mαnβ
(m+n)α+β+1

)∞
m,n=1

of the

weighted Bergman Hilbert matrices mαnβ
(m+n−1)α+β+1 . In the following theorem, we establish that
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the norm of the matrix
(

mαnβ
(m+n)α+β+1

)∞
m,n=1

as an operator from l2 into itself is B
(
α+ 1

2 ,β+
1
2

)
where −1

2 < α,β ≤
1
2 . In fact, we prove a more general result.

Theorem 4.6. Let p > 1, 1
p +

1
q = 1,−1

q < α ≤
1
p ,−

1
p < β ≤

1
q . If am,bn ≥ 0,m,n = 1,2,3, · · ·

satisfy 0 <
∞∑

m=1

ap
m <∞ and 0 <

∞∑
n=1

bq
n <∞, then

∞∑
m=1

∞∑
n=1

mαnβ

(m+n)α+β+1 ambn < B
(
α+

1
q
,β+

1
p

) ∞∑
m=1

ap
m


1
p
 ∞∑

n=1

bq
n


1
q

, (4.1)

where the constant factor B
(
α+ 1

q ,β+
1
p

)
is the best possible. In particular

i) for α = 1
p and β = 1

q , we have

∞∑
m=1

∞∑
n=1

m
1
p n

1
q

(m+n)2 ambn <

 ∞∑
m=1

ap
m


1
p
 ∞∑

n=1

bq
n


1
q

; (4.2)

ii) for α = β = 1
2 and p = q = 2, we have

∞∑
m=1

∞∑
n=1

√
m
√

n
(m+n)2 ambn <

 ∞∑
m=1

a2
m


1
2
 ∞∑

n=1

b2
n


1
2

. (4.3)

Proof. Rearranging the terms and using Hölder’s inequality, we obtain
∞∑

m=1

∞∑
n=1

mαnβ

(m+n)α+β+1 ambn

≤

 ∞∑
m=1

 ∞∑
n=1

mαnβ

(m+n)α+β+1

(m
n

) 1
q

ap
m


1
p
 ∞∑

m=1

 ∞∑
n=1

mαnβ

(m+n)α+β+1

( n
m

) 1
p

bq
n


1
q

. (4.4)

For β ≤ 1
q , using (3.8) we obtain

∞∑
n=1

mαnβ

(m+n)α+β+1

(m
n

) 1
q
= mα+ 1

q

∞∑
n=1

1
(m+n)α+β+1 ·

1

n
1
q−β

< mα+ 1
q

∞∑
n=1

∫ n

n−1

1
(m+ t)α+β+1 ·

1

t
1
q−β

dt

=

∫ ∞

0

mα+ 1
q tβ−

1
q

(m+ t)α+β+1 dt

= B
(
α+

1
q
,β+

1
p

)
.
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Similarly for α ≤ 1
p , using (3.9) we obtain

∞∑
m=1

mαnβ

(m+n)α+β+1

( n
m

) 1
p
< B

(
α+

1
q
,β+

1
p

)
.

Hence (4.1) follows from (4.4). For the best constant factor, we take for 0 < ε < q(β+
1/p),

ãm = m−
1+ε

p (m ≥ 1)

and
b̃n = n−

1+ε
q (n ≥ 1).

Then
∞∑

m=1

ãp
m = 1+

∞∑
m=1

1
m1+ε < 1+

∫ ∞

1
x−1−εdx = 1+

1
ε
.

Similarly
∞∑

n=1

b̃q
n < 1+

1
ε
.

Hence  ∞∑
m=1

ãp
m


1
p
 ∞∑

n=1

b̃q
n


1
q

< 1+
1
ε
. (4.5)

Again by (3.11), we have

∞∑
m=1

∞∑
n=1

mαnβ

(m+n)α+β+1 ãmb̃n

=

∞∑
m=1

∞∑
n=1

1
(m+n)α+β+1 ·

1

m
ε
p+

1
p−α
·

1

n
ε
q+

1
q−β

>

∞∑
m=1

∞∑
n=1

∫ m+1

m

∫ n+1

n

1
(x+ y)α+β+1 ·

1

x
ε
p+

1
p−α
·

1

y
ε
q+

1
q−β

dxdy (4.6)

=

∫ ∞

1

∫ ∞

1

xαyβ

(x+ y)α+β+1 · x
− 1+ε

p · y−
1+ε

q dxdy

≥
1
ε

B
(
α+

1
q
+
ε

q
,β+

1
p
−
ε

q

)
−©(1).

