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Abstract

The barotropic vorticity equation describing the vortex dynamics of viscous and forced
incompressible fluid on a rotating sphere is considered. This equation is also used for
studying the large-scale dynamics of barotropic atmosphere. Operators of orthogonal
projection on the subspaces of homogeneous spherical polynomials and derivatives of
real order for functions are introduced. A family of Hilbert spaces of generalized func-
tions having fractional derivatives of real order s is introduced, and a few embedding
theorems are given. An equation for the evolution of kinetic energy of perturbations
to a basic flow is analyzed. A relationship between the rate of generation of kinetic
energy perturbations and the eigenfunctions of the symmetric part of the operator lin-
earized about the basic flow is shown. As an illustrative example, the numerical solu-
tion of the spectral problem for such operator is discussed in the case when the basic
flow is the climatic January circulation.

AMS Subject Classification: 76D17, 76B47, 76E09.
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Introduction

At present the widely used hypothesis is that the existence of permanent fluctuations of the
different time-space scales in the circulation of barotropic atmosphere can be explained by
the instability of the atmosphere with respect to small perturbations [2]. Since the real at-
mospheric state is not known exactly it is interesting to study the stability properties of some
approximate idealized states. The choice of a suitable basic state is generally determined by
objectives of the study, and in particular, by time-space scales of the atmospheric dynamics
under consideration. Comparison of observed and calculated time-space structures of the
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most unstable perturbations enables us to select such idealized basic state of the atmosphere
that is more close to the observed state and hence is appropriate for the instability study.

In recent decades, the interest in the problem of barotropic instability of the atmosphere
has considerably increased due to the establishment of the following facts, namely:

(1) the remote response of the atmosphere to the sea surface temperature anomalies has
an equivalent barotropic structure;

(2) The conversion of the barotropic energy of perturbations plays an important role in
the low frequency variability of the atmospheric circulation [5,6,17,18].

In this work, the turbulent viscosity term in the model is considered of common form
ν(−∆)s+1ψ, where s > 1 is arbitrary real number [12]. In this connection, we first de-
fine in section 2 the operators of orthogonal projection on the subspaces of homogeneous
spherical polynomials of degree n, and then use them to introduce fractional derivatives of
smooth functions on the sphere. A family of Hilbert spaces Hs of functions of real degree
of smoothness on a sphere is introduced in section 3. The nonlinear barotropic vorticity
equation (BVE) describing the motion of incompressible viscous and forced fluid on a ro-
tating sphere is given in section 4. The equation for the evolution of the kinetic energy
of perturbations of a steady BVE solution ψ̃(λ,µ) is derived in section 5. It is also shown
that the time derivative of the kinetic energy of a perturbation ψ′ is determined by the inner
product ⟨Bψ′,ψ′⟩ where B is the symmetric part of the problem operator linearized about
the steady solution ψ̃(λ,µ). The spectral problem for operator B is considered in section 6.
Since the eigenfunctions of operator B form an orthogonal basis in the space of perturba-
tions, each eigenfunction represents a basic disturbance and the sign of the corresponding
eigenvalue determines the growth or decay of the kinetic energy of this disturbance. The
geometric structure of the unstable set of perturbations is also analyzed. The application
of the spectral problem for operator B to the analysis of the stability of a climatic January
atmospheric flow at 300 mb is given in section 7. In particular, it is shown that the most
unstable eigenfunctions (perturbations) are localized near the two strong jets in the basic
flow. The two main mechanisms of the instability related with the existence of jets in the
basic flow are given and discussed.

Orthogonal Projection operators and Fractional Derivatives

Let S = {x ∈ R3 : |x| = 1} be a unit sphere in the three-dimensional Euclidean space; we
denote by C∞(S ) the set of infinitely differentiable functions on S and by

⟨ f ,g⟩ =
∫
S

f (x)g(x)dS and ∥ f ∥ = ⟨ f , f ⟩1/2 (1)

the inner product and norm in C∞(S ), respectively. Here x = (λ,µ) is a point on the sphere,
dS = dλdµ is an element of sphere surface, µ = sinϕ; µ ∈ [−1,1], ϕ is the latitude, λ ∈ [0,2π)
is the longitude and g(x) is the complex conjugate of g(x). It is known that the spherical
harmonics

Ym
n (λ,µ) =

[
2n+1

4π
(n−m)!
(n+m)!

