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Abstract

We describe the symbol (Calkin) algebra for the algebra generated by Toeplitz oper-
ators with piecewise continuous and slowly oscillating radial symbols that act on the
Bergman space on the unit disk.
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1 Introduction

Let D be the open unit disk with the normalized Lebesgue measure dA = 1
πdxdy. LetA2(D)

be the Bergman space of all functions analytic and square integrable in D and let
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BD : L2(D)→A2(D) be the (orthogonal) Bergman projection. Denote by T fφ = BD( fφ),
φ ∈ A2(D), the Toeplitz operator with symbol f ∈ L∞(D).

For an algebra of functions B ⊂ L∞(D) denote by T (B) the C∗-algebra generated by
all Toeplitz operators T f with symbols f ∈ B. Unfortunately for a generic B ⊂ L∞(D)
practically nothing can be said about the properties of the operators from T (B). The natural
approach thus is to select specific class B that make it possible to describe the properties
of the corresponding operators. The first step in this direction was made by L. Coburn [2],
who described the algebra generated by Toeplitz operators with continuous symbols. The
case of piecewise continuous symbols (with a fixed finite set of discontinuity points on the
boundary) was considered in [9, 10]. In this note we extend the setting and results of [9, 10]
in two directions. First, we relax the above condition on the boundary discontinuity points
allowing non fixed countable sets of discontinuity that depend on a symbol, and second,
we admit a slowly oscillating behavior of symbols in the radial direction. The main result,
Theorem 5.3, describes the corresponding symbol (Calkin) algebra.

2 On a symbol class

We introduce first two C∗-algebras of functions. The first one is defined on the interval
[0,1) and is the Sarason class SO[0,1), see [7]. We recall its definition.

For a function a, defined in an interval I, let ω(a, I) denote the oscillation of a in I

ω(a, I) = sup
r,s∈I
|a(r)−a(s)|.

Given a half-open interval [0,1), the class SO[0,1) consists of all functions a ∈ C([0,1))
satisfying the condition: for each σ ∈ (0,1),

lim
δ→0
ω(a, [1−δ,1−σδ]) = 0.

To introduce the algebra of functions defined on the unit circle T, we denote by PC0(T)
the set of all functions f ∈ L∞(T) with the following properties:

1. f is continuous except for a finite set of points.

2. If f is not continuous at t0, then there exist both lateral limits

f (t−0 ) = lim
t→t−0

f (t), f (t+0 ) = lim
t→t+0

f (t).

The closure of PC0(T) in L∞(T) is denoted by PC(T) and is called the algebra of piecewise
continuous functions. The following theorem summarizes the main characteristics of PC(T)
(see [1]). For the reader convenience we include its proof here.

Theorem 2.1. A function f : T→ C is in PC(T) if and only if f has finite one-sided limits
at every point of T.
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Proof. Since every function in PC0(T) has one-sided limits at every point of T, the uniform
limit of a convergent sequence of functions fn ∈ PC0(T) also possesses such a property.
Moreover, the set of discontinuities for the uniform limit of the sequence { fn} is at most
countable.

Consider now a function f : T→ C such that f has one-sided limits at every point of T.
Let r > 0, define the set

Ar = {t ∈ T : | f (t+)− f (t−)| > r}.
It is easy to prove that, for every r > 0, the set Ar is finite. In particular, the set A 1

2n
is finite.

For z ∈ A 1
2n

, let δz > 0 such that, if w ∈ (zeiδz ,z) then | f (w)− f (z−)| < 1
2n and, if w ∈ (z,ze−iδz),

then | f (w)− f (z+)| < 1
2n . Denote by Uz the open set (zeiδz ,ze−iδz).

If f is not continuous at the point z ∈T and z < A 1
2n

choose δz > 0 such that, if w ∈ (zeiδz ,z)

then, | f (w)− f (z−)| < 1
2n+1 and if w ∈ (z,ze−iδz) then, | f (w)− f (z+)| < 1

2n+1 . Then, for each
w ∈ Uz = (zeiδz ,ze−iδz),

| f (w)− fz| <
1
2n , where fz =

f (z+)+ f (z−)
2

.

Finally, if f is continuous at the point z ∈ T, let δz > 0 such that, for every w ∈ Uz =

(zeiδz ,ze−iδz)

| f (w)− f (z)| < 1
2n .

The family {Uz : z ∈T} is an open cover of T. Then, there exists a finite set of points z1, . . . ,zm

such that

T =
m∪

i=1

Uzi .