If the constant factor B
(
α+ 1

q ,β+
1
p

)
in (4.1) is not the best possible, then there exists a pos-

itive constant C < B
(
α+ 1

q ,β+
1
p

)
, such that (4.1) is still valid if we replace B

(
α+ 1

q ,β+
1
p

)
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by C. In particular, by (4.5) and (4.6), we have

B
(
α+

1
q
+
ε

q
,β+

1
p
−
ε

q

)
− ε© (1)

< ε

∞∑
m=1

∞∑
n=1

mαnβ

(m+n)α+β+1 ãmb̃n

< εC

 ∞∑
m=1

ãp
m


1
p
 ∞∑

n=1

b̃q
n


1
q

< (ε +1)C.

Hence B
(
α+ 1

q ,β+
1
p

)
≤ C as ε → 0+. This contradiction leads to the conclusion that the

constant factor in (4.1) is the best possible.
�

We shall refer the inequality (4.2) as Bergman-Hilbert inequality as it involves the com-
panion matrix of the Bergman-Hilbert matrix.

5 Generalized Hilbert inequality for vector valued functions

In this section, we generalize the Bergman-Hilbert inequality (4.2) for vector-valued func-
tions. Here we consider sequences (xn) whose terms are elements of a separable Hilbert

spaces H and such that 0 <
∞∑

n=o

||xn||
2 < ∞. We observe that in the discrete case the in-

equality involves inner products and in the continuous case the inequality involves integral
operator with matrix-valued kernels.

Theorem 5.1. Let (xn) and (yn) be two sequences in the separable Hilbert space H such

that 0 <
∞∑
0

||xn||
2 <∞ and 0 <

∞∑
0

||yn||
2 <∞. Then

∞∑
m=1

∞∑
n=1

√
m+1

√
n+1|〈xm,yn〉|

(m+n+2)2 ≤

 ∞∑
m=1

||xm||
2


1
2
 ∞∑

n=1

||yn||
2


1
2

(5.1)

where the constant factor 1 is the best possible.

Proof. Let H , {0} be a Hilbert space and E be an orthonormal basis for H . The set {e ∈
E|〈z,e〉 , 0 for some z = xm or yn} is countable, let us enumerate this set as the sequence
{ε1, ε2, ε3, · · · }. Then every xm and yn can be expressed as

xm =

∞∑
k=1

amkεk; yn =

∞∑
k=1

bnkεk,

where amk = 〈xm, εk〉,bnk = 〈yn, εk〉. Then 〈xm,yn〉=

∞∑
k=1

amkbnk.By Parseval’s identity ||xm||
2 =

∞∑
k=1

|amk|
2, for every m and ||yn||

2 =

∞∑
k=1

|bnk|
2, for every n. So we have |amk| ≤ ||xm|| for all m
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and |bnk| ≤ ||yn|| for all n. Hence for each k,
∞∑

m=1

|amk|
2 < ∞ and

∞∑
n=1

|bnk|
2 < ∞. Now using

Hilbert’s inequality (3.1), we have for each k,

∞∑
m=1

∞∑
n=1

√
m+1

√
n+1

(m+n+2)2 |amk||bnk| <

 ∞∑
m=1

|amk|
2


1
2
 ∞∑

n=1

|bnk|
2


1
2

.

Taking summation over k from 1 to p and using Cauchy-Schwarz inequality, we get

p∑
k=1

∞∑
m=1

∞∑
n=1

√
m+1

√
n+1

(m+n+2)2 |amk||bnk| <

 p∑
k=1

∞∑
m=1

|amk|
2


1
2
 p∑

k=1

∞∑
n=1

|bnk|
2


1
2

=

 ∞∑
m=1

p∑
k=1

|amk|
2


1
2
 ∞∑

n=1

p∑
k=1

|bnk|
2


1
2

.

Thus for every p ≥ 1,

p∑
k=1

∞∑
m=1

∞∑
n=1

√
m+1

√
n+1

(m+n+2)2 |amk||bnk| <

 ∞∑
m=1

||xm||
2


1
2
 ∞∑

n=1

||yn||
2


1
2

. (5.2)

Notice that

|〈xm,yn〉| =

∣∣∣∣∣∣∣
∞∑

k=1

amkbnk

∣∣∣∣∣∣∣ ≤
∞∑

k=1

|amk||bnk|.

