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Abstract

Recent work of Bui, Duong and Yan in [2] defined Besov spaces associated with a
certain operator L under the weak assumption that L generates an analytic semigroup
e−tL with Poisson kernel bounds on L2(X) whereX is a (possibly non-doubling) quasi-
metric space of polynomial upper bound on volume growth. This note aims to extend
certain results in [2] to a more general setting when the underlying space can have
different dimensions at 0 and infinity. For example, we make some extensions to the
Besov norm equivalence result in Proposition 4.4 of [2], such as to more general class
of functions with suitable decay at 0 and infinity, and to non-integer k ≥ 1.
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1 Introduction

The theory of Besov spaces has been an active area of research in the last few decades
because of its important role in the study of approximation of functions and regularity of
solutions to partial differential equations.

Classical theory of Besov spaces, for example, can be found in [3, 4, 9, 14, 13, 16, 17].
Some of more recent results on Besov spaces are [15, 18, 10, 8].

Recent work of Bui, Duong and Yan in [2] defined Besov spaces associated with a
certain operator L under the weak assumption that L generates an analytic semigroup e−tL

with Poisson kernel bounds on L2(X) where X is a (possibly non-doubling) quasi-metric
space of polynomial upper bound on volume growth. When L is the Laplace operator −∆ or
its square root

√
−∆ acting on the Euclidean space Rn, this class of Besov spaces associated

with the operator L are equivalent to the classical Besov spaces. Depending on the choice
of L, the Besov spaces are natural settings for generic estimates for certain singular integral
operators such as the fractional powers Lα.
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This note aims to extend certain results in [2] to a more general setting when the under-
lying space can have different dimensions at 0 and infinity, that is, for some n > 0, N ≥ 0,
and C > 0,

µ(B(x,r)) ≤

Crn, 0 < r ≤ 1
CrN , 1 < r <∞

for all balls B. Here n is the local dimension and N is the global dimension or the dimension
at infinity.

An example of this case is in Lie groups of polynomial growth (see, for example, [1]).
Consider when L is the Laplace operator ∆N with Neumann boundary conditions on a
bounded Lipschitz domain Ω of Rn. See, for example, [6]. The heat kernel pt(x,y) in
this case satisfies

0 ≤ pt(x,y) ≤
C

V(x,
√

t)
e−α|x−y|2/t

=C max
{ 1

tn/2 ,1
}
e−α|x−y|2/t

=


C

tn/2 e−α|x−y|2/t, 0 < t ≤ 1

Ce−α|x−y|2/t, 1 < t <∞

for some positive constants C and α, where V(x,
√

t) denotes the volume of the ball with
centre x and radius

√
t in Rn. In this case N can be chosen to be 0, so that V(x,

√
t) is

bounded by a constant.
While many results in [2] carry over to this note, there are some difficulties with the

change in dimension. We omit most of the results that carry forward with similar proofs.
Instead of using Poisson kernel bounds (polynomial type), which posed some technical dif-
ficulties, we use Gaussian kernel bounds (exponential type), which is a stronger assumption.

In Proposition 4.4 of [2] it was shown that the Besov norms defined by tkLke−tL are
equivalent to one another for positive k ≥ 1. In this note we aim to answer the open, in-
teresting question of extending that result to more general class of functions Ψt(L) with
suitable decay at 0 and infinity. We also make some more extensions to the Besov norm
equivalence result in Proposition 4.4 of [2], such as to non-integer k ≥ 1.

The paper is organized as follows. In Section 2, we give definitions of quasi-metric
spaces of polynomial upper bounds on volume growth, then some assumptions on the op-
erator L, and define Besov norms associated with L. We also give an upper bound estimate
of the Besov norm of the heat kernels.

In Section 3, we introduce the space of test functions associated with L. We then define
Besov norms for linear functionals (on space of test functions) and Besov spaces associated
with L.

In Section 4, we study an embedding theorem for the Besov spaces. We also study the
equivalence of the Besov norms with respect to different functions of L. We extend the
Besov norm equivalence to more general class of functions Ψt(L) with suitable decay at 0
and infinity, and to non-integer k ≥ 1.
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2 Besov norms associated with operators

2.1 Spaces of polynomial upper bounds on volume growth

Assume X is a quasi-metric measure space satisfying

(i) d(x,y) = 0 if and only if x = y;

(ii) d(x,y) = d(y, x) for all x,y ∈ X;

(iii) There exists a constant C ∈ [1,∞) such that for all x,y and z ∈ X,

d(x,y) ≤C(d(x,z)+d(z,y));

(iv) For some n > 0, N ≥ 0, and C > 0,

µ(B(x,r)) ≤

Crn, 0 < r ≤ 1
CrN , 1 < r <∞

for all balls B. Here n is the local dimension and N is the global dimension or the
dimension at infinity.

Throughout the paper we will use C,c, . . . to denote positive constants; these may not
be the same on any two consecutive appearances.

The following estimate will be frequently used in the paper.

Lemma 2.1. Let 1 ≤ p ≤∞. For every α > 0, there exists C > 0 such that

∫
X

[
e−αd(x,y)2/t

]p
dµ(x) ≤

Ctn/2, 0 < t ≤ 1
CtN/2, 1 < t <∞

for y ∈ X.

