
Communications in Mathematical Analysis
Volume 17, Number 2, pp. 217–230 (2014)
ISSN 1938-9787

www.math-res-pub.org/cma

ROBUST FEEDBACK SYNTHESIS PROBLEM FOR SYSTEMS WITH A
SINGLE PERTURBATION

V. I. KOROBOV∗

Department of Differential Equations and Control,
Kharkov National University, Svobody sqr. 4, Kharkov 61077, Ukraine;

Institute of Mathematics, Szczecin University,
Wielkopolska str., 15, Szczecin, 70451, Poland

T. V. REVINA†

Department of Differential Equations and Control,
Kharkov National University, Svobody sqr. 4, Kharkov 61077, Ukraine

(Communicated by Vladimir Rabinovich)

Abstract

The paper deals with the global robust feedback syntheses of a bounded control for a disturbed canonical system
with an unknown bounded perturbation. Our approach is based on the controllability function method created by
V. I. Korobov in 1979. We find a segment where the perturbation can vary and give a positional control which is
independent of the perturbation and steers any initial point to the origin for any admissible perturbation from this
segment. An estimate for the time of motion is given.
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1 Introduction

The paper deals with the problem of global robust control design for the disturbed canonical system with an unknown
bounded perturbation. Specifically, we consider the following system:

ẋ1 = (1+ p(t,x1,x2, . . . ,xn))x2, ẋ2 = x3, . . . , ẋn−1 = xn, ẋn = u

or, in the matrix form,
ẋ = (A0 + p(t,x)R)x+b0u, (1.1)
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where

A0 =


0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 . . . 0 1
0 0 . . . 0 0

 , b0 =


0
. . .
0
1

 , R =


0 1 0 . . . 0
0 0 0 . . . 0

. . .
0 0 . . . 0 0
0 0 . . . 0 0

 .

Here t ≥ 0, x ∈ Rn is a state (n ≥ 2), u ∈ R is a control satisfying the constraint |u| ≤ 1, and p(t,x) is an unknown
bounded perturbation, which, however, satisfies the constraint d1 ≤ p(t,x)≤ d2.

Below, for a pair of numbers d1 < d2, by Pd1,d2 we denote the class of functions p(t,x) : [0;+∞)×Rn → R, each of
which satisfies the following conditions:
1) p(t,x) is continuous on t;
2) in any domain K1(t1,ρ2) = {(t,x) : 0 ≤ t ≤ t1, ∥x∥ ≤ ρ2}, ρ2 > 0, t1 > 0, the function p(t,x) satisfies the
Lipschitz condition

|p(t,x′′)− p(t,x′)| ≤ ℓ1(t1,ρ2)∥x′′− x′∥,
(where ℓ1(t1,ρ2) depends on the function p);
3) the function p(t,x) satisfies the constraint d1 ≤ p(t,x)≤ d2 for all (t,x) ∈ [0;+∞)×Rn.

Definition 1.1. The (d1,d2)-global robust feedback synthesis problem (or robust finite-time stabilization problem) for
system (1.1) is to construct a control of the form u = u(x), x ∈ Rn such that:
1) in any domain K2(ρ1,ρ2) = {x : 0 < ρ1 ≤∥x∥≤ ρ2}, 0 < ρ1 < ρ2, the function u(x) satisfies the Lipschitz condition

|u(x′′)−u(x′)| ≤ ℓ2(ρ1,ρ2)∥x′′− x′∥;

2) |u(x)| ≤ 1 for any x ∈ Rn;
3) for any p(t,x) ∈ Pd1,d2 the trajectory x(t) of the closed-loop system

ẋ = (A0 + p(t,x)R)x+b0u(x), (1.2)

starting at an arbitrary initial point x(0) = x0 ∈ Rn, ends at the origin at a finite time of motion T (x0, p) < ∞, that is
lim

t→T (x0,p)
x(t) = 0.

Our approach is based on the controllability function method, suggested by V. I. Korobov in 1979 [10, 11] in
connection with the feedback synthesis problem, and developed further in the works of V. I. Korobov, G. M. Sklyar
and other authors [1, 4, 15, 17]. Later, Korobov’s ideas were developed in many papers (see, for example, [19, 21]); an
application to chaotic systems can be found in [3].