It follows from the relation |amk||bnk| ≤
1
2 (|amk|

2 + |bnk|
2) and the convergence of the series

∞∑
k=1

|amk|
2 and

∞∑
k=1

|bnk|
2. Hence letting p→ ∞ in (5.2), we obtain (5.1). In particular for

the Hilbert space H = R, (5.1) reduces to the Hilbert’s inequality (3.1). Since the constant
factor 1 in (3.1) is the best possible, so we conclude that the constant factor 1 in (5.1) is the
best possible. �

We shall now present the integral version of the inequality (5.1) and derive some related
inequalities using tensor products.

Let L2,Cn
(D,dA) denote the Hilbert space of Cn−valued, norm-square integrable, mea-

surable functions on D and L2,Cn

a (D) the corresponding Bergman space. We notice that
L2,Cn

(D,dA) = L2(D,dA)⊗Cn and L2,Cn

a (D,dA) = L2
a(D,dA)⊗Cn where the Hilbert space

tensor product is used. When endowed with the inner product defined by

〈 f ,g〉L2,Cn (D,dA) =

∫
D
〈 f (z),g(z)〉CndA(z), for f ,g ∈ L2,Cn

(D,dA),

the spaces L2,Cn
(D,dA) and L2,Cn

a (D,dA) become separable Hilbert spaces. Here the mea-
sures dA(z) denotes the normalized area measure on D. If Φ is a bounded, measurable Mn =

Mn(C)−valued function (the algebra of n× n matrices with complex entries) in L∞Mn
(D) =

L∞(D)⊗Mn, then SΦ denotes the Hankel operator defined on L2,Cn

a (D,dA) by

SΦ f = P̃J̃(Φ f ) for f ∈ L2,Cn

a (D,dA),
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where P̃ is the orthonormal projection of L2,Cn
(D,dA) onto L2,Cn

a (D,dA) and
J̃ : L2,Cn

(D,dA)→ L2,Cn
(D,dA) is defined by J̃F(z) = F(z) and (Φ f )(z) = Φ(z) f (z).

Let Φ ∈ L∞Mn
(D) and

Φ =


φ11 0 · · · 0
0 φ22 · · · 0
...

...
. . .

...

0 0 · · · φnn

 .
Then each entry φi j of Φ is in L∞(D) and

SΦ =


S φ11 0 · · · 0

0 S φ22 · · · 0
...

...
. . .

...

0 0 · · · S φnn

 .
This is so as L2,Cn

a (D,dA) = L2
a(D)⊕L2

a(D)⊕ · · ·L2
a(D)︸                          ︷︷                          ︸

n−times

.

Let

L2,Cn
(0,∞) = L2(0,∞)⊗Cn

= L2(0,∞)⊕L2(0,∞)⊕ · · ·⊕L2(0,∞).

For F,G ∈ L2,Cn
(0,∞), the norm is defined by

||F| |L2,Cn =

(∫ ∞

0
||F(x)||2Cndx

) 1
2

and the inner product is defined by

〈F,G〉 =
∫ ∞

0
〈F(x),G(x)〉Cndx.

With the above inner product L2,Cn
(0,∞) is a Hilbert space. For details, see [2]. Let

H(x+ y) =



√
x
√

y
x+y

e−(x+y)

x+y 0 · · · 0

0
√

x
√

y
x+y

e−(x+y)

x+y · · · 0
...

...
. . .

...

0 0 · · ·

√
x
√

y
x+y

e−(x+y)

x+y


n×n

.

Define BH : L2,Cn
(0,∞)→ L2,Cn

(0,∞) by

(BHF)(x) =
∫ ∞

0
H(x+ y)F(y)dy.

The map BH is well-defined, linear and for G ∈ L2,Cn
(0,∞),

〈BHF,G〉 =
∫ ∞

0

∫ ∞

0
G∗(x)H(x+ y)F(y)dydx,
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where G∗(x) denotes the adjoint of G(x). Notice that

BH =


Kh̃11

0 · · · 0
0 Kh̃22

· · · 0
...

...
. . .

...