Proof. Fix y ∈ X. For p =∞, we clearly have

sup
x

e−αd(x,y)2/t ≤C, 0 < t ≤ 1

sup
x

e−αd(x,y)2/t ≤C, 1 < t <∞
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Next suppose 1 ≤ p <∞. For 0 < t ≤ 1 we have∫
X

[
e−αd(x,y)2/t

]p
dµ(x)

≤

∫
B(y,
√

t)

[
e−αd(x,y)2/t

]p
dµ(x)

+

∞∑
k=1

∫
2k−1
√

t≤d(x,y)<2k
√

t

[
e−αd(x,y)2/t

]p
dµ(x)

≤C

tn/2+

∞∑
k=1

[
e−α(22k)t

]p
(2k √t)N


≤C

tn/2+

∞∑
k=1

[
e−α(22k)t

]p
2kN tn/2

 for n < N

≤Ctn/2.

For 1 < t <∞ we have∫
X

[
e−αd(x,y)2/t

]p
dµ(x)

≤

∫
B(y,
√

t)

[
e−αd(x,y)2/t

]p
dµ(x)

+

∞∑
k=1

∫
2k−1
√

t≤d(x,y)<2k
√

t

[
e−αd(x,y)2/t

]p
dµ(x)

≤C

tN/2+

∞∑
k=1

[
e−α(22k)t

]p
(2k √t)N


≤CtN/2.

Hence the inequalities follow. �

2.2 Assumptions on operators

Assume L is densely-defined on L2(X) and satisfies

(S ) L generates a holomorphic semigroup e−zL for z = t+ is with t > 0 and |argz| < ρ for
some ρ > 0,

(K) the heat kernel of L satisfies bounds of Gaussian type, i.e. the kernel pt(x,y) of e−tL

satisfies

|pt(x,y)| ≤


C

tn/2 e−αd(x,y)2/t, 0 < t ≤ 1
C

tN/2 e−αd(x,y)2/t, 1 < t <∞

for some C > 0 and for all x,y ∈ X.
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(H) the kernels pt(x,y) of e−tL satisfy the Hölder continuity estimates

|pt(x,y)− pt(x,y′)| ≤


Cd(y,y′)

tn/2+1 e−αd(x,y)2/t, 0 < t ≤ 1
Cd(y,y′)

tN/2+1 e−αd(x,y)2/t, 1 < t <∞

whenever d(y,y′) ≤ d(x,y)/2.

(C) L satisfies the conservation property e−tL1 = 1. This is equivalent to∫
X

pt(x,y)dµ(y) = 1.

The following are some useful properties related to our assumptions.

Proposition 2.2. For k = 1,2, . . . , let pk,t(x,y) denote the kernel of the operator tkLke−tL.

(a) Suppose L satisfies (S ) and (K). Then pk,t(x,y) satisfies the size estimate (DK), i.e. for
every k ∈ N, there is a constant ck satisfying

|pk,t(x,y)| ≤


ck

tn/2 e−αkd(x,y)2/t, 0 < t ≤ 1
ck

tN/2 e−αkd(x,y)2/t, 1 < t <∞

for all x,y ∈ X.

(b) Suppose L satisfies (S ), (K) and (H). Then pk,t(x,y) satisfies the Hölder estimate (DH),
i.e. there is a constant ck satisfying

|pk,t(x,y)− pk,t(x,y′)| ≤


ckd(y,y′)

tn/2+1 e−αkd(x,y)2/t, 0 < t ≤ 1
ckd(y,y′)

tN/2+1 e−αkd(x,y)2/t, 1 < t <∞

whenever d(y,y′) ≤ d(x,y)/2.

(c) Suppose L satisfies (C). Then we have∫
X

pk,t(x,y)dµ(y) = 0

for every x ∈ X.

Proof. The proof is a modification of that in Proposition 2.2 in [2].
For a proof of part (a), we refer the reader to Theorem 3 in [7].
To show part (b), we first observe that

tkLke−tL = (−2)k
( dk

dtk e−
t
2 L
)
e−

t
2 L.
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Next, by using assumption (H) and (DK), we obtain, for 0 < t ≤ 1,

|pk,t(x,y)− pk,t(x,y′)|

= 2k
∣∣∣∣∣∫
X

pk, t2
(x,z)
(
p t

2
(z,y)− p t

2
(z,y′)

)
dµ(z)

∣∣∣∣∣
≤ ck

∫
X

1
tn/2 e−αkd(x,z)2/t d(y,y′)

tn/2+1 e−αkd(z,y)2/t dµ(z)

≤
ckd(y,y′)

tn/2+1 e−αkd(x,y)2/t.

Similarly, for 1 < t <∞, we have

|pk,t(x,y)− pk,t(x,y′)|

= 2k
∣∣∣∣∣∫
X

pk, t2
(x,z)
(
p t

2
(z,y)− p t

2
(z,y′)

)
dµ(z)

∣∣∣∣∣
≤ ck

∫
X

1
tN/2 e−αkd(x,z)2/t d(y,y′)

tN/2+1 e−αkd(z,y)2/t dµ(z)

≤
ckd(y,y′)

tN/2+1 e−αkd(x,y)2/t.

