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Abstract

In “Multiplicative Structure of the Resolvent Matrix for the Truncated Matricial
Hausdorff Moment Problem”, Operator Theory: Advances and Applications, (2012)
by the author, a multiplicative decomposition of resolvent matrix U(2n) for the trun-
cated Hausdorffmatrix moment (THMM) problem via Blaschke–Potapov factors b(2 j)

was obtained. In this work we show that every such Blaschke–Potapov factor can be
represented as a product of block tridiagonal matrices containing Stieltjes matrix pa-
rameters (SMP) depending on a or b. This SMP are in turn a generalization of the Yu.
Dyukarev’s Stieltjes parameters introduced in “Indeterminacy criteria for the Stieltjes
matrix moment problem”, Mathematical Notes (2004).
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1 Introduction

Throughout this paper, let q be a positive integer. We will use C, R, N0 and N to denote the
set of all complex numbers, the set of all real numbers, the set of all nonnegative integers,
and the set of all positive integers, respectively. The notation Cp×q stands for the set of all
complex p× q matrices. For the null matrix that belongs to Cp×q we will write 0p×q. We
denote by 0q and Iq the null and identity matrices in Cq×q. In cases where the size of the
null and the identity matrix are clear, we will omit the indices.

The main object of the present work are the Blaschke–Potapov factors of the truncated
Hausdorffmatrix moment (THMM) problem in the case of an odd number of moments. Let
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us first recall the statement of the THMM in the case of an odd number of moments:Let
a finite sequence of complex q× q matrices (s j)2n

j=0 be given. Find the set Mq
≥[[a,b],B∩

[a,b]; (s j)2n
j=0] of all nonnegative Hermitian q×q measures σ which are defined on the Borel

σ–algebra B∩ [a,b] on [a,b] such that

s j =

∫
[a,b]

t jdσ(t) (1.1)

for each integer j with 0 ≤ j ≤ 2n.
It was proved in [8, Theorem 1.3] that the THMM problem is solvable if and only if the

block matrices H1,n and H2,n−1 are positive semidefinite, where

H1,n :=H̃0,n, n ≥ 0, (1.2)

H2,n−1 :=−abH̃0,n−1+ (a+b)H̃1,n−1− H̃2,n−1, n ≥ 1 (1.3)

which are defined with the help of the Hankel matrices,

H̃0, j :=


s0 s1 . . . s j

s1 s2 . . . s j+1
...

...
...

...

s j s j+1 . . . s2 j

 , H̃1, j :=


s1 s2 . . . s j+1
s2 s3 . . . s j+2
...

...
...

...

s j+1 s j+2 . . . s2 j+1


and

H̃2, j :=


s2 s3 . . . s j+2
s3 s4 . . . s j+3
...

...
...

...

s j+2 s j+3 . . . s2 j+2

 .
Definition 1.1. Let the block Hankel matrices H1, j and H2, j−1 be defined by (1.2) and (1.3).
The sequence (sk)2 j

k=0 is called Hausdorff positive (resp. nonnegative) on [a,b] if the block
Hankel matrices H1, j and H2, j−1 are both positive (resp. nonnegative) definite matrices.

Throughout this work, we assume that (s j)2n
j=0 is a Hausdorff positive on [a,b] sequence.

Let σ be a q× q positive measure on [a,b]. Then the function Fσ : C \ [a,b]→ Cq×q

defined by

Fσ(z) :=
∫

[a,b]

1
t− z
σ(dt)

is called the Stieltjes transform of σ. In view of the Stieltjes–Perron invesion formula
the measure σ is uniquely determined by its Stieltjes transform. Following the classical
procedure of Stieltjes the above moment problems are handled to describe the set of Stieljtes
transforms of all solutions.

The corresponding set of solutions for the THMM problem in the case of an odd number
of moments is given with the help of the linear fractional transformation of the form (see
[8, Theorem 6.14]):

s(z) = (α(2n)(z)p(z)+β(2n)(z)p(z))(γ(2n)(z)p(z)+δ(2n)(z)p(z))−1. (1.4)

The pair column(p,q) satisfies certain properties, see [8, Definition 5.2].
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Definition 1.2. The 2q×2q matrix–valued function

U(2n) =

(
α(2n) β(2n)

γ(2n) δ(2n)

)
of the linear fractional transformation (1.4) is called the resolvent matrix of the THMM,
where α(2n), β(2n), γ(2n) and δ(2n) are q×q polynomials constructed via the sequence (s j)2n

j=0.

In [8, Lemma 6.3] a crucial property of the RM U(2n), namely, that it belongs to the
Potapov class:

Definition 1.3. Let

Jq :=
(

0q −iIq

iIq 0q

)
(1.5)

and Π+ := {w ∈ C : Imw ∈ (0,+∞)}. A matrix–valued entire function W : C→ C2q×2q is said
to belong to the Potapov class PJq in Π+ if

Jq−W∗(z)JqW(z) ≥ 02q×2q, z ∈ Π+. (1.6)

A matrix–valued function W that belongs to PJq is called a Jq–inner function of PJq if

Jq−W∗(x)JqW(x) = 02q×2q, x ∈ R.