Define the following function, let z ∈ T and select Uzk such that z ∈ Uzk

fn(z) =


f (zk), if f is continuous at zk,
f (z+k )+ f (z−k )

2 , if f is not continuous at zk and zk ∈ T \A 1
2n
,

f (z−k ), if zk ∈ A 1
2n

and z ∈ (zkeiδzk ,zk],

f (z+k ), if zk ∈ A 1
2n

and z ∈ (zk,zke−iδzk ).

Then, | fn(z)− f (z)| < 1
2n ∀z ∈ T \A 1

2n
. Since A 1

2n
is finite for each n ∈ N we get

fn→ f in L∞.

Since each fn ∈ PC0(T) the function f belongs to PC(T).
�

Corollary 2.2. The set of all piecewise constant (step) functions is dense in PC(T).

Our aim is to study the algebra generated by Toeplitz operators whose symbols belong
to the tensor product SO[0,1)⊗PC(T). The set of finite products of the form

n∑
i=1

ai⊗bi, ai ∈ SO[0,1), bi ∈ PC(T)
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is dense in SO[0,1)⊗PC(T). Then each summand ai ⊗ bi can be decomposed as ai ⊗ bi =

(ai ⊗ 1)(1⊗ bi). The properties (2.3) and (2.4) imply thus that, to study the algebra gener-
ated by Toeplitz operators with symbols from SO[0,1)⊗PC(T), it is sufficient to consider
symbols of the form a⊗1 and 1⊗b only, where a ∈ SO[0,1) and b ∈ PC(T).

Note that a⊗1 is the radial extension of the function a ∈ SO[0,1), i.e., a⊗1(z)= a(|z|) and
1⊗b is the homogeneous of zero order extension of the function b ∈ PC(T), i.e., 1⊗b(z) =
b
(

z
|z|
)
. In what follows we will identify the functions a ∈ SO[0,1) and b ∈ PC(T) with their

extensions to the unit disk, and will write just a ∈ SO and b ∈ PC, where, in case when the
domains of a and b are not explicitly specified, their common domain is the unit disk.

2.1 Compactness properties

Denote byK the ideal of all compact operators acting onA2(D). Following [11], introduce

Λ = { f ∈ L∞(D) : T f Tg−T f g ∈ K ∀g ∈ L∞(D)}. (2.1)

It is known (see [11]) that the intersection Q = Λ∩Λ is the largest C∗-algebra in L∞(D)
such that the mapping

ϕ : Q→T (Q)/K , (2.2)

defined by
ϕ( f ) = T f +K,

is a C∗-homomorphism.
Let B denote the set of all functions f ∈ L∞(D) such that the corresponding Toeplitz

operator T f is compact. The kernel of the homomorphism (2.2) coincides with Q∩B, and
thus

Q/Q∩B � T (Q)/K .

The algebra Q admits another independent description (see [11]),

Q = ES V(D)+Q∩B,

where the space ES V(D) is set of all L∞(D)-functions f satisfying the following property:
for any ε > 0 and σ ∈ (0,1), there is δ0 > 0, such that | f (z)− f (w)| < ε, whenever |z|, |w| ∈
[1− δ,1−σδ], δ < δ0, and |argw− argz| ≤max(1− |z|,1− |w|).

It is straightforward to check that SO ⊂ ES V(D) (⊂ Q), which in turn implies, see (2.1),
that

[Ta1 ,Ta2) = Ta1Ta2 −Ta1a2 ∈ K , for all a1,a2 ∈ SO,[
Ta1 ,Ta2

]
= Ta1Ta2 −Ta2Ta1 ∈ K , for all a1,a2 ∈ SO,

[Ta,Tb) = TaTb−Tab ∈ K , for all a ∈ SO, b ∈ PC, (2.3)

[Ta,Tb] = TaTb−TbTa ∈ K , for all a ∈ SO, b ∈ PC. (2.4)

Furthermore, it is well known that, for arbitrary functions b1,b2 ∈ PC, the semi-commutator
[Tb1 ,Tb2) is not compact, in general, while the commutator [Tb1 ,Tb2] remains to be compact
(see for example [6]).
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Let T (PC) be the C∗-algebra generated by all Toeplitz operators Tb acting on A2(D)
and with symbol b ∈ PC(T), and let T (SO) be the C∗-algebra generated by all Toeplitz
operators Ta acting on A2(D) and with symbols a ∈ SO. By the above discussion, the
Calkin algebra of the algebra T (SO[0,1)⊗ PC(T)) is generated by the Calkin algebras of
the algebras T (PC) and T (SO). In the next two sections we describe each of these two
algebras.

