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Abstract

In this paper, we give an Lp version of Hardy’s uncertainty principles for a large class
of integral and q-integral transforms. As an applications, we discuss an Lp version
of Hardy’s theorem for the generalized Fourier transform associated with the Sturm-
Liouville operator and for the Jacobi-Dunkl transform.
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1 Introduction

In 1933, G. H. Hardy [14] showed that a measurable function f on R and its Fourier trans-
form f̂ cannot, simultaneously, be very rapidly decreasing. More precisely, he proved that
if

| f (x)| ≤Ce−ax2
and | f̂ (λ)| ≤Ce−bλ2

, for a.e. x, λ ∈ R,
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where a, b and C are positive constants, and if ab > 1/4, then f ≡ 0.
A famous generalization of Hardy’s theorem, called the Lp version of Hardy’s theorem,

is obtained in 1983 by M. G. Cowling and J. F. Price [8]. They proved that if p,n ∈ [1,+∞],
with at least one of them finite,

‖eax2
f ‖p <∞ and ‖ebx2

f̂ ‖n <∞,

where ‖.‖p is the norm of the Lebesgue space Lp(R), and ab ≥ 1
4 , then f ≡ 0.

There has been considerable interest in a better understanding of these results and on its
extensions to other settings including certain Lie groups, the motion group, the Heisenberg
group, hypergroups, Dunkl theory and recently quantum calculus, see [2,7,9,11–13,15,16,
19].

In this paper, we give a unified approach to the Lp version of Hardy’s theorem for a
large class of integral transform having the form

F ( f )(λ) =
∫ ∞

β
f (t)ϕ(λ, t)w(t)dt, (1.1)

where β is either 0 or −∞, the kernel ϕ satisfies certain analycity and growth conditions on
C×]β,∞[, and w is a positive weight function. The integral transforms considered include
the classical Fourier transform, the Hankel transform, the generalized Fourier transform
associated with a Sturm-Liouville operator, the one dimensional Dunkl transform and the
Jacobi-Dunkl transform. We also deal with the q-analogue of this theory.

This paper is organized as follows. In Section 2, we state for F an Lp version of Hardy’s
uncertainty principle, and then derive the analogue of Hardy’s theorem. Since the symmet-
ric case has been dealt with in [11], we will focus our applications, in Section 3, on tow
non-symmetric integral transforms : the generalized Fourier transform associated with a
second order singular differential operator and the Jacobi-Dunkl transform. Hardy’s theo-
rem and its Lp version for these integral transforms are studied in [19] and [7] respectively,
where the heat kernel, which is not explicitly given, play the role of the Gaussian kernel
e−at2 . We will derive the results from the approach stated in Section 2 and then show that
the use of the tow kernels is equivalent. Section 4 is devoted to the q-analogues of the
results presented in Section 2.

2 Hardy’s theorem and its Lp version for F

In what follows, we will assume that the following conditions are satisfied:

(H1) β ∈ {−∞,0}.

(H2) The kernel ϕ in (1.1) satisfies the following conditions:

(a) there exist C, k > 0 such that

|ϕ(x, t)| ≤Cek|x||t|, for all (x, t) ∈ C× (β,+∞); (2.1)

(b) for every t ∈ (β,+∞), the function ϕ(., t) : λ 7→ ϕ(λ, t) is entire on C and when
β = 0, it’s restriction on R is even.



Unified Theory of the Lp Version of Hardy’s Uncertainty Principles 25

(H3) The weight function w is a.e-positive on (β,+∞) and for all c > 0, the function t 7→
w(t)e−ct2 is Lebesgue integrable on (β,+∞).

For p ∈ [1,+∞], we denote by Lp
w(β,+∞) the weighted Lebesgue spaces associated to the

function w, equipped with the norm

‖ f ‖p,w =
(∫ ∞

β
| f (t)|pw(t)dt

)1/p

, if 1 ≤ p <∞

and

‖ f ‖p,w = ‖ f ‖∞ = esssup
t∈(β,+∞)

| f (t)|, if p = +∞.

Proposition 2.1. Let n ∈ [1,+∞[ and let µ be the restriction on (β,+∞) of an even a.e-
positive function for which there exist µ1, t1 > 0 such that

µ(t) ≥ µ1, for a.e. t ≥ t1. (2.2)

If an entire function h on C satisfies

|h(z)| ≤ Mea(<(z))2
, for all z ∈ C,

where a and M are positives constants, and

‖h‖n,µ =
(∫ ∞

β
|h(t)|nµ(t)dt

)1/n

<∞,

then h must vanish on C.