In [5] the multiplicative representation of the RM of the THMM problem in the case of
an odd number of moments was obtained:

U(2n)(z) = b(0)(z) ·b(2)(z) · · · ·b(2n)(z), (1.7)

where b(2 j) are q×q matrices linear with respect to z.
Within the Potapov’s framework [20] similar decompositions of RM of matrix interpo-

lation problems were studied in [14], [15], [17], [19], [27] and [28].

1.1 Main results of the present work

The main results of this work are the following:

a) We find two multiplicative decompositions for each Blaschke–Potapov factor b(2 j)

of the THMM in the case of odd number of moments via two families of Stieltjes
parameters depending on the terminal points of the interval [a,b]. See Theorem 4.9.

b) As a consequence, in Corollary 4.10 two multiplicative representations of the RM,
U(2n)(z) in terms of two families of Stieltjes parameters are given.

c) We prove that the Blaschke–Potapov factors b(2 j) belong to the Potapov class PJq in
Π+.
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Note that we crucially use the orthogonal polynomials Pk, j, Γk, j on [a,b] and their sec-
ond kind polynomials Qk, j, Θk, j, see Definitions A.1 and A.3 as well as [3]. Orthogonal
matrix polynomials (OMP) were first studied by M. G. Kreı̆n in 1949 [25], [26]. Further
research on OMP on the real line was conducted by I. V. Kovalishina [24], A. I. Aptekarev
and E. M. Nikishin [1], H. Dym [13], A. Durán [12], H. Dette [11], Damanik/Pushnitski/-
Simon [10] and the references therein. See also [18], [22], [23], and [21].

The decomposition of the Blaschke–Potapov of the THMM in the case of an even num-
ber of moments is considered in [2].

2 Notation and Preliminaries

Let R j : C→ C( j+1)q×( j+1)q be given by

R1, j(z) := (I( j+1)q− zT j)−1, j ≥ 0, (2.1)

with

T0 := 0q, T j :=
(

0q× jq 0q

I jq 0 jq×q

)
, j ≥ 1. (2.2)

Let

v0 := Iq, v j :=
(

Iq

0 jq×q

)
=

(
v1, j−1

0q

)
, ∀ j ∈ N. (2.3)

ŝ j = −abs j+ (a+b)s j+1− s j+2, 0 ≤ j ≤ 2n−2 (2.4)

and

y[ j,k] :=


s j

s j+1
. . .

sk

 ,0 ≤ j ≤ k, ŷ[ j,k] :=


ŝ j

ŝ j+1
. . .

ŝk

0 ≤ j ≤ k. (2.5)

Furthermore, let

Y1, j := y[ j,2 j−1], 1 ≤ j ≤ n, Y2, j := ŷ[ j,2 j−1], 1 ≤ j ≤ n−1, (2.6)

u1,0 := 0q, u1, j :=
(

0q

−y[0, j−1]

)
, 1 ≤ j ≤ n, (2.7)

and

u2,0 := −(a+b)s0+ s1, u2, j :=
(
−(a+b)s0+ s1
−̂y[0, j−1]

)
, 1 ≤ j ≤ n−1. (2.8)

Let Ĥ1, j (resp. Ĥ2, j−1) denote the Schur complement of the block s2 j (resp.−abs2 j−2+

(a+b)s2 j−1− s2 j) of the matrix H1, j (resp. H2, j−1):

Ĥ1,0 := H1,0, Ĥ1, j := s2 j−Y∗1, jH
−1
1, j−1Y1, j, 1 ≤ j ≤ n, (2.9)

Ĥ2,0 := H2,0, Ĥ2, j := ŝ2 j−Y∗2, jH
−1
2, jY2, j. 1 ≤ j ≤ n−1, (2.10)

The quantities (2.9) and (2.10) have been defined in [11] for a = 0 and b = 1.
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Definition 2.1. [8, Remark 6.11] Let (sk)2n
k=0 be an odd Hausdorff positive on [a,b] se-

quence. The 2q×2q matrix polynomial

U(2 j)(a,b,z) :=
(
α(2 j)(a,z) β(2 j−2)(a,b,z)
γ(2 j)(a,z) δ(2 j−2)(a,b,z)

)
, z ∈ C, 1 ≤ j ≤ n, (2.11)

is called the RM of the THMM problem in the case of an odd number of moments, where

α(2 j)(a,z) :=Iq− (z−a)u∗1, jR
∗
j(z̄)H−1

1, jR j(a)v j, (2.12)

γ(2 j)(a,z) :=− (z−a)v∗jR
∗
j(z̄)H−1

1, jR j(a)v j (2.13)

for 0 ≤ j ≤ n, and

β(2 j)(a,b,z) :=
1

b−a
(s0+ (u∗2, j+ zs0v∗j)R

∗
j(z̄)H−1

2, jR j(a)(u2, j+av js0)), (2.14)

δ(2 j)(a,b,z) :=
b− z
b−a

(Iq+ (z−a)v∗jR
∗
j(z̄)H−1

2, jR j(a)(u2, j+av js0)) (2.15)

for 0 ≤ j ≤ n−1. Below, we will omit the dependence of U(2 j) on a and b.