]1/2
Pm

n (µ)eimλ , n ≥ 0, |m| ≤ n
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form the orthonormal basis in C∞(S ) (here Pm
n (µ) is the associated Legendre function of

degree n and zonal wavenumber m) [9]. For each integer n ≥ 0, the span of 2n+1 spherical
harmonics Ym

n (λ,µ) (|m| ≤ n) forms a (2n+1)-dimensional eigen-subspace

Hn = {ψ : ∆ψ =
[(

1−µ2
)
ψµ
]
µ
+

1
1−µ2ψλλ = −χnψ (2)

of homogeneous spherical polynomials of degree n which are the eigenfunctions of Laplace
operator on S corresponding to the eigenvalue −χn where

χn = n (n+1) (3)

and ψλ and ψµ denote partial derivatives of ψ with respect to λ and µ, respectively. The
subspace Hn is invariant not only with respect to the Laplace operator but also to each
element of the group SO(3) of rotations of sphere about any its axis [3].

We now introduce the operators of orthogonal projection on subspaces Hn and fractional
derivatives of functions on S [12].

Definition 1 Denote by L2(S ) the completion of C∞(S ) in the norm (1). It is the Hilbert
space with inner product (1). Besides, L2(S ) is the direct orthogonal sum of subspaces Hn

of L2(S ) = ⊕∞n=0Hn .

Definition 2 [3] Let ω be an angle between two unit radius-vectors x⃗1, x⃗2 corresponding
to the points x1, x2 ∈ S . Then x⃗1 · x⃗2 = cosω is the scalar product of vectors x⃗1 and x⃗2. A

function z(x⃗ · y⃗) depending only on the distance ρ(x,y)= arccos
(
x⃗ · y⃗)=ω between two points

x and y of sphere is called the zonal function. The convolution of a function ψ ∈ L2(S ) with
a zonal function Z(x⃗ · y⃗) ∈ L2(S ) is defined by

(ψ∗ z) (x) =
1

4π

∫
S
ψ (y) Z

(
x⃗ · y⃗)dS (y) (4)

Definition 3 [15] Let n ≥ 0. The operator of orthogonal projection Yn : L2(S ) 7→Hn of
L2(S ) on subspace Hn is introduced by

Yn (ψ; x) = (2n+1)(ψ∗Pn) (x) (5)

For brevity we also write Yn (ψ) instead of Yn (ψ; x). Obviously, any function of subspace
H0 is constant:

Y0 (ψ) =
1

4π

∫
S
ψ (y) dS (y) =Const (6)

Note that the Parseval-Steklov identities
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∥ψ∥2 =
∞∑

n=0

∥Yn (ψ)∥2 and ⟨ψ,h⟩ =
∞∑

n=0

⟨Yn (ψ) ,Yn (h)⟩ (7)

hold for any functions ψ,h ∈ L2(S ). Due to (7), each function ψ(x) ∈ L2(S ) is represented
by the Fourier-Laplace series

ψ (x) =
∞∑

n=0

Yn (ψ; x) ≡
∞∑

n=0

n∑
m= −n

ψm
n Ym

n (x) (8)

Definition 4 Let s > 0, χn = n(n+ 1), and ψ(x) ∈ C∞(S ). A derivative Λs = (−∆)s/2 of
real order s of functions on a sphere is defined by means of equations

Yn
(
Λsψ
)
= χs/2

n Yn (ψ) , n ≥ 0 (9)

Thus, Λs is a multiplier operator which is completely defined by infinite set of multipli-
ers {χs/2

n }∞n=0 , besides,

Λsψ (x) =
∞∑

n=1

χs/2
n Yn (ψ; x) (10)

In particular, Λ2n = (−∆)n for any natural n, and operator Λ can be interpreted as the
square root of Laplace operator (2). It is well known that the main disadvantage of local
derivatives ∂n/∂λn and ∂n/∂µn is that they depend on the choice of coordinate system (i.e.,
on sphere rotation). The new derivatives Λs and orthogonal projections Yn are invariant
with respect to any element of the group SO(3) of sphere rotations [12].