Proof. The result can be obtained using (2.2) and the same technique as in [8]. �

Theorem 2.2. Let p ∈ [1,+∞] and f be a measurable function on (β,∞). Suppose that
‖eat2 f ‖p,w <∞ for some constant a > 0. Then

(i) The function F ( f ) is entire on C.

(ii) For every a′ ∈]0,a[, there exists C′ > 0 such that

|F ( f )(z)| ≤C′e
k2 |z|2

4a′ , for all z ∈ C, (2.3)

where k is given in (2.1).

Proof. The proof of (i) follows from the conditions satisfied by ϕ, the hypothesis of the
theorem, Hölder’s inequality and the analyticity theorem. To prove (ii), set n = p/(p−1). It
follows that

|F ( f )(z)| ≤
∫ ∞

β
|ϕ(z, t)|| f (t)|w(t)dt ≤C

∫ ∞

β
ek|z||t|−at2eat2 | f (t)|w(t)dt

≤C
(∫ ∞

β
en(k|z||t|−at2)w(t)dt

)1/n

‖eat2 f ‖p,w,
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for all z ∈ C. Now, let a′ ∈]0,a[ and set c = a−a′. Then,(∫ ∞

β
en(k|z||t|−at2)w(t)dt

)1/n

=

(∫ ∞

β
en(k|z||t|−a′t2)w(t)e−nct2dt

)1/n

≤

 sup
t∈(0,∞)

en(k|z|t−a′t2)
1/n (∫ ∞

β
w(t)e−nct2dt

)1/n

=

(∫ ∞

β
w(t)e−nct2dt

)1/n

e
k2
4a′ |z|

2
,

and (2.3) follows by taking C′ =C‖eat2 f ‖p,w‖e−(a−a′)t2‖n,w. �

Theorem 2.3. Let p ∈ [1,+∞] and n ∈ [1,+∞[, let µ be a function satisfying the conditions
of Proposition 2.1, and let f be a measurable function on (β,∞). Suppose that

‖eat2 f ‖p,w <∞ and ‖ebλ2
F ( f )‖n,µ <∞, (2.4)

where a, b > 0. If ab > k2/4, then F ( f ) must vanish on C.

Proof. Assume that ab > k2/4, let a′ ∈] k2

4b ,a[, and define

h(z) = e
k2
4a′ z

2
F ( f )(z), z ∈ C. (2.5)

Since, by Theorem 2.2 (i), the function F ( f ) is entire on C, it follows that h is entire on
C. Moreover, by Theorem 2.2 (ii), there exists C′ > 0 such that (2.3) holds, which together
with (2.5) implies that

|h(z)| ≤C′e
k2
2a′ (<(z))2

, for all z ∈ C.

On the other hand, by (2.4) and (2.5), we have

‖h‖n,µ ≤ ‖ebλ2
F ( f )‖n,µ <∞.

So, by Proposition 2.1, the function h vanishes on C, and the proof is complete. �

In the following corollary, we obtain Hardy’s theorem for the transform F .

Corollary 2.4. Let f be a measurable function on (β,+∞). Suppose that

| f (t)| ≤Ce−at2 for a.e. t ∈ (β,+∞), (2.6)

and

|F ( f )(λ)| ≤Ce−bλ2
, for a.e. λ ∈ (β,+∞),

where a, b, C ≥ 0. If ab > k2/4, then F ( f ) must vanish on C.
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Proof. From (2.6) we conclude that ‖eat2 f ‖∞ < ∞. On the other hand, for an arbitrary
c ∈]k2/4a, b[, we have

‖ecλ2
F ( f )(λ)‖1 =

∫ ∞

β
ecλ2
|F ( f )(λ)|dλ

=

∫ ∞

β
ebλ2
|F ( f )(λ)|e(c−b)λ2

dλ

≤

√
π

√
b− c

‖ebλ2
F ( f )(λ)‖∞ <∞,

and the conclusion of the Corollary follows from Theorem 2.3. �

Remark 2.5. If F is injective, then under the conditions of each of the previous two results,
we get f ≡ 0.

3 Examples

In this section, we give Hardy’s theorem and its Lp version for the generalized Fourier
transform associated with a Sturm-liouville operator and the Jacobi-Dunkl transform, and
then compare our approach with that of [19] and [7].

3.1 Application to the generalized Fourier transform associated with a Sturm-
Liouville operator

Let LA be the Sturm-Liouville operator on ]0,+∞[ defined by

LA(u) = −
1
A

d
dx

[
A

d
dx

u
]
,

where A is a real function on [0,+∞[ satisfying the following conditions :

(i) A is increasing and unbounded.