Note that here we use the representation of the blocks β(2 j) and δ(2 j) derived in [6, Prepo-
sition 3.1] instead of the one introduced in [8, Formula (6.55)] and [8, Formula (6.57)].

The inverse of H1, j, for 1 ≤ j ≤ n and the inverse of H2, j, for 1 ≤ j ≤ n−1 can be written
in the form

H−1
k, j =

(
H−1

k, j−1 0 jq×q

0q× jq 0q

)
+

( −H−1
k, j−1Yk, j

Iq

)
Ĥ−1

k, j(−Y∗k, jH
−1
k, j−1, Iq). (2.16)

Let

λ0 := Iq, λ j :=
(

0 jq×q

Iq

)
, j ≥ 1. (2.17)

The proof of the following Remark follows by direct calculation.

Remark 2.2. Let (sk)2 j
k=0 be an odd Hausdorff positive on [a,b] sequence. Let Pk, j and Qk, j

be as in Definition A.1. Let u1, j, u2, j, Y1, j, Y2, j, R j, H1, j, H2, j, λ j and ŝ j be as in (2.7),
(2.8), (2.6), (2.1), (1.2), (1.3), (2.17) and (2.4), respectively. Then the following identities
are valid:

P1, j(z) = z jIq−Y∗1, jH
−1
1, j−1R j−1(z)v j−1, 1 ≤ j ≤ n, (2.18)

P2, j(z) = z jIq−Y∗2, jH
−1
2, j−1R j−1(z)v j−1, 1 ≤ j ≤ n−1, (2.19)

Q1, j(z) = −(−Y∗1, j+ zλ∗jH1, j−1)H−1
1, j−1R j−1(z)u1, j−1+ s j−11 ≤ j ≤ n, (2.20)

and

Q2, j(z) = −(−Y∗2, j+ zλ∗j−1H2, j−1)H−1
2, j−1R j−1(z)(u2, j−1+ zv j−1s0)+ ŝ j−1, 1 ≤ j ≤ n−1.

(2.21)
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3 Main Algebraic Identities

In this section we recall and introduce important identities which we use throughout this
work. Let

u j :=− col (s0, s1, . . . , s j), (3.1)

For each positive integer n, let

L1,n :=
(
δ j,k+1Iq

)
j = 0, . . . ,n

k = 0, . . . ,n−1
and L2,n :=

(
δ j,kIq

)
j = 0, . . . ,n

k = 0, . . . ,n−1
, (3.2)

where δ j,k is the Kronecker symbol: δ j,k := 1 if j = k and δ j,k := 0 if j , k.

Remark 3.1. Let u1, j, v j, H1, j, T j, λ j, L1, j, L2, j, ŝ j, Y1, j and R j be as in (2.7), (1.2), (2.2),
(2.17), (3.2), (2.4), (2.6) and (2.1), respectively. Then the following identities are valid:

u∗1, j+ v∗jH1, jT ∗j = 0, 1 ≤ j ≤ n, (3.3)

λ j−1−L∗1, jλ j = 0, (3.4)

s0− v∗jH1, jv j = 0, 1 ≤ j ≤ n, (3.5)

(b−a)T ∗j + (L1, j−bL2, j)L∗1, j+ v jv∗j − (I( j+1)q−aT ∗j ) = 0, 1 ≤ j ≤ n, (3.6)

ŝ j−1+ (b−a)s j+av∗jH1, j(bT ∗jλ j−2λ j)+ v∗jY1, j+1 = 0, (3.7)

a j+1v j−
(
−a(L1, j−bL2, j)L∗1, j(I−aT ∗j )−a(b−a)T ∗j −a(L1, j−bL2, j)L∗1, j

)
R∗j(a)λ j

−abT ∗jλ j+2aλ j = 0. (3.8)

Proof. The identities (3.3), (3.5), (3.6) and (3.7) can be directly calculated using (2.7),
(2.3), (1.2), (2.2) and (3.2). �

Proposition 3.2 (Coupling identities). [8, Proposition 3.4] Let (s j)2n
j=0 be a sequence of

complex q×q matrices. Then the following identities hold for 1 ≤ j ≤ n:

(u∗2, j−1+as0v∗j−1)R∗j−1(a)− v∗jH1, j(L1, j−bL2, j) = 0, (3.9)

R j−1(a)(u2, j−1+as0v j−1)P∗j+1(a)−H2, j−1L∗1, jR
∗
j(a)(−H−1

1, jY1, j+1+aλ j)−Y2, j = 0 (3.10)

R j(a)v j(u∗2, j−1+as0v∗j−1)R∗j−1(a)−R j(a)L1, jH2, j−1−H1, j(L1, j−bL2, j) = 0. (3.11)