0 0 · · · Kh̃nn


where (Kh̃ f )(x) =

∫ ∞

0

√
x
√

y
x+ y

h̃(x+ y) f (y)dy, f ∈ L2(0,∞), h̃(x) =
e−x

x
and h̃i j(x) = h̃(x), for

all i, j = 1,2, · · ·n.

Lemma 5.2. The operator BH : L2,Cn
(0,∞)→ L2,Cn

(0,∞) is a bounded linear operator and
||BH || = 1.

Proof. Let F = ( f1, f2, · · · fn)T , where fi ∈ L2(0,∞) for all i = 1,2, · · · ,n. Then G = BHF =
(g1,g2, · · ·gn)T and gi ∈ L2(0,∞) for all i = 1,2, · · · ,n. Now

||BHF||2 =
∫ ∞

0
||(BHF)(x)||2Cndx =

∫ ∞

0
||G(x)||2Cndx

=

∫ ∞

0

 n∑
j=1

|g j(x)|2
dx =

n∑
j=1

∫ ∞

0
|g j(x)|2dx

=

n∑
j=1

∫ ∞

0
|(Kh̃ j j

f j)(x)|2dx =
n∑

j=1

||Kh̃ j j
f j||

2

≤

n∑
j=1

||Kh̃ j j
||2|| f j||

2 ≤

n∑
j=1

|| f j||
2

=

n∑
j=1

∫ ∞

0
| f j(x)|2dx =

∫ ∞

0

 n∑
j=1

| f j(x)|2
dx

=

∫ ∞

0
||F(x)||2Cndx

= ||F||2L2,Cn .

Thus ||BH || ≤ 1. Now it remains to show that ||BH || ≥ 1. Let f ∈ L2(0,∞) and F =
( f ,0,0, · · · )T . Then ||F|| = || f ||. So,

|〈Kh̃11
f , f 〉| = |〈BHF,F〉| ≤ ||BH || ||F||2 = ||BH || || f ||2

gives 1 = ||Kh̃11
|| ≤ ||BH || as Kh̃11

is self-adjoint. Hence ||BH || = 1. �

Now we generalize Theorem 3.1, for the case p = q = 2, to vector-valued functions.
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Theorem 5.3. If F,G ∈ L2,Cn
(0,∞), then∣∣∣∣∣∫ ∞

0

∫ ∞

0
G∗(x)H(x+ y)F(y)dxdy

∣∣∣∣∣≤ (∫ ∞

0
||F(x)||2Cndx

) 1
2
(∫ ∞

0
||G(y)||2Cndy

) 1
2

,where the con-

stant factor 1 is the best possible.

Proof. Since ||BH || = 1, so the result follows from the fact that

|〈BHF,G〉| ≤ ||F||L2,Cn ||G||L2,Cn ,

for all F,G ∈ L2,Cn
(0,∞). �

Now let φ̃l j(eiθ)=−i(π−θ)eiθ,0≤ θ < 2π,1≤ l, j≤ n and φl j(z) be the harmonic extension
of φ̃l j into D.

Φ =


φ11 0 · · · 0
0 φ22 · · · 0
...

...
. . .

...

0 0 · · · φnn

 .
It is not difficult to see that

SΦ =


S φ11 0 · · · 0

0 S φ22 · · · 0
...

...
. . .

...

0 0 · · · S φnn

 ,
is unitarily equivalent to

BH =


Kh̃11

0 · · · 0
0 Kh̃22

· · · 0
...

...
. . .

...

0 0 · · · Kh̃nn

 ,
where h̃i j(x) = e−x

x ,1 ≤ i, j ≤ n. Hence ||SΦ|| = 1.
Let uk = (0,0, · · · ,0,1,0, · · · ,0) with 1 in the kth place and γkl = el ⊗uk,k = 1,2, · · ·n, l =

0,1,2, · · · . Then {uk}
n
k=1 from an orthonormal basis for Cn and {γkl},k = 1,2, · · · ,n; l= 0,1, · · ·

form an orthonormal basis for L2,Cn

a (D,dA) = L2
a(D)⊗Cn.

Theorem 5.4. Let F̃ = f ⊗ x ∈ L2,Cn

a (D,dA) and G̃ = g⊗ y ∈ L2,Cn

a (D,dA). Then∣∣∣∣∣∣∣∣
∞∑

l,l′=0

n∑
k=1

√
l+1
√

l′ +1〈 f ⊗ x,el⊗uk〉〈g⊗ y,el′ ⊗uk〉

(l+ l′ +2)2

∣∣∣∣∣∣∣∣ ≤ || f ⊗ x|| ||g⊗ y||.