Let C∞0 (S ) ={ψ ∈ C∞(S ) : Y0 (ψ) = 0} denote the subspace of functions of C∞(S ) which
are orthogonal to any constant on the sphere. Note that operator Λs may be defined on
functions from C∞0 (S ) by means of (9) or (10) for every real order s .

Definition 5 For any real s, we introduce in C∞0 (S ) the inner product ⟨·, ·⟩s and norm
∥·∥s in the following way:

⟨ψ,h⟩s =
⟨
Λsψ,Λsh

⟩
=

∞∑
n=1

χs
n ⟨Yn (ψ) ,Yn (h)⟩ (11)

∥ψ∥s =
∥∥∥Λsψ

∥∥∥ = ⟨ψ,ψ⟩1/2s =

 ∞∑
n=1

χs
n ∥Yn (ψ)∥2


1/2

(12)

Definition 6 Let s be a real. Denote as Hs the Hilbert space obtained by closing the
space C∞0 (S ) in the norm (12).

Thus, a function ψ ∈Hs for some s if its sth fractional derivative belongs to L2(S ) [12].
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Hereinafter we will keep for the inner product and norm in H0≡ L2
0(S ) the symbols ⟨·, ·⟩

and ∥·∥ introduced in (1). It is shown in [15] that the embeddings C∞0 (S ) ⊂ Hr ⊂ Hs ⊂ H0 ⊂
H−s ⊂ H−r are continuous if 0 < s < r , and the dual space (Hs)∗ coincides with H−s for
all s > 0. Also note that for any real numbers s and r, the operator Λr : C∞0 (S ) 7→ C∞0 (S )
is symmetric: ⟨Λrψ,h⟩s = ⟨ψ,Λrh⟩s, and hence closable, that is, it can be extended to the
whole space Hs.

Definition 7 An element z ∈ Hs is called the rth derivative Λrψ of a function ψ ∈ Hs if
the equality ⟨z,h⟩s = ⟨z,Λrh⟩s holds for all h ∈ C∞0 (S ), where Λrh is defined by (10).

The following assertion establishes embedding estimates for the functions of subspaces
Hs.

Lemma 1 [15]. Let s be real, r > 0 , and ψ ∈ Hs+r. Then ψ ∈ Hs and

∥ψ∥s ≤ 2−r/2 ∥ψ∥s+r (13)

∥ψ∥s+r =
∥∥∥Λrψ

∥∥∥
s (14)

Corollary 1 [15]. Let s and r be real numbers. The mappingΛr :Hs+r 7−→Hs is isometry
and isomorphism. In particular, at r = −2s , the operator Λ−2s : H−s 7−→ Hs is isometric
isomorphism.

Lemma 2 [15]. Let r, s and t be real numbers, r < t , and a =
√

2. Then for any ψ ∈ Hs+t,∥∥∥Λrψ
∥∥∥

s ≤ ar−t
∥∥∥Λtψ

∥∥∥
s (15)

Barotropic Vorticity Equation

Let us consider the nonlinear problem

∆ψt + J (ψ,∆ψ+2µ) = −σ∆ψ+ ν(−∆)s+1ψ+F (16)

∆ψ (0, x) = ∆ψ0 (x) (17)

where (16) is a dimensionless form of the barotropic vorticity equation describing the evo-
lution of relative vorticity ∆ψ (t, x) in a viscous and forced 2D incompressible rotating fluid
on sphere S using the geographical coordinate system (λ,µ) whose pole N is on the axis
of rotation of unit sphere [12]. The problem takes into account an external vorticity source
F(t, x) and Rayleigh friction σ∆ψ in the planetary boundary layer. Here ∆ is the spherical
Laplace operator (2), ∇ is the gradient, ψ is the stream function, ∆ψ+ 2µ is the absolute
vorticity,
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J(ψ,h) = ψλhµ −ψµhλ = (−→n ×∇ψ) · ∇h (18)

is the Jacobian, J (ψ,2µ) = 2ψλ is the sphere rotation term, −→n is the outward unit normal
to S , ”·” and ”×” denote the scalar and vector products, and ψt, ψλ and ψµ denote partial
derivatives of ψ with respect to t, λ and µ, respectively. The velocity vector −→u = −→n ×∇ψ
with components