Proposition 3.3 (More coupling identities). Let β(2 j), Q2, j, Q1, j, P1, j, Ĥ1, j and Ĥ2, j be as
in (2.14), Definitions A.1, A.3, (2.9) and (2.10), respectively. Then the following identities
hold

β(2 j)(a)−β(2 j−2)(a)− 1
b−a

Q∗2, j(a)Ĥ−1
2, jQ2, j(a) = 0, 1 ≤ j ≤ n−1, (3.12)

Q∗2, j(a)− (b−a)Q∗1, j+1(a)+ (b−a)β(2 j−2)(a)P∗1, j+1(a) = 0, 1 ≤ j ≤ n−1, (3.13)

Ĥ1,1+ Ĥ2,0+P1,1(a)Q∗2,0(a) = 0, (3.14)

Ĥ1, j+1+ Ĥ2, j+P1, j+1(a)Q∗2, j(a) = 0, 1 ≤ j ≤ n−1. (3.15)
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Proof. The proof of (3.12) is by direct calculation. Use (2.14), (2.16) (2.21) and the identi-
ties

R j(z) =
(

R j−1(z) 0( j)q×q

(z jIq,z j−1Iq, . . . ,zIq) Iq

)
, û2, j(a) =

(
û2, j−1(a)
−ŝ j−2

)
,

where û2, j(a) := u2, j−1+av j−1s0. Now we prove (3.13). By using (2.21), (2.20), (2.18) and
(2.14) we have

Q∗2, j(a)− (b−a)Q∗1, j+1(a)+ (b−a)β(2 j−2)(a)P∗1, j+1(a)

=ŝ j−1+ (u∗2, j−1+as0v∗j−1)R∗j−1(a)H2, j−1Y2, j−a(u∗2, j−1+as0v∗j−1)R∗j−1(a)λ j−1

− (b−a)s j− (b−a)u∗1, j(a)R∗j(a)H−1
1, jY1, j+1+a(b−a)u∗1, j(a)R∗j(a)λ j

− (s0+ (u∗2, j−1+as0v j−1)R∗j−1(a)H2, j−1R j−1(a)(u2, j−1+av j−1s0))P∗1, j+1(a)

=ŝ j−1− (b−a)s j+ v∗jH1, j
(
−a(L1, j−bL2, j)λ j−1+ (b−a)T j ∗R∗j(a)H−1

1, jY1, j+1

−a(b−a)T ∗j R
∗
j(a)λ j−a j+1v j+ v jv∗jR

∗
j(a)H−1

1, jY1, j+1− v jH1, j(L1, j−bL2, j)L∗1, jR
∗
j(a)

· H−1
1, jY1, j+1a(L1, j−bL2, j)L∗1, jR

∗
j(a)λ j

)
=ŝ j−1− (b−a)s j−av∗jH1, j(bT ∗jλ j−2aλ j)+ v∗jY1, j+1

=0.

In the second equality we used (3.9), (3.10), (3.11), (3.3) and (3.5), whereas in the third
equality we used (3.4), (3.6) and (3.8). In the last equality we used (3.7).

The proof of (3.14) is by direct calculation. Now we prove the identity (3.15). By
employing (A.1), (A.2) and (A.5), we have

P1, j+1(a)Q∗2, j(a)+ Ĥ1, j+1+ Ĥ2, j

=− (−Y∗1, j+1H−1
1, j, Iq)R j+1(a)v j+1(u∗2, j+as0v∗j)R

∗
j(a)

( −H−1
2, j−1Y2, j

Iq

)
+ Ĥ1, j+1+ Ĥ2, j

=− (−Y∗1, j+1H−1
1, j, Iq)R j+1(a)L1, j+1H2, j

( −H−1
2, j−1Y2, j

Iq

)
− (−Y∗1, j+1H−1

1, j, Iq)H1, j+1(L1, j+1−bL2, j+1)+ Ĥ1, j+1+ Ĥ2, j

=− (−Y∗1, j+1H−1
1, j, Iq)R j+1(a)

(
0( j+1)q×q

Ĥ2, j

)
− (0q× jq, Ĥ1, j+1)(L1, j+1−bL2, j+1)+ Ĥ1, j+1+ Ĥ2, j

=0.

In the second equality we used (3.11), whereas in the third equality we use the following
relations:

H2, j =

(
H2, j Y2, j
Y∗2, j ŝ2 j−2

)
, H1, j =

(
H1, j Y1, j
Y∗1, j s2 j

)
,

(2.9) and (2.10). The last equality is verified by direct calculation. �
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4 Two Decompositions of the Blaschke–Potapov Factors in the
Case of an Odd Number of Moments

In this section we give a multiplicative representation of the Blaschke–Potapov factors b(2 j).
of the RM of the THMM.