(ii) A′/A is decreasing, we then denote by 2ρ its limit at infinity

2ρ = lim
x→+∞

A′(x)
A(x)

.

(iii) A is the form

A(x) = x2α+1B(x), α > −
1
2
,

where B is an even C∞-function and B(x) > 0 for x > 0.

(iv) There exist δ, x0 > 0 such that for all x ≥ x0

A′(x)
A(x)

=

2ρ+ e−δxD(x), if ρ > 0;
2α+1

x + e−δxD(x), if ρ = 0,

where D is a C∞-function bounded together with its derivatives.
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In particular, if A(x) = x2α+1 with α > −1/2 then LA is the Bessel operator, and if A(x) =
(2sinh x)2α+1(2cosh x)2β+1 with α ≥ β ≥ −1/2 and α , −1/2, then LA is the Jacobi operator.

We begin by summarizing some facts regarding the harmonic analysis associated with
the operator LA. For more details and proofs we refer the reader to [1], [4], [5], [10], [18],
[17] and [20].

For every λ ∈ C, the system LAu = (λ2+ρ2)u;
u(0) = 1, u′(0) = 0,

(3.1)

has a unique solution on [0,+∞) extended by parity to R and then denoted by ϕλ. The
function (x,λ) 7→ ϕλ(x) is C∞ with respect to x and entire on C with respect to λ. Moreover,
from the integral representation of Mehler type of the function ϕλ (see [10], [18] or [4]), we
conclude that

|ϕλ(x)| ≤ e|=(λ)||x| ≤ e|λ||x|,

for all λ ∈ C and x ∈ R.
The generalized Fourier transform associated with the operator LA is defined for f ∈

L1
A (R+) by

FA( f )(λ) =
∫ +∞

0
f (t)ϕλ(t)A(t)dt, λ > 0.

Theorem 3.1 (Inversion formula). There exists a continuous function C on (0,∞) such for
every f ∈ L1

A (R+), if FA( f ) ∈ L1
µ (R+), where

µ(λ) =
1

2π|C(λ)|2
,

then

f (x) =
∫ +∞

0
FA( f )(λ)ϕλ(x)µ(λ)dλ, for a.e λ > 0.

It was shown in [4] that there exist positive constants K1, K2, and λ0 such that

K1λ
2α+1 ≤

1
|C(λ)|2

≤ K2λ
2α+1, for all λ ≥ λ0. (3.2)

Now, we are in a situation to state the Lp version of Hardy’s theorem for the generalized
Fourier transform FA.

Theorem 3.2. Let p ∈ [1,+∞], let n ∈ [1,+∞[, and let f be a measurable function on (0,∞).
Suppose that ‖eat2 f ‖p,A <∞ and ‖ebt2FA( f )‖n,µ <∞ for some constants a, b> 0. If ab> 1/4,
then f ≡ 0.

Proof. We need only show µ satisfies the condition of Proposition 2.1 and A satisfies (H3).
The first assertion follows immediately from (3.2). For the second one, since A is continu-
ous on [0,+∞) and lim

x→+∞
A′(x)/A(x) = 2ρ, there exists a positive constant M, such that

0 < A(x) ≤ Me(2ρ+1)x, for all x ∈ (0,+∞),
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which implies that for all c > 0, the function x 7→ e−cx2
A(x) is Lebesgue integrable on

[0,+∞), and (H3) is satisfied. �

Corollary 3.3. Let f be a measurable function on (0,∞). Suppose that

| f (x)| ≤Ce−ax2
and |F( f )(λ)| ≤Ce−bλ2

, for a.e. x,λ ∈ (0,∞),

where a, b and C are positives constantes. If ab > 1/4, then f ≡ 0.

3.2 Application to the Jacobi-Dunkl transform

In this subsection, we assume, as in [6], that α and β are real parameters satisfying
α ≥ β ≥ −1/2 and α , −1/2. The Jacobi-Dunkl operator Λα,β is the differential-difference
operator defined for smooth function f on R by

Λα,β f (x) =
d f
dx

(x)+
A′α,β(x)

Aα,β(x)
f (x)− f (−x)

2
,

where
Aα,β(x) = 22ρ(sinh |x|)2α+1(cosh |x|)2β+1 and ρ = α+β+1. (3.3)

From [6] we know that for every λ ∈ C, the systemΛα,β f (x) = iλ f (x);
f (0) = 0,

admits a unique solution ψ(α,β)
λ called the Jacobi-Dunkl Kernel and given by

ψ
(α,β)
λ (x) =

ϕ(α,β)
µ (x)− i

λ
d
dxϕ

(α,β)
µ (x), if λ , 0;