Proof. Notice that
〈F̃,γkl〉 = 〈 f ⊗ x,el⊗uk〉 = 〈 f ,el〉〈x,uk〉

and
〈G̃,γml′ 〉 = 〈g⊗ y,el′ ⊗um〉 = 〈g,el′ 〉〈y,um〉.
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Hence

〈SΦF̃,G̃〉 =
n∑

k,m=1

∞∑
l,l′=0

〈F̃,γkl〉〈G̃,γml′ 〉〈SΦ(γkl),γml′ 〉

=

n∑
k,m=1

∞∑
l,l′=0

〈F̃,γkl〉〈G̃,γml′ 〉〈(S φ⊗ ICn)(el⊗uk),el′ ⊗um〉

=

n∑
k,m=1

∞∑
l,l′=0

〈 f ,el〉〈x,uk〉〈g,el′ 〉 〈y,um〉〈S φel⊗uk,el′ ⊗um〉

=

n∑
k,m=1

∞∑
l,l′=0

〈 f ,el〉〈x,uk〉〈g,el′ 〉 〈y,um〉〈S φel,el′ 〉〈uk,um〉

=

n∑
k=1

∞∑
l,l′=0

〈 f ,el〉〈x,uk〉〈g,el′ 〉 〈y,uk〉〈S φel,el′ 〉.

Thus

|〈SΦF̃,G̃〉| =

∣∣∣∣∣∣∣∣
∞∑

l,l′=0

n∑
k=1

√
l+1
√

l′ +1〈 f ⊗ x,el⊗uk〉〈g⊗ y,el′ ⊗uk〉

(l+ l′ +2)2

∣∣∣∣∣∣∣∣
and since SΦ is a bounded linear operator in L2,Cn

a (D,dA) and ||SΦ|| = 1, we obtain

|〈SΦF̃,G̃〉| ≤ ||F̃||L2,Cn
a (D,dA)||G̃||L2,Cn

a (D,dA) = || f ⊗ x|| ||g⊗ y||.

The result follows. �

Corollary 5.5. If
n∑

k=1

∞∑
l=0

|akl|
2 <∞ and

n∑
k=1

∞∑
l′=0

|bkl′ |
2 <∞, then

∣∣∣∣∣∣∣∣
∞∑

l,l′=0

n∑
k=1

√
l+1
√

l′ +1aklbkl′

(l+ l′ +2)2

∣∣∣∣∣∣∣∣ ≤
 n∑

k=1

∞∑
l=0

|akl|
2


1
2
 n∑

k=1

∞∑
l′=0

|bkl′ |
2


1
2

and the constant factor 1 is the best possible.

Proof. It is possible to find xk, yk, k = 1,2, · · · ,n, and sequences (cl)∞l=0 ,
(
cl′

)∞
l′=0 such that

akl = xkcl,bkl′ = ykcl′ ,

∞∑
l=0

|cl|
2 <∞ and

∞∑
l′=0

|cl′ |
2 <∞. Let f (z) =

∞∑
l=0

clel and g(z) =
∞∑

l′=0

cl′ el′ .

Then f ,g ∈ L2
a(D). So, for x = (xk)n

k=1 ,y = (yk)n
k=1 ∈ C

n, we have f ⊗ x,g⊗ y ∈ L2,Cn

a (D,dA).
Now

|| f ⊗ x||2 = || f ||2||x||2 =
∞∑

l=0

|cl|
2

n∑
k=1

|xk|
2

=

n∑
k=1

∞∑
l=0

|cl|
2|xk|

2

=

n∑
k=1

∞∑
l=0

|akl|
2.
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Similarly,

||g⊗ y||2 =
n∑

k=1

∞∑
l′=0

|bkl′ |
2.

On the other hand,

〈 f ⊗ x,el⊗uk〉 = 〈 f ,el〉〈x,uk〉

= xkcl

= akl

and

〈g⊗ y,el′ ⊗uk〉 = 〈g,el′ 〉〈y,uk〉

= ykcl′

= bkl′ .