Definition 4.1. Let Ĥ1, j, Ĥ2, j, P1, j and Q2, j be as in (2.9), (2.10), (A.2), (A.1) and (A.5),
respectively. Define

b(0)(z) :=
(

Iq 0q

−(z−a)s−1
0 Iq

)
,

b(2)(z) :=

 Iq+ (z−a)s0Ĥ−1
1,1P1,1(a) 1

b−a

(
s0+Q∗2,0(z̄)Ĥ−1

2,0Q2,0(a)
)

−(z−a)P∗1,1(a)Ĥ−1
1,1P1,1(a) Iq+

z−a
b−a P∗1,1(a)Ĥ−1

2,0Q2,0(a)

 , (4.1)

and

b(2 j)(z) :=

 Iq+
z−a
b−a Q∗2, j−1(a)Ĥ−1

1, jP1, j(a) b−z
(b−a)2 Q∗2, j−1(a)Ĥ−1

2, j−1Q2, j−1(a)
−(z−a)P∗1, j(a)Ĥ−1

1, jP1, j(a) Iq+
z−a
b−a P∗1, j(a)Ĥ−1

2, j−1Q2, j−1(a)

 , (4.2)

for 2 ≤ j ≤ n.

In [5] it was proved that the RM of the THMM problem can be represented in the form,

U(2 j)(z) = U(2 j−2)(z)b(2 j)(z), 1 ≤ j ≤ n. (4.3)

Here we denote U(0)(z) := b(0)(z).

Definition 4.2. Let Ĥ1, j, P1, j and Q2, j be as in (2.9), (A.2), (A.1) and (A.5), respectively.
Define

b̃(0)(z) :=b(0)(z),

b̃(2)(z) :=

 Iq+ (z−a)s0Ĥ−1
1,1P1,1(a) (z−a)s0Ĥ−1

1,1s0

−(z−a)P∗1,1(a)Ĥ−1
1,1P1,1(a) Iq− (z−a)P∗1,1(a)Ĥ−1

1,1s0

 , (4.4)

and

b̃(2 j)(z) :=

 Iq+
z−a
b−a Q∗2, j−1(a)Ĥ−1

1, jP1, j(a) z−a
(b−a)2 Q∗2, j−1(a)Ĥ−1

1, jQ2, j−1(a)
−(z−a)P∗1, j(a)Ĥ−1

1, jP1, j(a) Iq− z−a
b−a P∗1, j(a)Ĥ−1

1, jQ2, j−1(a)

 , (4.5)

for 2 ≤ j ≤ n.

Lemma 4.3. Let b(2 j) and b̃(2 j) be as in Definitions 4.1 and 4.2, respectively. Then the
following equality holds,

b(2 j)(z) = b̃(2 j)(z)b(2 j)(a), j ∈ {1, . . . ,n}. (4.6)
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Proof. By using the notation b11
j b12

j
b21

j b22
j

 := b(2 j) and

 b̃11
j b̃12

j

b̃21
j b̃22

j

 := b̃(2 j) (4.7)

along with the definition of (4.2) and (4.5), it is sufficient to verify the following equalities:

b12
j (z)− b̃11

j (z)b12
j (a)− b̃12

j (z) = 0 (4.8)

and
b22

j (z)− b̃21
j (z)b12

j (a)− b̃22
j (z) = 0. (4.9)

We prove (4.8). For j = 1 we use (3.14) and the obvious identity (b− a)s0 + P1,1(a)s0 −
Q2,0(a) = 0. Consider now 2 ≤ j ≤ n; we then have

b12
j (z)− b̃11

j (z)b12
j (a)− b̃12

j (z)

=
1

b−a

(
b− z
b−a

Q∗2, j−1(a)Ĥ−1
2, j−1Q2, j−1(a)−Q∗2, j−1(a)Ĥ−1

2, j−1Q2, j−1(a)

− z−a
b−a

Q∗2, j−1(a)Ĥ−1
1, jP1, j(a)Q∗2, j−1(a)Ĥ−1

2, j−1Q2, j−1(a)

− z−a
b−a

Q∗2, j−1(a)Ĥ−1
2, j−1Q2, j−1(a)

)
=− z−a

(b−a)2 Q∗2, j−1(a)
(
Ĥ−1

2, j−1+ Ĥ−1
1, jP1, j(a)Q∗2, j−1(a)Ĥ−1

2, j−1+ Ĥ−1
2, j

)
Q2, j−1(a)

=− z−a
(b−a)2 Q∗2, j−1(a)Ĥ−1

1, j

(
Ĥ1, j+P1, j(a)Q∗2, j−1(a)+ Ĥ2, j−1

)
Ĥ−1

2, j−1Q2, j−1(a)

=0.