The synthesis problem for systems with perturbations was first solved in [12]. Namely, for systems of the form
ẋ = Ax+ b(u+ v), where v is a bounded perturbation, a bounded control u = u(x) solving the synthesis problem and
independent of a perturbation was built. The robust feedback synthesis problem, in the statement close to the present
paper, first appeared in [14], and this investigation was continued in [20], where the robust feedback synthesis problem
for concrete oscillation systems was considered. The problem of asymptotically stable syntheses of a bounded control
which transfers points from a neighborhood of the origin to the origin in a finite time first proposed in [11], and
this investigation was continued in many papers (see, for example, [1]). In recent years, the problem of finite-time
stabilization appears in various formulations [2, 6, 9, 13, 18, 19].

The purpose of the present paper is to propose a constructive control algorithm for solving feedback syntheses
problem for the system (1.1) and study the robustness of this algorithm with respect to perturbation p(t,x). We find d1
and d2 for which the (d1,d2)-global robust feedback synthesis problem is solvable. Obviously, if p(t,x) =−1, then the
first coordinate x1 in (1.1) is uncontrollable; hence, the problem is not solvable for all values d1, d2. We emphasize that
the control u(x), which is constructed, necessarily satisfies the preassigned constraint, |u(x)| ≤ 1.

The paper is organized as follows. In Section 2, we recall the basic concepts of the controllability function method.
Section 3 contains the main results. In Section 4, the obtained results are illustrated by the examples in dimensions 2
and 3. In Section 5, an auxiliary lemma is proved.
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2 Background: the controllability function method

2.1 Statement of the feedback synthesis problem

We consider a control system of the form
ẋ = f (x,u), (2.1)

where x ∈ Q ⊂ Rn, Q is a certain neighborhood of the origin; u ∈ Ω ⊂ Rr, Ω is such that 0 ∈ int Ω. The feedback
synthesis problem is to construct a control in the form u = u(x), x ∈ Q, such that:
1) u(x) ∈ Ω;
2) the trajectory x(t) of the closed-loop system

ẋ = f (x,u(x)), (2.2)

starting at an arbitrary point x(0) = x0 ∈ Q, ends at the origin x(T ) = 0 at a finite time of motion T = T (x0) < ∞, that
is, lim

t→T (x0)
x(t) = 0. If Q = Rn, this problem is referred to as the global feedback synthesis problem.

Remark 2.1. Since there exist infinitely many trajectories passing through the origin (recall that the time of motion is
finite), the right-hand side of equation (2.2) cannot satisfy the Lipschitz condition in a neighborhood of the origin, due
to the theorem on the uniqueness of a solution.

2.2 The controllability function method

We formulate a general theorem concerning the controllability function method.

Theorem 2.2 (Korobov [10, 11, 13]). Consider the control system (2.1). Put G = {x : ∥x∥ ≤ r} (0 < r ≤ ∞). Assume
that the vector-function f (x,u) is continuous in G×Ω and satisfies the Lipschitz condition

∥ f (x′,u′)− f (x′′,u′′)∥ ≤ L1(ρ1,ρ2)(∥x′′− x′∥+∥u′′−u′∥)

in any domain {(x,u) : 0 < ρ1 ≤ ∥x∥ ≤ ρ2,u ∈ Ω}, 0 < ρ1 < ρ2.

Assume that there exists a function Θ(x), x ∈ G such that:
1) Θ(x)> 0 at x ̸= 0, and Θ(0) = 0;
2) Θ(x) is continuous in G and continuously differentiable in G\{0};
3) there exists a number c > 0 such that the set Q = {x : Θ(x)≤ c} is bounded and Q ⊂ {x : ∥x∥< r};
4) there exists a function u(x) ∈ Ω, x ∈ Q, such that for some positive numbers α1,β1,α2,β2 the following inequal-

ities hold:

−β1Θ1− 1
α1 (x)≤

n

∑
i=1

∂Θ(x)
∂xi

fi(x,u(x))≤−β2Θ1− 1
α2 (x) (2.3)

5) the function u(x) satisfies the Lipschitz condition

∥u(x′′)−u(x′)∥ ≤ L2(ρ1,ρ2)∥x′′− x′∥

in any domain K(ρ1,ρ2) = {(x) : 0 < ρ1 ≤ ∥x∥ ≤ ρ2}, 0 < ρ1 < ρ2.