Hence the results follows from Theorem 5.4. Since ||SΦ|| = 1, the constant factor 1 is the
best possible. �

6 Hankel operators with operator valued symbols

In this section we generalize the inequality (4.2) for Hilbert space valued functions. In
this case the integral operator involved have kernels that are matrix-valued (infinite matrix)
functions. Let Ξ be a separable infinite dimensional Hilbert space. The space L2,Ξ(D) is
defined to be the set of all (equivalence classes of) measurable, norm-square integrable,
Ξ−valued functions defined on D. When endowed with the inner product defined by the
equation

〈 f ,g〉 =
∫
D
〈 f (z),g(z)〉Ξ dA, f ,g ∈ L2,Ξ(D),

the space L2,Ξ(D) becomes a separable Hilbert space. Let L2,Ξ
a (D) be the corresponding

Bergman space. A function Φ from D into L(Ξ) is called weakly measurable in case the
complex valued function z→ 〈Φ(z)x,y〉 is Lebesgue measurable for every x and y in Ξ. If
Φ is weakly measurable then the real valued function z→ ||Φ(z)|| is measurable and the
space of all (equivalence classes of) weakly measurable, essentially bounded, L(Ξ)−valued
functions on D will be denoted by L∞

L(Ξ)(D). The space L∞
L(Ξ)(D) is a C∗−algebra with the

algebraic operations defined pointwise and norm defined by the equation

||Φ||∞ = esssup
z∈D
||Φ(z)||,Φ ∈ L∞

L(Ξ)(D),

where ||Φ(z)|| = sup
n

sup
m
|〈Φ(z)un,um〉|,z ∈ D, {un}

∞
n=0 is the orthonormal basis for Ξ and in-

volution is defined by the equation Φ∗(z) = (Φ(z))∗. The mapping ζ → Φ(ζ) f , ζ ∈ D are
measurable for f ∈ Ξ. This follows from the Pettis Theorem (see [2]) as Ξ is separable.
Let H∞

L(Ξ)(D) = H∞(D)⊗L(Ξ). For Φ ∈ L∞
L(Ξ)(D), we define the Hankel operator SΦ from

L2,Ξ
a (D) into itself as SΦ f = Q(J(Φ f )), where Q is the orthogonal projection from L2,Ξ(D)
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onto L2,Ξ
a (D) and the symbol Φ f denote the function on D defined by (Φ f )(z) = Φ(z) f (z)

and J : L2,Ξ(D)→ L2,Ξ(D) is defined by JF(z) = F(z). In the following theorem we extend
Theorem 5.3 for Ξ−valued functions.

Theorem 6.1. Let H(x) = e−x

x ⊗ IΞ, where IΞ is the identity operator from the Hilbert space
Ξ into itself. Let L2,Ξ(0,∞) = L2(0,∞)⊗Ξ and define KH : L2,Ξ(0,∞)→ L2,Ξ(0,∞) by

(KHF)(x) =
∫ ∞

0
H(x+ y)F(y)dy.

Then for F,G ∈ L2,Ξ(0,∞),∣∣∣∣∣∫ ∞

0
〈(KHF)(x),G(x)〉Ξdx

∣∣∣∣∣ ≤ ||F||L2,Ξ(0,∞)||G||L2,Ξ(0,∞).

Proof. Let h̃(x) = e−x

x and define Kh̃ ∈ L(L2(0,∞)) by

(Kh̃ f )(x) =
∫ ∞

0

√
x
√

y
x+ y

e−(x+y)

x+ y
f (y)dy.

It is not difficulties to see that the operator KH is well-defined and since L2,Ξ(0,∞) =

L2(0,∞)⊗Ξ, we have KH =

∞∑
n=0

⊕Kh̃ = Kh̃ ⊗ IΞ, where (Kh̃ ⊗ IΞ)( f ⊗ z) = Kh̃ f ⊗ z if f ∈

L2(0,∞) and z ∈ Ξ. Now ||KH || =

∥∥∥∥∥∥∥
∞∑

n=0

⊕Kh̃

∥∥∥∥∥∥∥ = ||Kh̃|| = 1. Thus by Cauchy-Schwarz inequal-

ity it follows that

|〈KHF,G〉| ≤ ||KH || ||F||L2,Ξ(0,∞)||G||L2,Ξ(0,∞)

= ||F||L2,Ξ(0,∞)||G||L2,Ξ(0,∞).