In the last equality we used (3.15); similarly, one can prove the equality (4.9). Thus the
Lemma is proved. �

4.1 First Decomposition of the Blaschke–Potapov Factors in the Case of an
Odd Number of Moments

Definition 4.4. Let (sk)2 j
k=0 be Hausdorff positive on [a,b] sequence. Let v j, R j, H1, j, ũ2, j,

Q2, j and P1, j be as in (2.3), (2.1), (1.2), (2.8), (A.5) and (A.2), respectively. Denote

M0(a) :=s−1
0 ,

M j(a) :=v∗jR
∗
j(a)H−1

1, jR j(a)v j− v∗j−1R∗j−1(a)H−1
1, j−1R j−1(a)v j−1, 1 ≤ j ≤ n, (4.10)

L̃(2n)
0 (a) :=ũ∗2,0K−1

2,0ũ2,0,

L̃(2n)
j (a,b) :=

1
b−a

Q∗2, j(a)P∗
−1

1, j+1(a), 1 ≤ j ≤ n. (4.11)

These matrices are called Stieltjes parameters of the THMM problem in the case of an odd
number of moments. Below, we shall omit the dependence of M j, L j on a and b.

Remark 4.5. The following identity holds:

M j =P∗1, j(a)Ĥ−1
1, jP1, j(a) = −Θ−1

2, j(a)P1, j(a), 1 ≤ j ≤ n. (4.12)
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Proof. The proof of the first equality of (4.12) follows by direct calculation. Use (2.16). To
verify the second equality of (4.12) we use the identity Ĥ1, j = −P1, j(a)Θ∗2, j(a) which was
proved in [4, Formula (A.13)]. �

Proposition 4.6. Let b̃(2 j), M j and L̃(2n)
j be as in (4.4), (4.5), (4.10) and (4.11), respectively.

Then the following equality holds:

b̃(2 j)(z) =
 Iq −L̃(2n)

j−1
0q Iq

( Iq 0q

−(z−a)M j Iq

) Iq L̃(2n)
j−1

0q Iq

 , (4.13)

for 1 ≤ j ≤ n.

Proof. By (4.7) the equality (4.13) is equivalent to the four equalities:

b̃11
j − Iq− (z−a)L̃(2n)

j−1 M j = 0, (4.14)

b̃12
j − (z−a)L̃(2n)

j−1 M jL̃
(2n)
j−1 = 0, (4.15)

b̃21
j + (z−a)M j = 0, (4.16)

b̃22
j − Iq+ (z−a)M jL̃

(2n)
j−1 = 0. (4.17)

Next we prove (4.14). By using (4.7), (4.11) and (4.12), we obtain

b̃11
j − Iq− (z−a)L̃(2n)

j−1 M j

=
z−a
b− z

Q∗2, j−1(a)Ĥ−1
1, jP1, j(a)− z−a

b−a
Q∗2, j−1(a)P∗

−1

1, j (a)P∗1, j(a)Ĥ−1
1, jP1, j(a)

=0.

The equalities (4.16), (4.17) are proved in a similar way. Equality (4.16) is verified by
definition of the matrices (4.4), (4.5) and (4.12). �

4.2 Second Decomposition of the Blaschke–Potapov Factors in the Case of an
Odd Number of Moments

Let L̃(2n)
j , ũ2, j, K2, j and R j be as in (4.11), (2.8), (A.9) and (2.1). Denote

L0(a) :=L̃(2n)
0 ,

L j(a) :=ũ∗2, jR
∗
j(a)K−1

2, jR j(a)̃u2, j− ũ∗2, j−1R∗j−1(a)K−1
2, j−1R j−1(a)̃u2, j−1, 1 ≤ j ≤ n−1. (4.18)

Remark 4.7. The following identities hold:

L j(a) = Θ∗2, j(a)K̂−1
2, jΘ2, j(a) = P−1

1, j+1(a)Θ2, j(a), (4.19)

ũ∗2, jR
∗
j(a)K−1

2, jR j(a)̃u2, j = −Q∗1, j+1(a)P∗
−1

1, j+1(a). (4.20)

Proof. The proof the of first equality of (4.19) follows by direct calculation. To verify the
second equality of (4.19) we use the identity K̂2, j = Θ2, j(a)P∗1, j+1(a) which is proved in [4,
Formula (A.16)]. Equality (4.20) appears in [4, Formula (50)]. �
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Below, we shall omit the dependence of L j on a.

Lemma 4.8. Let b̃(2 j)
j , b(2 j)

j and c(2 j) be as in (4.4), (4.5), (4.1), (4.2) and (B.1), respectively.
Then the following identity holds for 2 ≤ j ≤ n:

b̃(2 j)(z) = b(2 j−2)−1
(a) · · ·b(2)−1

(a)b(0)−1
(a)c(2 j)(z)b(0)(a)b(2)(a) . . .b(2 j−2)(a). (4.21)

Proof. From (2.11), and (1.7) we have,(
Iq β(2 j−2)(a)
0q Iq

)
= b(0)(a)b(2)(a) . . .b(2 j−2)(a). (4.22)

Furthermore, from fact that

β(2 j−2)(a)− L̃(2n)
j − ũ∗2, j−1R∗j−1(a)K−1

2, j−1R j−1(a)̃u2, j−1

=β(2 j−2)(a)− 1
b−a

Q∗2, j−1(a)P∗
−1

1, j (a)+Q∗1, j(a)P∗
−1

1, j (a)

=0

where use used (4.11), (4.20) and (3.13), it readily follows that: Iq L̃(2n)
j

0q Iq

 = (
Iq β(2 j−2)(a)
0q Iq

)(
Iq −ũ∗2, j−1R∗j−1(a)K−1

2, j−1R j−1(a)̃u2, j−1

0q Iq

)
. (4.23)

Finally, by (4.13), (4.23), (B.3), (B.2) and (4.22) it follows (4.21). �

The following is the main result of this work.