Then the trajectory of the closed-loop system (2.2), starting at any initial point x(0) = x0 ∈ Q, ends at the point
x1(T ) = 0 and time of motion T (x0) is bounded as follows

α1

β1
Θ(x0)

1
α1 ≤ T (x0)≤

α2

β2
Θ

1
α2 (x0). (2.4)

Remark 2.3. When ρ1 tends to zero, Lipschitz constants Li(ρ1,ρ2), i = 1,2 increase indefinitely (see Remark 2.1).
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Remark 2.4. [1, 13] Theorem 2.2 can be extended to the case f (t,x,u), where f is continuous in [0,+∞)×G×Ω and
satisfies the Lipschitz condition

∥ f (t,x′,u′)− f (t,x′′,u′′)∥ ≤ L1(t1,ρ1,ρ2)(∥x′′− x′∥+∥u′′−u′∥)

in any closed domain {(t,x,u) : 0 ≤ t ≤ t1,0 < ρ1 ≤ ∥x∥ ≤ ρ2,u ∈ Ω}, 0 < ρ1 < ρ2, t1 > 0.

Remark 2.5. Inequalities (2.3) mean that the system moves in the direction of decrease of the function Θ(x). If α1 =
α2 = β1 = β2 = 1, then (2.3) takes the form

n

∑
i=1

∂Θ(x)
∂xi

fi(x,u(x)) =−1. (2.5)

This means that d
dt Θ(x(t)) = −1, where x(t) is a trajectory of the system (2.2). Therefore, Θ(x) = T (x), i.e., the

controllability function equals the time of motion from the point x to the origin [13].

Remark 2.6. Suppose that, in addition to the conditions of Theorem 2.2, the control u(x) is such that

min
u∈Ω

n

∑
i=1

∂Θ(x)
∂xi

fi(x,u) =
n

∑
i=1

∂Θ(x)
∂xi

fi(x,u(x)) =−1.

Then, for the function ω(x) =−Θ(x) =−T (x), the Bellman equation holds

max
u∈Ω

n

∑
i=1

∂ω(x)
∂xi

fi(x,u) = 1.

The Bellman equation can be interpreted as follows: we choose a control minimizing the angle between the direction
of motion and the direction of decrease of the function Θ(x). In the controllability function method this angle is not
necessarily minimal.

If we put α2 = ∞ in inequalities (2.3), we get

n

∑
i=1

∂Θ(x)
∂xi

fi(x,u(x))≤−βΘ(x). (2.6)

This means that Θ(x) is a Lyapunov function.

2.3 The controllability function method for linear systems

Let us suppose that system (2.1) is linear
ẋ = Ax+Bu (2.7)

and completely controllable. Suppose that {u : ∥u∥ ≤ d} ⊂ Ω. We describe only one possible way for constructing the
controllability function, which is used in the present paper.

Theorem 2.7 (Korobov, Sklyar [17]). Suppose that all eigenvalues of the matrix A have nonpositive real part. For any
x ̸= 0, define the controllability function Θ = Θ(x) as the unique positive solution of the equation

2a0Θ = (N−1(Θ)x,x), x ̸= 0, Θ(0) = 0, (2.8)

where

N(Θ) =

Θ∫
0

(
1− t

Θ

)
e−AtBB∗e−A∗tdt.
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Then for a sufficiently small a0, 0 < a0 ≤ a, the control

u(x) =−1
2

B∗N−1(Θ(x))x (2.9)

solves the global feedback synthesis problem for system (2.7) and satisfies the constraint ∥u(x)∥ ≤ d.
Moreover, in this case (2.5) holds, i.e., Θ(x) equals the time of motion from the point x to the origin.

Remark 2.8. Usually, a Lyapunov function is defined explicitly, while usually Θ(x) is defined implicitly by the equation
(2.8). Recall in this connection, that the optimal time of motion for a linear time-optimal control problem is also defined
implicitly [16].

Let us apply Theorem 2.7 to the canonical system

ẋ1 = x2, . . . , ẋn−1 = xn, ẋn = u,

or, in the matrix form,
ẋ = A0x+b0u, (2.10)

where u ∈ R satisfies the constraint |u| ≤ 1. It should be noted that for p(t,x) = 0 system (1.1) coincides with (2.10). It
can be easily shown that in this case N(Θ) = (D(Θ)FD(Θ))−1, where

D(Θ) = diag
(

Θ− 2n−2i+1
2

)n

i=1
, (2.11)

F−1 =

1∫
0

(1− t)e−A0tb0b∗0e−A∗
0tdt =

(
(−1)2n−i− j

(n− i)!(n− j)!(2n− i− j+1)(2n− i− j+2)

)n

i, j=1
. (2.12)

The elements fi j of the matrix F can be found explicitly [23], however, we do not use their precise form in this paper.
It can be shown that is this case a = 2

fnn
. So, let us choose any a0 such that

0 < a0 ≤
2
fnn

(2.13)

and define the controllability function Θ = Θ(x) as the unique positive solution of the equation

2a0Θ = (D(Θ)FD(Θ)x,x), x ̸= 0, Θ(0) = 0. (2.14)

Then the control
u(x) =−1

2
b∗0D(Θ(x))FD(Θ(x))x (2.15)

solves the global feedback synthesis problem for system (2.10) and satisfies the constraint |u(x)| ≤ 1.