u = −
√

1−µ2ψµ , v =
1√

1−µ2
ψλ (19)

is solenoidal: ∇ ·−→u = 0.
We consider the turbulent viscosity term of common form ν(−∆)s+1ψ, where s > 1 is

arbitrary real number [12]. The case s = 1 corresponds to classical viscosity term in Navier-
Stokes equations [7,16], while the case s = 2 was considered in [1,11,12]. The turbulent
term of this form for natural numbers s is also used in [8] to prove the solvability of Navier-
Stokes equations in a limited area by using the method of artificial viscosity. Equation
(16) is obtained by applying the curl operator to the 2D Navier-Stokes equations. Since
the sphere is a smooth manifold without boundary, such a transformation results in the fact
that the solution of problem (16), (17) is determined up to a constant. In order to eliminate
this constant, the problem (16),(17) is considered in classes of the functions which are
orthogonal to a constant on the sphere: Y0 (ψ) = 0, Y0 (F) = 0.

It is clear that J(ψ,h) = −J(h,ψ) and J(ψ,ψ) = 0. Let n be a natural number, and s be a
real number. Since ΛsYn(ψ) = χs/2

n Yn (ψ) then J(ψ,Λsψ) = 0 for any homogeneous spherical
polynomial ψ of degree n (ψ ∈ Hn). Note that a smooth vector field −→n ×∇ψ is solenoidal,
and due to (18), J(ψ,h) = ∇ ·

[
h (−→n ×∇ψ)

]
. If
−→
X is a smooth vector-function defined on S

with a compact support K ⊂ S then
∫

S ∇ ·
−→
X dS = 0. Using the theorem on the partition of

unity, we obtain ∫
S

J(ψ,h) dS = 0

Lemma 3 [15] Let r be a real number, and let ψ, g and h be continuously differentiable
complex-valued functions on S . Then

⟨J(ψ, g),h⟩ =
⟨
J( g,h),ψ

⟩
= −
⟨
J(ψ,h),g

⟩
(20)

and

⟨
J(ψ, hψ),ψr

⟩
= 0 ,

⟨
J(ψ, µ),Λrψ

⟩
= 0 (21)
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Evolution of kinetic energy of perturbations

Let ψ̃(λ,µ) be a steady solution of (16). We now consider the evolution of kinetic energy
of perturbations to flow ψ̃(λ,µ). Let ψ̃(λ,µ)+ψ′(t,λ,µ) is another solution of (16). Then
ψ′(t,λ,µ) can be considered as a perturbation of ψ̃(λ,µ) which satisfies the equation

∆ψ′t = Lψ′− J
(
ψ′,∆ψ′

)
(22)

where

Lψ′ = J
(
Ω̃,ψ′

)
− J(ψ̃,∆ψ′)− [σ+ νΛ2s] ∆ψ′ (23)

is the linear operator, Ω̃ = ∆ψ̃+2µ is the absolute vorticity of flow ψ̃, s ≥ 1, ν > 0 and σ ≥ 0.
Taking the inner product (1) of equation (22) with ψ́ and using (20) and (21), we obtain

equation

Kt(t) = −
⟨
Lψ′,ψ′

⟩
= −
⟨
J
(
ψ′,∆ψ′), ψ̃

)⟩
−2σK(t)− ν

∥∥∥Λs+1ψ′
∥∥∥2 (24)

for the evolution of kinetic energy K(t) = 1
2 ∥▽ψ′∥

2 = 1
2 ∥ψ′∥

2
1 of perturbation ψ′.

Denote by
−→
ũ = (̃u, ṽ) = −→n ×∇ψ̃ the basic flow and by

−→
u′ = (u′,v′) = −→n ×∇ψ′ the

perturbation velocity. Defining the new vectors
−→
U = (U,V) =

√
1−µ2−→u′ and

−→
Ũ = (Ũ, Ṽ) =√

1−µ2−→ũ and using the fact that ∇ ·−→u = 0 and ∇ ·−→u′ = 0 we get

U = −(1−µ2)ψ′µ , V = ψ′λ , Ũ = −(1−µ2)ψ̃µ , Ṽ = ψ̃λ (25)

1
1−µ2 Uλ = −Vµ,

1
1−µ2 Ũλ = −Ṽµ (26)

∆ψ′ = (1−µ2)−1Vλ−Uµ (27)

Ideal fluid. Only the first term in the right-hand side of equation (24) can generate
the perturbation energy. Therefore we now consider the case when the dissipation is absent
(σ = ν = 0).