1, if λ = 0,

which can be written also as [3]

ψ
(α,β)
λ (x) = ϕ(α,β)

µ (x)+ i
λ

4(α+1)
sinh2x ϕ(α+1,β+1)

µ (x), (3.4)

where ϕ(α,β)
µ is the Jacobi function given by the use of the Gauss function as

ϕ
(α,β)
µ (x) = 2F1

(
ρ+ iµ

2
,
ρ− iµ

2
;α+1;−(sinh x)2

)
,

with µ such that λ2 = µ2+ρ2. We recall that the Jacobi function ϕ(α,β)
µ is the solution of (3.1)

when LA is the Jacobi operator. From this and (3.4) it follows that the function (x,λ) 7→
ψλ(x) is even, C∞ with respect to x and entire on C with respect to λ. Furthermore, the
Jacobi-Dunkl kernel has the integral representation of Laplace type

ψ
(α,β)
λ (x) =

∫ |x|

−|x|
K(x, t)eiλtdt, x ∈ R \ {0}, λ ∈ C,



30 A. Fitouhi, N. Bettaibi, and L. Bennasr

where, for x ∈ R \ {0}, the function K(x, ·) : t 7→ K(x, t) is nonnegative on R, continuous on
]− |x|, |x|[, supported in [−|x|, |x|] and∫ |x|

−|x|
K(x, t)dt = 1,

which implies that
|ψλ(x)| ≤ e|x||λ|, for all (λ, x) ∈ C×R.

The Jacobi-Dunkl transform Fα,β is defined for f ∈ L1
Aα,β

(R) by

Fα,β( f )(λ) =
∫ ∞

−∞

f (t)ψα,βλ (t)Aα,β(t)dt, λ ∈ R.

In order to give inversion formula for Fα,β, we shall introduce the function σ as follows:

σ(λ) =
|λ|

8π
√
λ2−ρ2|cα,β(

√
λ2−ρ2)|

1R\]−ρ,ρ[(λ), λ ∈ R, (3.5)

with 1R\]−ρ,ρ[ is the characteristic function of R\]−ρ,ρ[ and

cα,β(y) =
2ρ−iyΓ(α+1)Γ(iy)

Γ( 1
2 (ρ+ iy))Γ( 1

2 (α−β+1+ iy))
, y ∈ C\(iN).

Theorem 3.4 (Inversion formula).
If f ∈ L1

A (R+) and Fα,β( f ) ∈ L1
σ(R), then

f (x) =
∫ ∞

−∞

Fα,β( f )(λ)ψα,β
−λ (x)σ(λ)dλ, for a.e. x ∈ R. (3.6)

Let us now state an Lp version of Hardy’s theorem for the Jacobi-Dunkl transform.

Theorem 3.5. Let p ∈ [1,+∞], let n ∈ [1,+∞[, and let f be a measurable function on R.
Suppose that

‖eat2 f ‖p,Aα,β <∞ and ‖ebλ2
Fα,β( f )‖n,σ <∞,

where a, b > 0, and σ is the weight function given by (3.5). If ab >
1
4

, then f ≡ 0.

Proof. It follows immediately from (3.3) that the weight function Aα,β satisfies (H3). On the
other hand, it was shown in [18, p. 157] that there exists C > 0 such that |cα,β(x)|−2 ≥C|x|2α+1

at infinity. This together with (3.5) implies that the weight σ satisfies the conditions of
Proposition 2.1. Therefore, the conclusion of the theorem follows from Theorem 2.3 and
(3.6). �

The following result gives a Hardy’s uncertainty principle for the Jacobi-Dunkl trans-
form.
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Corollary 3.6. Let f be a measurable function on R. Suppose that there exist positive
constants a, b and C such that

| f (x)| ≤Ce−ax2
and |Fα,β( f )(λ)| ≤Ce−bλ2

, for a.e. x,λ ∈ R.

If ab >
1
4

then f ≡ 0.

3.3 Remarks

In [7], the authors proved an Lp version of Hardy’s theorem for the Jacobi-Dunkl trans-
form via a transmutation approach. They used the heat kernel associated with the Jacobi-
Dunkl operator, defined for t > 0 by

Et(x) = F −1
α,β(e−tλ2

)(x), x ∈ R,

to show that for a measurable function f on R, if

E−1
1/4a f ∈ Lp

Aα,β
(R) and ebλ2

Fα,β( f ) ∈ Lq
σ(R),

where 1 ≤ p,q ≤ +∞ with at least one of them is finite, and a, b are positives constants such
that ab ≥ 1/4, then f ≡ 0.