3 Main results

Let us return to the system (1.1). Our goal is to find d1, d2 such that the control (2.15) solves the (d1,d2)-global robust
feedback synthesis problem for the system (1.1). Namely, let us choose a0 satisfying (2.13) and consider the closed-loop
system (1.2) with the control (2.15), where Θ(x) is defined as the unique positive solution of the equation (2.14). Put
y(Θ,x) = D(Θ)x, where D(Θ) is given by (2.11). Then equation (2.14) takes the following form

2a0Θ = (Fy(Θ,x),y(Θ,x)). (3.1)
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Let us denote by x(t) the trajectory of the system (1.2) and find the total derivative Θ̇ = d
dt Θ(x(t)). Equation (3.1) gives

2a0Θ̇ = (Fẏ(Θ,x),y(Θ,x))+(Fy(Θ,x), ẏ(Θ,x)).

Let us find ẏ(Θ,x). Put H = diag
(
−2n−2i+1

2

)n
i=1 , then

d
dΘ

D(Θ) =
1
Θ

HD(Θ). Therefore,

ẏ(Θ,x) = Ḋ(Θ)x+D(Θ)ẋ =
Θ̇
Θ

HD(Θ)x+D(Θ)A0x+ p(t,x)D(Θ)Rx+D(Θ)b0u(x) =

=
Θ̇
Θ

Hy(Θ,x)+D(Θ)A0D−1(Θ)y(Θ,x)+ p(t,x)D(Θ)RD−1(Θ)y(Θ,x)− 1
2

D(Θ)b0b∗0D(Θ)Fy(Θ,x).

Let us introduce the notation S(Θ) = Θ(FD(Θ)RD−1(Θ) + D−1(Θ)R∗D(Θ)F). One can show that [13]
D(Θ)RD−1(Θ) = Θ−1R, so we have

S(Θ) = S = FR+R∗F.

We emphasize that in the considered case the matrix S(Θ) does not depend on Θ. This observation is crucial for our
method of solving the robust feedback synthesis problem. In fact,

S =


0 f11 0 . . . 0
f11 2 f12 f13 . . . f1n

0 f13 0 . . . 0
. . .

0 f1n 0 . . . 0

 .

We denote

F1 = F −FH −HF = ((2n− i− j+2) fi j)
n
i, j=1 =


2n f11 (2n−1) f12 . . . (n+1) f1n

(2n−1) f21 (2n−2) f22 . . . n f2n

. . .
(n+1) f1n n f2n . . . 2 fnn

 . (3.2)

One can show that [13]

D(Θ)A0D−1(Θ) =
1
Θ

A0, D(Θ)b0 = Θ−1/2b0, FA0 +A∗
0F −Fb0b∗0F =−F1,

hence,

Θ̇(2a0 −
1
Θ
((FH +HF)y(Θ,x),y(Θ,x))) =

1
Θ
((−F1 + p(t,x)S)y(Θ,x),y(Θ,x)).

Taking into account equation (3.1), we get

Θ̇ =
(−F1 + p(t,x)S)y(Θ,x),y(Θ,x))

(F1y(Θ,x),y(Θ,x))
. (3.3)

Theorem 3.1. Let us consider the equation det(F1 − p̃S) = 0 with respect to p̃. Let d̃0
1 and d̃0

2 be the smallest and
largest roots of this equation respectively. Let us choose 0 < γ1 < 1, γ2 > 1. Put

d0
1 = max{(1− γ1)d̃0

1 ; (1− γ2)d̃0
2}, d0

2 = min{(1− γ1)d̃0
2 ; (1− γ2)d̃0

1}; (3.4)

Then for all d1 and d2 such that d0
1 < d1 < d2 < d0

2 , the control (2.15), where Θ(x) is defined by (2.14), solves the
(d1,d2)-global robust feedback synthesis problem for the system (1.1). Moreover, the trajectory of the closed-loop system
(1.2), starting at any initial point x(0) = x0 ∈Rn, ends at the point x(T ) = 0, where the time of motion T = T (x0,d1,d2)
satisfies the estimate

Θ(x0)

γ2
≤ T (x0,d1,d2)≤

Θ(x0)

γ1
. (3.5)
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Remark 3.2. Notice that the equation det(F1 − p̃S) = 0 is quadratic with respect to p̃.