Theorem Let σ = ν = 0. Then equation (24) can be written in terms of U and V as

Kt(t) = −
1
2

⟨
U2−V2,

Ũλ

(1−µ2)2 − (
Ṽ

1−µ2 )µ

⟩

−
⟨
UV, (

Ũ
1−µ2 )µ+

Ṽλ
(1−µ2)2

⟩
(28)
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Proof. Using (25) and (27), we get

Kt(t) =
∫

S

Ṽ
(1−µ2)2 U Vλ dS −

∫
S

Ṽ
1−µ2 UUµ dS

−
∫

S

Ũ
(1−µ2)2 V Vλ dS +

∫
S

Ũ
1−µ2 VUµ dS (29)

Integrating by parts the first integral in (29) and using (26) we obtain∫
S

Ṽ
(1−µ2)2 U Vλ dS = −

∫
S

Ṽλ
(1−µ2)2 U V dS − 1

2

∫
S

V2(
Ṽ

1−µ2 )µ dS

The second and third integrals in (29) can be written as

−
∫

S

Ṽ
1−µ2 UUµ dS =

1
2

∫
S

U2(
Ṽ

1−µ2 )µ dS

−
∫

S

Ũ
(1−µ2)2 V Vλ dS =

1
2

∫
S

V2 Ũλ

(1−µ2)2 dS

Finally, the last integral in (29) is∫
S

Ũ
1−µ2 VUµ dS = −

∫
S

(
Ũ

1−µ2 )µU V dS − 1
2

∫
S

U2 Ũλ

(1−µ2)2 dS

The theorem is proved.

In the particular case of a zonal flow ψ̃(µ), Ũλ = 0 and Ṽ = 0, and equation (28) is
reduced to

Kt(t) = −
⟨
UV, [(1−µ2)−1Ũ]µ

⟩
=

∫
S

u′v′[
ũ√

1−µ2
]µ dS = −

∫
S

u′v′ ψ̃µµdS (30)

Let us represent the operator (23) as the sum of its symmetric and skew-symmetric
parts, L = 0.5(L+L∗)+0.5(L−L∗) where L∗ is the operator adjoint to L : ⟨L f ,h⟩ = ⟨ f ,L∗h⟩.
Then equation (24) for the kinetic energy of a real perturbation ψ́(t,λ,µ) of flow ψ̃(λ,µ) can
be written as

Kt(t) =
⟨
Bψ′,ψ′

⟩
(31)

where

Bψ′ = −0.5(L+L∗)ψ′ = [σ+ νΛ2s] ∆ψ′−0.5[∆J(ψ̃,ψ′)− J(ψ̃,∆ψ′)] (32)

is the symmetric part of operator (23).
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Example 1. Solid-body rotation flow. If ψ̃(µ) = Cµ and the dissipation is absent (σ =
ν = 0) then B = 0 and Kt(t) = 0, that is, the perturbation kinetic energy does not change (the
solid-body rotation is stable). In the presence of dissipation the perturbation kinetic energy
decreases: Kt(t) < 0 (the solid-body rotation is asymptotically stable).

Example 2. A flow in the form of a homogeneous spherical polynomial of degree one.
Let ψ̃(λ,µ) ∈ H1. Then Kt(t) = 0 if σ = ν = 0 (flow ψ̃ is stable), and

Kt(t) = −2σK(t)− ν
∥∥∥Λs+1ψ′

∥∥∥2 < 0 (33)

if σ > 0 or/and ν > 0 (flow ψ̃ is asymptotically stable). Indeed, it is sufficient to prove that⟨
J
(
ψ,∆ψ), ψ̃