For this end, we point out that from the fact (see [10], page 251) that there exist C1(t)> 0
and C2(t) > 0, such that for all x ∈ R,

C1(t)
e−x2/(4t)√

Bα,β(x)
≤ Et(x) ≤C2(t)

e−x2/(4t)√
Bα,β(x)

,

where Bα,β(x) = 22ρ
(
sinh x

x

)2α+1

(cosh x)2β+1, one can see that every measurable function f

satisfying (3.3) satisfies also (3.5). Furthermore, the heat kernel Et is not explicitly given,
which proves that our approach is simpler and more constructive.
Furthermore, the heat kernel Et is not explicitly given, which proves that our approach is
simpler and more constructive.

The same remark can be stated comparing our approach by that developed in [19] for
the generalized Fourier transform associated with the Sturm-Liouville operator.

4 An Lp-version of Hardy’s Theorem in Quantum Calculus

In this section, we give the q-analogues of the results of Section 2. Let q ∈]0,1[ and write

R+q = {q
n | n ∈ Z} and {Rq = ±qn | n ∈ Z}.
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The Jackson’s q-integrals from 0 to +∞ and from −∞ to +∞ are defined as follows. For a
function f defined on R+q , ∫ ∞

0
f (x)dqx = (1−q)

∞∑
n=−∞

f (qn)qn,

provided the series converges absolutely, and when the function f is defined on Rq,∫ ∞

−∞

f (x)dqx = (1−q)
∞∑

n=−∞

f (qn)qn+ (1−q)
∞∑

n=−∞

f (−qn)qn,

provided the tow series above converge absolutely.
Let β ∈ {0,+∞} and define

(β,+∞)q =

Rq, if β = −∞;
R+q , if β = 0.

Let w be a positive function on (β,+∞)q and p ∈ [1,+∞]. For a function f defined on
(β,+∞)q, define

‖ f ‖p,w,q =
(∫ +∞

β
| f (t)|w(t)dqt

) 1
p

, if 1 ≤ p < +∞

and

‖ f ‖p,w,q = ‖ f ‖∞ = sup
t∈(β,+∞)q

| f (t)|, if p = +∞.

We consider the q-integral transform

Fq( f )(λ) =
∫ ∞

β
f (t)ϕ(λ, t)w(t)dqt,

with the following properties :

(H′1) The kernel ϕ is entire with respect to λ, and when β = −∞ it is even with respect to t.
Moreover, there exist C, k > 0 such that

|ϕ(x, t)| ≤Cek|x||t|, for all (x, t) ∈ (β,+∞)q×C,

(H′2) The weight function w is positive on (β,+∞)q and there exists c > 0 such that the
function t 7→ w(t)e−ct2 is q-integrable on (β,+∞)q.

The operator Fq can be seen as a q-analogue of the operator F . The proofs of the
following results can follow the same steps of the corresponding classical ones presented in
Section 2, by replacing the Lebesgue integral by the Jackson’s q-integral.

Theorem 4.1. Let p ∈ [1,+∞], and let f be a function on (β,∞)q. Suppose that there exists
a > 0 such that ‖eat2 f ‖p,q,w <∞. Then

(i) The function Fq( f ) is entire on C.
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(ii) For every a′ ∈]0,a[, there exists C′ > 0 such that

|Fq( f )(z)| ≤C′e
k2 |z|2

4a′ , for all z ∈ C.

Theorem 4.2. Let p ∈ [1,+∞], n ∈ [1,+∞[ and µ be a function satisfying the conditions of
Proposition 2.1. Let f be a function defined on (β,∞)q. Suppose that there exist a, b and
C ≥ 0 such that

‖eat2 f ‖p,q,w <∞ and ‖ebλ2
Fq( f )‖n,µ <∞,

If ab > k2/4, then Fq( f ) ≡ 0. Moreover, if Fq is injective then f ≡ 0.

Corollary 4.3. Let f be a function defined on (β,∞)q. Suppose that there exist a, b and
C ≥ 0 such that

| f (t)| ≤Ce−at2 , for all t ∈ (β,+∞)q

and

|Fq( f )(λ)| ≤Ce−bλ2
, for a.e. λ ∈ (β,+∞).

If ab >
k2

4
, then Fq( f ) = 0. Moreover, if Fq is injective then f ≡ 0.
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Math 125 (1998), 89–109.
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