Remark 3.3. Formula (3.4) gives the exact estimates for d0
1 and d0

2 .

Proof. We apply Theorem 2.2 and Remark 2.4. Below, for any symmetric matrix M, the notation M > 0 (or M < 0)
means that M is positive definite (or negative definite). Suppose p(t,x) ∈ Pd1,d2 , where d0

1 < d1 < d2 < d0
2 . Let us use

(3.3) and prove that
−γ2 < Θ̇ <−γ1. (3.6)

It can be shown that F1 > 0 [10, 5, 13]. Hence, taking into account (3.3) and denoting y = y(Θ,x), we can rewrite the
required this inequality as

(−γ2F1y,y)< ((−F1 + p(t,x)S)y,y)< (−γ1F1y,y),

or, what is the same,

(((1− γ1)F1 − p(t,x)S)y,y)> 0, (((1− γ2)F1 − p(t,x)S)y,y)< 0.

Therefore, it suffices to prove that

((1− γ1)F1 − pS)> 0, ((1− γ2)F1 − pS)< 0 for all d0
1 < p < d0

2 ,

or, what is the same,

(F1 − p̃1S)> 0 for all
d0

1
(1− γ1)

< p̃1 <
d0

2
(1− γ1)

and

(F1 − p̃2S)> 0 for all
d0

2
(1− γ2)

< p̃2 <
d0

1
(1− γ2)

.

Instead, taking into account (3.4), we prove that

(F1 − p̃S)> 0 for all d̃0
1 < p̃ < d̃0

2 , (3.7)

or what is the same,

(F1 − p̃S)> 0 for all p̃ such as min
{

d0
1

(1− γ1)
,

d0
2

(1− γ2)

}
< p̃ < max

{
d0

2
(1− γ1)

,
d0

1
(1− γ2)

}
.

The matrix (F1 − p̃S) has the form

F1 − p̃S =


2n f11 (2n−1) f12 − p̃ f11 (2n−2) f13 . . . (n+1) f1n

(2n−1) f12 − p̃ f11 (2n−2) f22 −2p̃ f12 (2n−3) f23 − p̃ f13 . . . n f2n − p̃ f1n

(2n−2) f13 (2n−3) f23 − p̃ f13 (2n−4) f33 . . . (n−1) f3n

. . .
(n+1) f1n n f2n − p̃ f1n (n−1) f3n . . . 2 fnn

 .

Put g(p̃) = det(F1 − p̃S); obviously, g(p̃) is a quadratic function. Let us find its leading coefficient. To this end, we
divide the 2nd line and 2nd column of the matrix (F1 − p̃S) by p̃ and then tend p̃ to ∞. We get that the coefficient of p̃2

in the polynomial g(p̃) equals det ∆̃n, where

∆̃n =


2n f11 − f11 (2n−2) f13 . . . (n+1) f1n

− f11 0 − f13 . . . − f1n

(2n−2) f13 − f13 (2n−4) f33 . . . (n−1) f3n

. . .
(n+1) f1n − f1n (n−1) f3n . . . 2 fnn

 . (3.8)
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One can prove (see Lemma 5.1 in Appendix) that det ∆̃n < 0. Hence, the function g(p̃) is quadratic with respect to p̃ with
the negative leading coefficient. Recall that, by definition, d̃0

1 and d̃0
2 are the smallest and largest roots of the equation

det(F1 − p̃S) = g(p̃) = 0. Moreover, g(0) = detF1 > 0 since F1 > 0. Hence, d̃0
1 < 0, d̃0

2 > 0, and det(F1 − p̃S)> 0 for
all d̃0

1 < p̃ < d̃0
2 .

Let us now prove (3.7). For p̃ = 0 the matrix F1 − p̃S equals F1 and is positive definite, hence, all its eigenvalues
are positive. Since eigenvalues continuously depend on the parameter p̃ and for all p̃ ∈ (d̃0

1 , d̃
0
2) the matrix F1 − p̃S is

nonsingular, its eigenvalues still positive. Hence, F1 − p̃S > 0 for all p̃ ∈ (d̃0
1 , d̃

0
2).

Thus, for any numbers d1,d2 such that d0
1 < d1 < d2 < d0

2 , and for any p(t,x) ∈ Pd1,d2 inequality (3.6) holds. This
means that inequality (2.3) holds for α1 = α2 = 1, β1 = γ2, β2 = γ1.

The rest of the proof can be carried out similarly to Theorem 2.2 and Remark 2.4 [1, 13].

Corollary 3.4. The values of d̃0
1 and d̃0

2 can be found as d̃0
1 = 1/λmin((F1)−1S), d̃0

2 = 1/λmax((F1)−1S).