)⟩
= 0 for any differentiable function ψ. To this end we recall that ψ̃ can be

considered as the projection (5) on subspace H1: ψ̃ = Y1
(
ψ̃; x
)
= 3
(
ψ̃∗P1

)
(x). Therefore⟨

J
(
ψ,∆ψ), ψ̃

)⟩
= 3
⟨
J(ψ(x),∆ψ(x)),

(
ψ̃∗P1

)
(x)
⟩

=
3

4π

⟨
J(ψ(x),∆ψ(x)),

∫
S
ψ̃(y) P1

(
x⃗ · y⃗)dy

⟩
= 3
⟨
(J(ψ,∆ψ)∗P1)(y), ψ̃(y)

⟩
Here we changed the order of integration over x and y and used formula (4). Since P1(x⃗ · y⃗)=
µwe obtain

⟨
J
(
ψ,∆ψ), ψ̃

)⟩
= 0 due to the second equality (21). Obviously, (24) implies (33).

Example 3. A Legendre polynomial flow P2(µ). Let σ = ν = 0 and ψ̃(µ) = aP2(µ) =
a
2 (3µ2 − 1). It was shown in [13] that this flow is linearly stable. However, the kinetic
energy of small but finite perturbations satisfies the equation (30). Since ψ̃µµ = 3a, we
obtain Kt(t) = −3a

∫
S u′v′dS . Let a > 0. Then the domains of sphere where u′v′ < 0 will

contribute to the growth of kinetic energy of perturbations K(t). For example, the growth of
energy will take place in the regions in which the perturbation represents localized vortex
structures, the principal axes of which are directed from north-west to south-east (as it is
shown, for example, in Fig.2a).

Example 4. A flow in the form of a homogeneous spherical polynomial of degree n,
n ≥ 2. Let ψ̃(λ,µ) ∈Hn, n ≥ 2, and initial perturbation ψ′(t0, x) ∈Hn. Then, due to (22) and
(23), Hn is invariant subspace of perturbations, and a perturbation ψ′(t, x) will never leave
Hn. Besides, it follows from (24) and (21) that inequality (33) is valid for any ψ′(t, x) ∈
Hn. Thus for any ψ′ ∈ Hn, Kt(t) = 0 if σ = ν = 0 (Hn is the subset of stable perturbations
of flow ψ̃), and Kt(t) < 0 if σ > 0 or/and ν > 0 (Hn is the subset of asymptotically stable
perturbations of flow ψ̃).

Geometric structure of unstable set of perturbations

Let now ψ̃(λ,µ) be a steady flow on S , and initial perturbation ψ′(t0, x) ∈ Hn for some n.
Then due to (24), Kt(t0) = 0 if σ = ν = 0, or by (33), Kt(t0) = −2σK(t)− ν

∥∥∥Λs+1ψ′
∥∥∥2 < 0

if σ > 0 or/and ν > 0. However, since ψ̃(λ,µ) is an arbitrary flow, the subspace Hn of
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perturbations is not invariant, and the perturbation ψ′(t, x) of Hn can leave it at any moment
t > t0. Let

BGn(x) = ρnGn(x) (34)

be the spectral program for the symmetric operator B defined by (32). Assume that ∥Gn(x)∥=
1, i.e. the eigenfunctions {Gn(x)} form the orthonormal basis in real space H0. It was shown
in [14] that if ν > 0 then operator B : H0→ H0 with the domain D(B) =H2s has a compact
resolvent and real isolated eigenvalues of unit geometrical multiplicity. The only limit point
of its spectrum is −∞, and the number of positive eigenvalues ρn of operator B is finite.

Let us renumber the eigenvalues in such a way that ρn > ρn+1, and assume that the first
N eigenvalues ρ1,...,ρN are positive. A perturbation ψ′(t, x) can be represented by its Fourier
series as

ψ′(t, x) =
∞∑

n=1

an(t)Gn(x) (35)

and due to (31),

Kt(t) =
∞∑

n=1

ρna2
n(t) (36)

Therefore if at initial moment t0, a perturbation has the form of a single eigenfunction:
ψ′(t0, x) = an(t0)Gn(x) then

Kt(t0) = ρna2
n(t0) (37)

and the kinetic energy of such initial perturbation will grow if n ≤ N and decrease if n > N.
Besides, the growth (or decay) rate of energy K(t) at moment t0 is determined by the values
of eigenvalue |ρn| and amplitude an(t0).