Theorem 4.9. Let b(2 j), M j, L(2n)
j and L j be as in (4.1), (4.2), (4.10), (4.11) and (4.18). The

following identities hold
a)

b(2)(z) =
(

Iq L0
0q Iq

)(
Iq 0q

−(z−a)M1 Iq

)(
Iq −L0
0q Iq

)
b(2)(a), (4.24)

b(2 j)(z) =

←−−
j−1∏
k=1

b−1
k (a)

←−−
j−1∏
k=0

(
Iq Lk

0q Iq

)(
Iq 0q

−(z−a)M j Iq

)−−→j−1∏
k=0

(
Iq −Lk

0q Iq

)−−→j∏
k=1

b(2k)(a) (4.25)

for 2 ≤ j ≤ n.
b)

b(2 j)(z) =
 Iq −L̃(2n)

j−1
0q Iq

( Iq 0q

−(z−a)M j Iq

) Iq L̃(2n)
j−1

0q Iq

b(2 j)(a). (4.26)

for 1 ≤ j ≤ n.

Proof. The proof follows readily from (4.6) and (4.21). �

By employing (1.7), (4.24), (4.25) and (4.26) we obtain the following Corollary.
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Corollary 4.10. The following representation of the resolvent matrix in the case of odd
numbers of moments holds:

U(2n)(z) =

−−→
n−1∏
k=0

[(
Iq 0q

−(z−a)Mk Iq

)(
Iq Lk

0q Iq

)](
Iq 0q

−(z−a)Mn Iq

)

·
n−1∏
k=0

(
Iq −Lk

0q Iq

)−−→n∏
k=0

b(2k)(a). (4.27)

U(2n)(z) =
(

Iq 0q

−(z−a)M0 Iq

)−−→n∏
k=1

[(
Iq −L(2n)

k−1
0q Iq

)(
Iq 0q

−(z−a)Mk Iq

)
·
(

Iq L(2n)
k−1

0q Iq

)
b(2k)(a)

]
. (4.28)

Remark 4.11. The equality (4.27) is a generalization of the analogous formula for the Stielt-
jes parameters of the truncated Stieltjes matrix moment problem in the case of an odd num-
ber of moments, obtained by Yu. Dyukarev in [16].

Proof. Step 1. In both sides of (4.27) set a = 0 and b tends to +∞. Observe that

lim
b→∞

n−1∏
k=0

(
Iq −Lk(0)
0q Iq

)−−→n∏
k=0

b(2k)(a) = I2q.

. Step 2. Multiply both sides of the equality 4.27 by the matrix
(

0q Iq

Iq 0q

)
. Thus one

obtains the Dyukarev’s formula [16, Theorem 7].
�

Observe that the resolvent matrix of the Stieltjes matrix moment problem in the case of
an odd number of moments is obtained by applying Step 1 and Step 2.

Proposition 4.12. Let b(2 j) be as in (4.1), (4.2). The Blaschke–Potapov factor b(2 j) of the
resolvent matrix of the THMM problem in the case of an odd number of moments belongs
then to the Potapov class in Π+.

Proof. Taking into account that b(2 j)−1
(a) is a J̃q unitary matrix and the fact that M j, L(2n)

j
are nonnegative Hermitian matrices, we have

J̃q−b(2 j)∗(z)J̃qb(2 j)(z) = −(z− z̄)
 Iq

L(2n)
j−1

 M j (Iq, L
(2n)
j−1 ) ≥ 0,

for ℑz > 0. Therefore, b(2 j) is a Potapov function in Π+. �
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A Orthogonal Matrix Polynomials on [a,b]

In this appendix we recall the OMP on [a,b]. In [29], (resp. [6]) it was proved that polyno-
mials Γk, j (resp. Pk, j) for k = 1,2 are in fact OMP on [a,b]. In [3] some properties of second
kind polynomials Qk, j and Θk, j for k = 1,2 were discussed. In [9] explicit interrelations
between Pk, j, Γk, j and their second kind polynomials were studied.