Proof. Since F1 > 0, we get det(F1 − p̃S) = 0 if and only if det(I − p̃(F1)−1S) = 0. On the other hand, p̃ ̸= 0 is a root
of the last equation if and only if 1/ p̃ is an eigenvalue of the matrix (F1)−1S.

Remark 3.5. The result of Corollary 3.4 can be proved by methods of [7, 22].

Remark 3.6. To find a specific trajectory we act as follows. We take an arbitrary initial point x0 ∈ Rn. Then we
solve equation (2.14) at x = x0 and find its unique positive solution Θ(x0) = Θ0. Then we choose values d1 and d2 in
accordance with Theorem 3.1 and put θ(t) = Θ(x(t)). For any perturbation p(t,x) ∈ Pd1,d2 , the trajectory is a solution
of the following Cauchy problem: 

ẋ = (A0 + p(t,x)R)x− 1
2 b0b∗0D(θ)FD(θ)x,

θ̇ =
((−F1 + p(t,x)S)D(θ)x,D(θ)x)

(F1D(θ)x,D(θ)x)
x(0) = x0, θ(0) = Θ0.

Notice that equation (2.14) is solved only once.

4 Examples

4.1 Robust feedback synthesis problem for a two-dimensional system

Let us consider the robust feedback synthesis problem for the system{
ẋ1 = (1+ p(t,x1,x2))x2,
ẋ2 = u,

(4.1)

i.e. for system (1.1), where

A0 =

(
0 1
0 0

)
, R =

(
0 1
0 0

)
, b0 =

(
0
1

)
,

under the constraint on the control of the form |u| ≤ 1. The case when p is a fixed parameter is well known [18]. We
consider p as an unknown bounded perturbation: d1 ≤ p(t,x1,x2)≤ d2.

We have

F =

(
36 12
12 6

)
, D(Θ) =

(
Θ− 3

2 0

0 Θ− 1
2

)
, S =

(
0 36

36 24

)
, F1 − p̃S =

(
144 36(1− p̃)

36(1− p̃) 12(1−2 p̃)

)
.
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Hence, det(F1 − p̃S) = −432 (3p̃2 + 2p̃− 1) = 0 at p̃ = −1 and p̃ = 1/3. Equivalently, the eigenvalues of the matrix

(F1)−1S =

(
−3 −1
12 5

)
are equal to −1 and 3. Then in (3.4) we get

d0
1 = max{γ1 −1, (1− γ2)/3}, d0

2 = min{(1− γ1)/3, γ2 −1}.

Note that whenever γ1 and γ2 are close to 1, the values of d0
1 and d0

2 are close to zero. E. g., at γ1 = 0,9 and γ2 = 1,1
we obtain d0

1 ≈ −0,03, d0
2 ≈ 0,03, and the estimate on the time of motion is 10 Θ(x0)/11 ≤ T (x0) ≤ 10 Θ(x0)/9.

Conversely, when γ1 and γ2 are far from 1, the values of d0
1 and d0

2 have a greater range. E. g., at γ1 = 0,09; γ2 = 4 we
have d0

1 ≈−0,91; d0
2 ≈ 0,303, and the estimate on the time of motion is Θ(x0)/4 ≤ T (x0)≤ 100 Θ(x0)/9.

Equation (2.14) for the controllability function takes the form

2a0Θ4 = 36x2
1 +24Θx1x2 +6Θ2x2

2, (4.2)

where 0 < a0 ≤ 2/ f22 = 1/3. Let a0 = 1/3. The control equals

u(Θ,x) =−6x1

Θ2 − 3x2

Θ
, (4.3)

Put γ1 = 0,09; γ2 = 4, we have d0
1 ≈ −0,91; d0

2 ≈ 0,303. Let us choose d1 = −0,9; d2 = 0,3 then [−0.9;0.3] ⊂
⊂ (−0.91,0.303). Let the initial point be equal to x0 = (4;−4). Then the unique positive solution of (4.2) is
Θ0 ≈ 9,68. Three trajectories corresponding to p =−0,9; p = 0; p = 0.3 are present in Fig. 1. If p = const, then the
trajectories fill up the area between the trajectories corresponding to p =−0.9 and p = 0.3.

p=0p=0.3

p=-0.9

x1

x2

>

ß

0-6 -4 -2 2 4

-4

-3

-2

-1

1

2

3

Figure 1. Three trajectories of system (4.1)

As a concrete realization of a perturbation, consider the function

p(t,x1,x2) =−0.3sin
(
(x2

1 + x2
2)t

5

)
. (4.4)