Let us consider the sequence {an}∞n=1 of the Fourier coefficients of perturbation (35) as
a point in the phase space of solutions to problem (22). Due to (36), the condition

∞∑
n=N+1

|ρn|a2
n <

N∑
n=1

ρna2
n (38)

defines a set M of unstable perturbations, since every point {an} ∈M represents a perturba-
tion ψ′ whose kinetic energy K grows with time. It is easy to see that for the basic flows
considered in examples 1 and 2, all the eigenvalues are negative, and hence, the set M is
empty.

It is interesting to study the geometric structure of unstable set of perturbations M. First,
the set M is unbounded because it includes N-dimensional Euclidean space EN of vectors
{a1,a2...,aN} except for its origin {0, ...,0}. Second, this set is of infinite dimension, and it
is not invariant with respect to applying the nonlinear operator of equation (22), that is the
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trajectory of a solution to equation (22) can enter and leave the set M. Third, among all the
points {an} belonging to the surface

∑∞
n=1 a2

n =C0 = const, the maximum growth of energy is
achieved when a1 =

√
C0 and an = 0 for all n> 1. Also, it follows from (38) that if

∑N
n=1 ρna2

n
is bounded then

∑∞
n=N+1 |ρn|a2

n is bounded too. Since |ρn| → ∞ as n→∞ (operator B has
a compact resolvent), the inequality

∑∞
n=N+1 |ρn|a2

n < const defines a compact set in the
coordinate space of sequences {an}∞n=N+1 which is orthogonal to the N-dimensional space
EN .

Thus, the nonlinear process of evolution of perturbations can be described as follows.
Assume that the initial perturbation ψ′(t0, x) is such that an(t0) = 0 for all n > N, i.e. the
point {an(t0)} ⊂ EN . Then the perturbation energy K(t) will grow. Since EN is not invariant,
non-zero coefficients an(t) for n > N will eventually appear. Their growth will destroy the
inequality (38), and the point {an(t)} will leave the set M. From this moment the energy
K(t) will decrease. Note that the larger the number n (n > N) of nonzero coefficient an(t),
the higher is the possibility for the point {an(t)} to leave the set M.

Numerical experiment

It was mentioned in [11] that in the case when the basic state ψ̃(λ,µ) is the climatic January
flow of atmosphere at 300 mb (Fig.1a), equation (28) could be written with a rather good
accuracy as

Kt(t) =
∫

S

−→
E · ∇ũ dS =

∫
S

(u′)2− (v′)2√
1−µ2

ũλ dS +
∫

S
u′v′
√

1−µ2ũµ dS (39)

Here
−→
E =
⟨
(u′)2− (v′)2, u′v′

⟩
is the generalized Eliassen-Palm flux and ∇ũ is the gradient

of the zonal velocity component ũ of the basic flow. Thus, the parts of the sphere where
−→
E · ∇ũ > 0 give a contribution into the generation of the perturbation kinetic energy K(t)

Figure 1. The climatic January circulation of atmosphere at 300 mb. Streamfunction (a) and zonal velocity

component (b).
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The zonal velocity component ũ of the basic flow is shown in Fig.1b. One can see
two strong westerly jets (two local maxima in ũ field) situated near the western coast of the
North Pacific (T-jet) and near the eastern coast of the North America (A-jet). Obviously, the
term ũµ is large at the lateral sides of the jets. Therefore, the integral

∫
S u′v′

√
1−µ2ũµ dS

in (39) discloses one of the instability mechanisms (the growth of energy of perturbations).
Indeed, by this integral, the principal axis of a localized vortex structure of perturbation
and the zonal velocity profile of the basic flow must be tilted in opposite sides (or in the
same side) in the areas of generation (dissipation) of the perturbation kinetic energy [2,10].
For example, if ũµ > 0 in a limited region of a zonal jet on a sphere, then localized vortex
structures of perturbation in this region such that u′v′ < 0 will result in the generation of
perturbation kinetic energy K(t) (Fig.2a). And conversely, localized vortex structures of
a perturbation such that u′v′ > 0 will lead to the dissipation of perturbation energy K(t).
This mechanism is especially important in the case of a zonal basic flow ψ̃(µ) (see (30) and
example 3).