Hence ∣∣∣∣∣∫ ∞

0
〈(KHF)(x),G(x)〉Ξdx

∣∣∣∣∣ ≤ ||F||L2,Ξ(0,∞)||G||L2,Ξ(0,∞).

�

Theorem 6.2. If F̃ = f ⊗ x,G̃ = g⊗ y ∈ L2,Ξ
a (D) = L2

a(D)⊗Ξ, then∣∣∣∣∣∣∣∣
∞∑

l,l′=0

∞∑
k=0

√
l+1
√

l′ +1〈 f ⊗ x,el⊗uk〉〈g⊗ y,el′ ⊗uk〉

(l+ l′ +2)2

∣∣∣∣∣∣∣∣ ≤ || f ⊗ x|| ||g⊗ y||.

Proof. Let φ̃(eiθ) = −i(π− θ)eiθ,0 ≤ θ ≤ 2π and φ be the harmonic extension of φ̃ to D. Let
Φ = φ⊗ IΞ. Then Φ ∈ L∞

L(Ξ)(D). Let SΦ be the Hankel operator from L2,Ξ
a (D) into itself with

symbolΦ.Notice that since L2,Ξ
a (D)= L2

a(D)⊗Ξ,we have SΦ = S φ⊗ IΞ. Thus ||SΦ||= ||S φ||=

1.
Let Υkl = el⊗uk,k = 0,1,2, · · · and l = 0,1,2, · · · . The sequence {Υkl} from an orthonor-

mal basis for L2,Ξ
a (D). Then

|〈SΦF̃,G̃〉| =
∞∑

l,l′=0

∞∑
k=0

√
l+1
√

l′ +1〈 f ⊗ x,el⊗uk〉〈g⊗ y,el′ ⊗uk〉

(l+ l′ +2)2 .
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Since
|〈SΦF̃,G̃〉| ≤ ||SΦ|| ||F̃|| ||G̃|| = || f ⊗ x||||g⊗ y||,

the result follows. �

Corollary 6.3. Let F̃ = f ⊗ x and G̃ = g⊗ y where f ,g ∈ L2
a(D) and x,y ∈ Ξ. Let cl( f ) and

cl′ (g) denote the lth and l
′ th Fourier coefficients of f and g respectively. Then∣∣∣∣∣∣∣∣

∞∑
l,l′=0

√
l+1
√

l′ +1〈cl( f )x,cl′ (g)y〉Ξ
(l+ l′ +2)2

∣∣∣∣∣∣∣∣ ≤ ||F̃||L2,Ξ
a (D)||G̃||L2,Ξ

a (D).

Proof. Let Υkl = el ⊗uk,k = 0,1,2, · · · and l = 0,1,2, · · · . Then the sequence {Υkl} forms an
orthonormal basis for L2,Ξ

a (D). Hence 〈F̃,Υkl〉 = cl( f )〈x,uk〉 and 〈̃g,Υkl′ 〉 = cl′ (g)〈y,uk〉.

Also

∞∑
l,l′=0

∞∑
k=0

√
l+1
√

l′ +1〈 f ⊗ x,el⊗uk〉〈g⊗ y,el′ ⊗uk〉

(l+ l′ +2)2

=

∞∑
l,l′=0

∞∑
k=0

√
l+1
√

l′ +1〈cl( f )x,uk〉〈cl′ (g)y,uk〉

(l+ l′ +2)2

=

∞∑
l,l′=0

∞∑
k=0

√
l+1
√

l′ +1〈cl( f )x,uk〉〈uk,cl′ (g)y〉
(l+ l′ +2)2

=

∞∑
l,l′=0

√
l+1
√

l′ +1〈cl( f )x,cl′ (g)y〉Ξ
(l+ l′ +2)2 .

Now the result follows from Theorem 6.2. �

Corollary 6.4. If
∞∑

l,k=0

|akl|
2 <∞ and

∞∑
l′ ,k=0

|bkl′ | <∞, then

∣∣∣∣∣∣∣∣
∞∑

k,l,l′=0

√
l+1
√

l′ +1aklbkl′

(l+ l′ +2)2

∣∣∣∣∣∣∣∣ =
 ∞∑

k,l=0

|akl|
2


1
2
 ∞∑

k,l′=0

|bkl′ |
2


1
2

and the constant factor 1 is sharp.

Proof. The proof is similar to the proof of Corollary 5.5. �
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