A.1 Orthogonal Matrix Polynomials: The Case of Odd Number of Moments

Definition A.1. Let (sk)2 j
k=0 be an odd positive Hausdorff on [a,b] sequence. Let R j, v j,

Hk, j, Yk, j, uk, j for k = 1,2 be as in (2.1), (2.3), (1.2), (1.3), (2.6), (2.7), (2.8). Define

P1,0(z) := Iq, P2,0(z) := Iq, Q1,0(z) := 0q, Q2,0(a,b,z) := −(u2,0+ z s0), (A.1)

P1, j(z) := (−Y∗1, jH
−1
1, j−1, Iq)R j(z)v j, 1 ≤ j ≤ n, (A.2)

P2, j(a,b,z) := (−Y∗2, jH
−1
2, j−1, Iq)R j(z)v j, 1 ≤ j ≤ n−1, (A.3)

Q1, j(z) := −(−Y∗1, jH
−1
1, j−1, Iq)R1, j(z)u1, j, 1 ≤ j ≤ n (A.4)

and
Q2, j(a,b,z) := −(−Y∗2, jH

−1
2, j−1, Iq)R j(z)(u2, j+ zv js0), 1 ≤ j ≤ n−1. (A.5)

A.2 Orthogonal Matrix Polynomials: The Case of Even Number of Moments

Let n ∈ N0 and let (s j)2n+1
j=0 be a sequence of complex q×q matrices. Furthermore, let

ũ1,0 := s0, ũ2,0 := −s0 (A.6)

and for every 1 ≤ j ≤ n−1, let

ũ1, j := y[0, j]−b
(

0q

y[0, j−1]

)
, ũ2, j := −y[0, j]+a

(
0q

y[0, j−1]

)
. (A.7)

For 1 ≤ j ≤ n denote

Ỹ1, j := by[ j,2 j−1]− y[ j+1,2 j], Ỹ2, j := −ay[ j,2 j−1]+ y[ j+1,2 j]. (A.8)

Let
K1,n := bH̃0,n− H̃1,n, K2,n := −aH̃0,n+ H̃1,n, 0 ≤ 2n+1 ≤ m. (A.9)

Definition A.2. Let the block Hankel matrices K1, j and K2, j be defined by (A.9). The
sequence (sk)2 j+1

k=0 is called Hausdorff positive (resp. nonnegative) on [a,b] if the block
Hankel matrices K1, j and K2, j−1 are both positive (resp. nonnegative) definite matrices.

In [7, Theorem 1.3] it was proven that the THMM problem in the case of an even
number of moments is solvable if and only if the sequence (sk)2n+1

k=0 is Hausdorff nonnegative
on [a,b].

We will consider only sequences which are Hausdorff positive on [a,b].
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Definition A.3. Let Kk, j, ũk, j, Ỹk, j, for k = 1,2, R j and v j be as in (A.9), (A.6), (A.7), (A.8),
(2.1) and (2.3), respectively. Let (sk)2 j+1

k=0 be a sequence which is Hausdorff positive on
[a,b]. Let

Γ1,0(z) := Iq, Γ2,0(z) := Iq, Θ1,0(z) := s0, Θ2,0(z) := −s0 (A.10)

for all z ∈ C. For k ∈ {1,2} and 1 ≤ j ≤ n define

Γ1, j(b,z) := (−Ỹ∗1, jK
−1
1, j−1, Iq)R j(z)v j, (A.11)

Γ2, j(a,z) := (−Ỹ∗2, jK
−1
2, j−1, Iq)R j(z)v j, (A.12)

Θ1, j(b,z) := (−Ỹ∗1, jK
−1
1, j−1, Iq)R j(z)̃u1, j, (A.13)

Θ2, j(a,z) := (−Ỹ∗2, jK
−1
2, j−1, Iq)R j(z)̃u2, j (A.14)

for all z ∈ C.

As in the case of an odd number of moments, we usually omit the dependence of the
polynomials Γk, j and Θk, j for k = 1,2 on the parameters a and b.

B Auxiliary Blaschke–Potapov Factors in the Case of Odd Num-
ber of Moments

Let P1, j, Q1, j and Ĥ1, j be as in Definition A.1, Definition A.3 and (2.9), respectively. Denote

c(2 j)(z) :=

 Iq+ (z−a)Q∗1, j(a)Ĥ−1
1, jP1, j(a) (z−a)Q∗1, j(a)Ĥ−1

1, jQ1, j(a)
−(z−a)P∗1, j(a)Ĥ−1

1, jP1, j(a) Iq− (z−a)P∗1, j(a)Ĥ−1
1, jQ1, j(a)

 , (B.1)

for 0 ≤ j ≤ n.

Proposition B.1. [4, Theorem 3.2] Let c(2 j), M j and L j be as in (B.1), (4.10) and (4.18),
respectively. Then the following equality holds:

c(2 j)(z) =

←−−
j−1∏
k=0

(
Iq Lk

0q Iq

)(
Iq 0q

−(z−a)M j Iq

)−−→j−1∏
k=0

(
Iq −Lk

0q Iq

)
, (B.2)

for 0 ≤ j ≤ n.

The proof this Proposition is based in following equalities:
←−−
j−1∏
k=0

(
Iq Lk

0q Iq

)
=

(
Iq

∑ j−1
k=0 Lk

0q Iq

)
=

(
Iq ũ∗2, j−1R∗j−1(a)K−1

2, j−1R j−1(a)̃u2, j−1

0q Iq

)
. (B.3)
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