Figure 2. Two instability mechanisms that cause the growth of kinetic energy of perturbations.

Unlike the zonal flow, the additional term

−
∫

S

(u′)2− (v′)2√
1−µ2

ũλ dS (40)

of equation (39) is also of great significance in the evolution of perturbation energy of the
January climatic flow ψ̃(λ,µ). Indeed, it follows from (40) that the perturbation kinetic
energy is increased if the main axes of localized vortex structures of the perturbation have
a meridional orientation ((v′)2 ≫ (u′)2) at the entry of the jets T and A where ũλ > 0, or
zonal orientation ((u′)2 ≫ (v′)2) at the exit of the jets where ũλ < 0 (Fig.2b) [4,11]. The
opposite orientation of the main axes of localized vortex structures of the perturbation leads
to decreasing the perturbation energy.

The two mechanisms of the growth and decay of the kinetic energy of perturbations (i.e.
the two integrals in formula (39)) were described by using the generalized Eliassen-Palm
flux analysis, valid for the case when the basic flow is the climatic January circulation of
atmosphere at 300 mb. Now, in order to analyze the evolution of energy of perturbation,
we apply the new method based on the numerical solution of spectral problem (34). We
consider the same basic flow ψ̃(λ,µ) (Fig.1), since it allows us to interprete the results by
using the instability mechanisms (39). We take s= 2 in the operator (32). The discretization
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of the spectral problem (34) is performed by the Galerkin method, with the use of the
spherical harmonics as the basic orthonormal functions for the approximation of the main
flow and perturbations by spherical polynomials of the subspaces PM and PN , respectively,
where PK =⊕K

n=1Hn.
The contours of the eigenfunction G1(x) corresponding to the largest eigenvalue ρ1 > 0

are presented in Fig.3a. A perturbation in the form of G1(x) causes the fastest growth
of perturbation energy K(t). The remarkable property of this perturbation is a group of
localized vortex structures of alternating-sign situated only near the strongest westerly T-
jet of the basic flow. It is seen that eddies have meridional orientation at the entry of the
T-jet. Moreover, the contours of eddies at the lateral sides of the T-jet are tilted opposite to
the zonal velocity profile shear of the basic flow. This result is in full accordance with the
conclusions of the generalized Eliassen-Palm flux analysis (see (39)).

Figure 3. Eigenfunctions of problem (34) corresponding to eigenvalues

ρ1 (a) and ρ2 (b).

The contours of the eigenfunction G2(x) corresponding to the second largest eigenvalue
ρ2 > 0 of the operator B are presented in Fig.3b. Note that the meridional orientation of
eddies at the entry of the T-jet and their tilt at the southern side of the jet lead to the growth
of perturbation energy K(t). However, one can see that there are no perturbations at the
northen side of T-jet, and the eddies at the exit of T-jet have meridional orientation. These
two facts lead to decreasing the energy K(t). Therefore, the growth rate of K(t) for the
perturbations in the form of G2(x) is smaller than that for the perturbations in the form of
G1(x).

It is interesting to note that there is also a subset Ω of the eigenvalues ρn of operator
B such that the nonzero values of the corresponding eigenfunctions Gn(x) are localized
only near the A-jet. The eigenfunctions presented in Fig.4 correspond to the two largest
eigenvalues from Ω which are almost twice less than ρ1 and ρ2 respectively. It is seen that
the location of eddies near the A-jet and their orientation are quite similar to the location
and orientation of eddies near the T-jet (see Fig.3). Note that for all eigenvalues ρn such
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that |ρn| ≪ 1, the corresponding eigenfunctions have a global structure on a sphere.

Figure 4. Eigenfunctions corresponding to the two largest eigenvalues from set Ω

.

It should be stressed that unlike the Eliassen-Palm flux method suitable for analyzing
the climatic January flow, the new approach, based on the solution of spectral problem (34),
can be applied to analyze arbitrary steady basic state and takes into account all dissipative
processes. Therefore, unlike the Eliassen-Palm flux technique, the new method based on the
solution of spectral problem (33) will be a convenient and effective tool for the instability
study of stationary flows in the barotropic atmosphere.
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