3 Algebra T (PC)/K
The description of the algebra T (PC)/K is quite similar to the one of the Calkin algebra
T (PC(T))/K for the Hardy space case [1, 4].

To describe the symbol (Calkin) algebra SymT (PC) = T (PC)/K we use the Douglas-
Varela local principle [3, 8]. As a central commutative subalgebra of T (PC)/K we take
T (1⊗C(T))/K , which is isomorphic to C(T); its maximal ideal space is isomorphic to T.

For each point t ∈T consider the diameter starting at t. This diameter divide the unit disk
into two regions R+,R−. Introduce the operator P+ = χR+ IA2(D), and note that the Toeplitz
operator Ta is locally equivalent at the point t to the operator

a(t+)BDP++a(t−)BD(I−P+),

where a(t+) = lim
w→t
w∈R+

a(w), a(t−) = lim
w→t
w∈R−

a(w). Thus we have

Theorem 3.1. The local algebra T (PC)(t) of T (PC)/K at the point t ∈ T is generated by
the operator BDP+BD and the identity IA2(D).

It is well known (see, for example, [9, 10]) that sp BDP+BD = [0,1], which implies the
next corollary

Corollary 3.2. The local algebra T (PC)(t) of T (PC)/K at the point t is isomorphic to the
algebra of all continuous functions on [0,1]. The homomorphism

πt : T (PC) −→ T (PC)/K −→ T (PC)(t)

is given by the following mapping of the generators of T (PC)

πt : Ta 7−→ a(t+)x+ (1− x)a(t−), x ∈ [0,1].

Gluing together the descriptions of all local algebras T (PC)(t), t ∈ T we come to the
next description of the algebra T (PC)/K .

Theorem 3.3. The algebra T̂ (PC) = T (PC)/K is isomorphic and isometric to the algebra
of all continuous functions on the cylinder T× [0,1]. The Gelfand isomorphism

Γ : T̂ (PC) −→ C(T× [0,1])

is defined on the set of generators of T (PC) as follows

Γ : T̂a 7−→ a(t+)x+a(t−)(1− x), x ∈ [0,1], t ∈ T.
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We note that the cylinder T× [0,1], like in [1, 4], is equipped with the special topol-
ogy. A local base of neighborhoods at the point (t, x) consists of the sets {t} × (x− ϵ, x+
ϵ), 0 < ϵ < min {x,1− x} if x < {0,1}. For the point (t,1) a local base of neighborhoods is([

t, teiϵ
)
× (1− ϵ,1]

)∪((
t, teiϵ
)
× [0,1− ϵ]

)
with 0 < ϵ < 1. Finally for the point (t,0) a local

base of neighborhoods is((
te−iϵ , t

]
× [0, ϵ)

)∪((
te−iϵ , t

)
× [ϵ,1]

)
, with 0 < ϵ < 1.

Note as well that the topology of the cylinder, described above, is the weakest topology that
makes Γ(T̂a) continuous for every a ∈ PC.

4 Algebra T (SO)/K
The algebra T (SO) is a subalgebra of T (Q), considered in [11], and, at the same time, a
subalgebra of T (L∞[0,1)), which in turn is a subalgebra of the algebra considered in [5].

Being a subalgebra of T (Q), the algebra T (SO) admits the homomorphism (see (2.2))

ϕ : SO −→ SymT (SO) = T (SO)/K ,

defined by ϕ : a 7−→ Ta +K . The kernel of the homomorphism ϕ is SO∩ B = {a ∈ SO :
limr→1 a(r) = 0}, and thus

SymT (SO) = T (SO)/K � SO/SO∩B.

Let M(SO[0,1)) be the maximal ideal space of SO[0,1). For each r ∈ [0,1), let δr ∈
M(SO[0,1)) be the evaluation functional

δr( f ) = f (r).

Identifying δr with the point r, we can consider [0,1) as a subset of M(SO[0,1)). That is

M(SO[0,1)) = [0,1)∪M1(SO[0,1)),

where M1(SO[0,1)) is the fiber of M(SO[0,1)) consisting of all multiplicative functionals g
of M(SO[0,1)) such that g(a) = 0 whenever limr→1 a(r) = 0.