The trajectory is given in Fig. 2; the control on the trajectory is given in Fig. 3; the total derivative of the function
Θ(x) with respect to closed-loop system (4.1) is given in Fig. 4. Although the total derivative of the function Θ(x)
satisfies the inequality −4 ≤ Θ̇ ≤−0.09, the controllability function is close to linear (given in Fig. 5). We emphasize
that in the case then p(t,x) = 0 the total derivative of the function Θ(x) with respect to closed-loop system (4.1) satisfy
the equation Θ̇ =−1. We may see that the control u(x) satisfies the preassigned constraint |u(x)| ≤ 1. The estimate on
the time of motion (3.5) is as follows: 2.42 ≤ T (x0) ≤ 107.57. The time of motion T is approximately equal to 8.24.
Notice that the time of motion is less than Θ0.
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Figure 2. Trajectory for p(t,x) of form
(4.4)

>

ß

t

u

0 2 4 6 8

-1.0

-0.5

0.5

1.0

Figure 3. Control on the trajectory for
p(t,x) of form (4.4)
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Figure 4. Total derivative of the function
Θ(x) on the trajectory for p(t,x) of form
(4.4)
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Figure 5. Controllability function Θ(x) on
the trajectory for p(t,x) of form (4.4)

4.2 Robust feedback synthesis problem for a three-dimensional system

Let us consider the robust feedback synthesis problem for the system
ẋ1 = (1+ p(t,x1,x2,x3))x2,
ẋ2 = x3,
ẋ3 = u,

(4.5)

i.e. for the system (1.1), where

A0 =

 0 1 0
0 0 1
0 0 0

 , R =

 0 1 0
0 0 0
0 0 0

 , b0 =

 0
0
1

 ,

where |u| ≤ 1. Here p(t,x1,x2,x3) is an unknown bounded perturbation: d1 ≤ p(t,x1,x2,x3)≤ d2. We have

F =

 2400 960 120
960 420 60
120 60 12

 , D(Θ) =


Θ− 5

2 0 0

0 Θ− 3
2 0

0 0 Θ− 1
2

 , S =

 0 2400 0
2400 1920 120

0 120 0

 ,
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F1 − p̃S =

 14400 2400(2− p̃) 480
2400(2− p̃) 240(7−8 p̃) 60(3−2p̃)

480 60(3−2p̃) 24

 .

Then we obtain det(F1− p̃S) =−3456000(20 p̃2+4p̃−1) = 0 for p̃= (−1±
√

6)/10. Equivalently, the matrix (F1)−1S
has the form

(F1)−1S =

 −20 −17/2 −1
80 34 4

−200 −80 −10


and its eigenvalues are equal to {2(1±

√
6);0}. Then in (3.4) we get

d0
1 = max{(γ1 −1)(1+

√
6)/10; (1− γ2)(

√
6−1)/10}, d0

2 = min{(1− γ1)(
√

6−1)/10; (γ2 −1)(
√

6+1)/10}.

Equation (2.14) for the controllability function takes the form

2a0Θ6 = 2400x2
1 +1920Θx1x2 +240Θ2x1x3 +420Θ2x2

2 +120Θ3x2x3 +12Θ4x2
3, (4.6)

where 0 < a0 ≤ 2/ f33 = 1/6. Let a0 = 1/6. The control is chosen as

u(Θ,x) =−60x1

Θ3 − 30x2

Θ2 − 6x3

Θ
. (4.7)

Put γ1 = 0,09; γ2 = 4, we have d0
1 ≈−0,313; d0

2 ≈ 0,131. Let us choose d1 =−0,31; d2 = 0,13 then [−0.31,0.13]⊂
⊂ (−0.313,0.131). Let the initial point be equal to x0 = (4;−4;1). Then the unique positive solution of (4.6) is
Θ0 ≈ 18.55.

Consider a perturbation of the form

p(t,x1,x2,x3) = 0.13cos
(
(x2

1 + x2
2 + x2

3)t
70

)
. (4.8)

The trajectory components, the control on the trajectory, the total derivative of the function Θ(x) with respect to system
(4.5), the controllability function Θ(x) are given in Fig. 6-9. We emphasize that in the case then p(t,x) = 0 the total
derivative of the function Θ(x) with respect to closed-loop system (4.1) satisfy the equation Θ̇ =−1. We may see that
the control u(x) satisfies the preassigned constraint |u(x)| ≤ 1. The estimate on the time of motion (3.5) is as follows:
4.63 ≤ T (x0) ≤ 206.1. The time of motion T is approximately equal to 18.51. Notice that the time of motion is less
then Θ0.
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Figure 6. Trajectory components for
p(t,x) of form (4.8)
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Figure 7. Control on the trajectory for
p(t,x) of form (4.8)
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Figure 8. Total derivative of the function
Θ(x) on the trajectory for p(t,x) of form
(4.8)
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Figure 9. Controllability function Θ(x) on
the trajectory for p(t,x) of form (4.8)

5 Appendix

Lemma 5.1. Suppose the matrix ∆̃n is given by (3.8); then det ∆̃n < 0.