The maximal ideal space of SO[0,1)/SO[0,1)∩ B is thus isomorphic to M1(SO[0,1)),
which implies

T (SO)/K = SymT (SO) �C(M1(SO[0,1))). (4.1)

5 Toeplitz algebra T (SO[0,1)⊗PC(T))

Denote by T = T (SO[0,1)⊗PC(T)) the C∗-algebra generated by all Toeplitz operators T f

with symbols f ∈ SO[0,1)⊗PC(T). It is easy to see that C(D) ⊂ SO[0,1)⊗PC(T), and thus
T (C(D))⊂T (SO[0,1)⊗PC(T)), which in turn implies that the C∗-algebra is irreducible and
contains the ideal K of all compact operators on A2(D). Furthermore, by the commutator
properties, given in Section 2.1, the quotient algebra T̂ = T /K is commutative.
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To describe T̂ = T /K we will start by describing the Calkin algebra of the C∗-algebra
T (SO[0,1) ⊗C(T)) generated by all Toeplitz operators whose symbols are of the form
a(r)b(t) with a(r) ∈ SO[0,1), b(t) ∈ C(T). To do so, we will use the Douglas-Varela local
principle ([3, 8]) with T (1⊗C(T))/K as a central commutative subalgebra of T (SO[0,1)⊗
C(T))/K . Once we have done the description of T (SO[0,1)⊗C(T))/K , we will use this
algebra as a central commutative subalgebra of T̂ = T /K .

5.1 Algebra T (SO[0,1)⊗C(T))/K
This section is devoted to the description of the Calkin algebra of the C∗-algebra gen-
erated by all Toeplitz operators whose symbols are of the form a(r)b(t), where a(r) ∈
SO[0,1), b(t) ∈ C(T). The main tool we use here is the Douglas-Varela local principle,
and we use T (1⊗C(T))/K as a central commutative subalgebra of T (SO[0,1)⊗C(T))/K .
It is well known that T (1⊗C(T))/K is isomorphic to the algebra C(T). Thus, its maximal
ideal space is the set T, with the usual topology.

Theorem 5.1. Let t0 be a point in T. Then, the local algebra of T (SO[0,1)⊗C(T))/K at t0
is isomorphic to C(M1(SO[0,1))). The isomorphism is given by the following transforms of
the generators

Tab+K 7→ b(t0)̂a,

where â denotes the Gelfand transform of a.

Proof. It is easy to see that two operators Ta1 and Ta2 , with a1, a2 ∈ SO are locally equiv-
alent, at the point t0, if and only if Ta1−a2 ∈ K , or if and only if â1(φ) = â2(φ) for all
φ ∈ M1(SO[0,1)). On the other hand, Tb is locally equivalent, at the point t0, to b(t0)I.
These facts imply that the local algebra, at t0, is isomorphic to the C∗-algebra generated by
all Ta+K , where a ∈ SO. From (4.1) the last algebra is isomorphic to C(M1(SO[0,1))). �

Corollary 5.2. The Calkin algebra of the C∗-algebra T (SO[0,1)⊗C(T)) is isomorphic and
isometric to C(M1(SO[0,1))×T). The isomorphism is given by the following mapping of
the generators

Tab+K 7→ b(t)̂a(φ), (φ, t) ∈ M1(SO[0,1))×T.

5.2 Description of the algebra T (SO[0,1)⊗PC(T))/K
In this section we give the description of the Calkin algebra of the C∗-algebra T (SO[0,1)⊗
PC(T)). We use the Douglas-Varela local principle using as a central commutative algebra
the Calkin algebra of the C∗-algebra T (SO[0,1)⊗C(T)). By Corollary 5.2 the maximal
ideal space of the last algebra is M1(SO[0,1))×T. Therefore, we localize by the points of
M1(SO[0,1))× T.

Theorem 5.3. The Calkin algebra of the C∗-algebra generated by Toeplitz operators with
symbols in SO[0,1)⊗ PC(T) is isomorphic and isometric to the algebra of all continuous
functions on the compact set M1(SO[0,1))× (T× [0,1]). The isomorphism is given by the
following mapping of the generators

Tab+K 7−→ â(φ)[b(t−)(1− x)+b(t+)x], where φ ∈ M1(SO[0,1)), (t, x) ∈ T× [0,1],
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where a(r) ∈ SO[0,1), b(t) ∈ C(T), â is the Gelfand transform of the function a, and the
topology of the cylinder [0,1]×T is as described in Section 3.

Proof. Let (φ, t0) be a point of the set M1(SO[0,1))×T. Then, the operator Tab is locally
equivalent, at the point (φ, t0) to â(φ)[b(t+0 )BDP+BD+b(t−0 )BD(I−P+)BD], where P+ and P−
are defined in Section 3. The result then follows from Theorem 3.3. �
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