Proof. Let us fix n ≥ 2 (the dimension of the system). Let us permute the 1st and the 2nd lines, as well as the 1st and the
2nd columns in ∆̃n, then

det ∆̃n = det



0 − f11 − f13 − f14 . . . − f1n

− f11 2n f11 (2n−2) f13 (2n−3) f14 . . . (n+1) f1n

− f13 (2n−2) f13 (2n−4) f33 (2n−5) f34 . . . (n−1) f3n

− f14 (2n−3) f14 (2n−5) f34 (2n−6) f44 . . . (n−2) f4n

. . .
− f1n (n+1) f1n (n−1) f3n (n−2) f4n . . . 2 fnn

 .

For k = 2, . . . ,n, let us introduce the following matrices

∆2 =

(
0 − f11

− f11 2n f11

)
, ∆k =


0 − f11 − f13 . . . − f1k

− f11 2n f11 (2n−2) f13 . . . (k+1) f1k
− f13 (2n−2) f13 (2n−4) f33 . . . (k−1) f3k

. . .
− f1k (k+1) f1k (k−1) f3k . . . (n− k+2) fkk

 , k ≥ 3,

that is, ∆k are leading principal submatrices of the matrix ∆n. Also, consider the matrix F1, which is defined by (3.2).
Let us permute its 1st and the 2nd lines, as well as the 1st and the 2nd columns. As a result, we get the matrix

Φ =


(2n−2) f22 (2n−1) f21 (2n−3) f23 . . . n f2n

(2n−1) f12 2n f11 (2n−2) f13 . . . (n+1) f1n

(2n−3) f23 (2n−2) f13 (2n−4) f33 . . . (n−1) f3n

. . .
n f2n (n+1) f1n (n−1) f3n . . . 2 fnn

 .

Since F1 > 0, we get Φ > 0. Following [8], for a matrix Z with elements zi j we use the notation

Z
(

i1, . . . , iq
j1, . . . , jq

)
= det

 zi1 j1 zi2 j2 . . . zi1 jq
. . .

ziq j1 ziq j2 . . . ziq jq

 .
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Now, let us prove that det∆k < 0 for all k = 2, . . . ,n. The proof is by induction on k. For k = 2, we get

det∆2 = det
(

0 − f11
− f11 2n f11

)
=− f 2

11.

Since the matrix F is positive definite [10, 5, 13], it follows that f11 > 0, hence, det∆2 < 0.
Suppose k ≥ 3 and det∆i < 0 for i = 2, . . . ,k−1. Introduce the following notation for special minors of the matrix

∆n and take into account that the elements of Φ coincide with corresponding elements of the matrix ∆n, except the 1st

line and the 1st column:

△1,k = ∆k

(
2,3, . . . ,k
1,2, . . . ,k−1

)
, △k,1 = ∆k

(
1,2, . . . ,k−1
2,3 . . . ,k

)
, △k,k = ∆k

(
1,2, . . . ,k−1
1,2, . . . ,k−1

)
= det∆k−1,

△= ∆k

(
2, . . . ,k−1
2, . . . ,k−1

)
= Φ

(
2, . . . ,k−1
2, . . . ,k−1

)
, △1,1 = ∆k

(
2, . . . ,k
2, . . . ,k

)
= Φ

(
2, . . . ,k
2, . . . ,k

)
.

Since Φ > 0, we get △> 0 and △1,1 > 0. Since ∆n is symmetric, △1,k =△k,1.
Now we apply Silvester’s determinant identity [8] to the matrix ∆k, which reads

det
(

△k,k △1,k
△k,1 △1,1

)
= det∆k△,

i.e.,
△k,k△1,1 −△2

1,k = det∆k△.

Since △ > 0, △1,1 > 0, and △k,k < 0 by the induction hypothesis, it follows that det∆k < 0. The induction arguments
complete the proof.

Thus, det∆k < 0 for all k = 2, . . . ,n. Since det∆n = det ∆̃n, we get det ∆̃n < 0.
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