Hence we have shown (b).
To show part (c), we just use assumption (C) and also

tkLke−tL = (−1)k
( d
dt

)k
e−tL.

Thus the proof of the proposition is finished. �

2.3 Besov norms associated with operators

Assume L satisfies (S ) and (K). Let kt(x,y) = p1,t(x,y) be the kernel of Ψt(L) = tLe−tL. By
Proposition 2.2, kt(x,y) satisfies

|kt(x,y)| ≤


c

tn/2 e−αd(x,y)2/t, 0 < t ≤ 1
c

tN/2 e−αd(x,y)2/t, 1 < t <∞.

Let f be a complex valued measurable function on X satisfying the following growth con-
dition (G): ∫

X

| f (x)|e−αd(x,y0)2
dµ(x) <∞

for some y0 ∈ X. Then we have that

Ψt(L) f (x) =
∫
X

kt(x,y) f (y)dµ(y)

is defined for all x ∈ X.

Definition 2.3. Suppose L satisfies (S ) and (K). Let −1 < α < 1 and 1 ≤ p,q ≤ ∞. For any
f satisfying (G), we define its Ḃα,Lp,q -norm by
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‖ f ‖Ḃα,Lp,q
=

{∫ ∞
0

(t−α‖Ψt(L) f ‖p)q dt
t

}1/q
for q <∞ and

‖ f ‖Ḃα,Lp,q
= sup

t>0
t−α‖Ψt(L) f ‖p

for q =∞, whenever these are finite.

There exists functions with finite Besov norm but not necessarily smooth. In the fol-
lowing proposition we give an upper bound estimate of the Besov norm of the heat kernels.
For any k ∈ N, we denote Ψk,t(L) = tkLke−tL to be the operator whose kernel is pk,t; so
Ψ1,t(L) = Ψt(L).

Proposition 2.4. Let −1 < α < 1 and 1 ≤ p,q ≤ ∞. Suppose that f satisfies (S ) and (K).
Then for k ∈ N and z ∈ X,

‖pk,s(·,z)‖Ḃα,Lp,q
≤

Cns−α−n/2p′ , 0 < s ≤ 1
CN s−α−N/2p′ , 1 < s <∞

where Cn > 0 depends on α,n,k, p and q, and CN > 0 depends on α,N,k, p and q.

Proof. The proof is a modification of that in Proposition 2.7 in [2].
Fix k ∈ N. Using (DK) in Proposition 2.2, the kernel of the operator Ψt(L)Ψk,s(L) is

Kt,s(x,z) =
∫
X

kt(x,y)pk,s(y,z)dµ(y).

Let K̃t be a kernel satisfying

|K̃t(x,z)| ≤


ck

tn/2 e−αkd(x,z)2/t, 0 < t ≤ 1
ck

tN/2 e−αkd(x,z)2/t, 1 < t <∞

for all x,z ∈ X. Then Kt,s satisfies the size estimate

|Kt,s(x,z)| ≤C min
{ s

t
,

t
s

}
|K̃t+s(x,z)|.

Put φ(y) = pk,s(y,z), y ∈ X. We then have that

|Ψt(L)φ(x)|

= |Kt,s(x,z)|

≤


C min

{ s
t
,

t
s

}e−αkd(x,z)2/(t+s)

(t+ s)n/2 , 0 < t+ s ≤ 1

C min
{ s

t
,

t
s

}e−αkd(x,z)2/(t+s)

(t+ s)N/2 , 1 < t+ s <∞
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Hence, using Lemma 2.1,

‖Ψt(L)φ‖p ≤


C min

{ s
t
,

t
s

}
(t+ s)−n/2p′ , 0 < t+ s ≤ 1

C min
{ s

t
,

t
s

}
(t+ s)−N/2p′ , 1 < t+ s <∞

Therefore, for 0 < s ≤ 1,

‖φ‖Ḃα,Lp,q

=

{∫ ∞
0

(t−α‖Ψt(L)(φ)‖p)q dt
t

}1/q
≤C
{∫ s

0

( t1−α

s(t+ s)n/2p′

)q dt
t
+

∫ ∞
s

( t−1−αs
(t+ s)n/2p′

)q dt
t

}1/q
≤Cs−α−n/2p′

{∫ 1

0

( t1−α

(1+ t)n/2p′

)q dt
t
+

∫ ∞
1

( t−1−α

(1+ t)n/2p′

)q dt
t

}1/q
≤Cs−α−n/2p′ ,

where the constant C in the final inequality depends on α,n,k, p and q.
For 1 < s <∞,

‖φ‖Ḃα,Lp,q

=

{∫ ∞
0

(t−α‖Ψt(L)(φ)‖p)q dt
t

}1/q
≤C
{∫ s

0

( t1−α

s(t+ s)N/2p′

)q dt
t
+

∫ ∞
s

( t−1−αs
(t+ s)N/2p′

)q dt
t

}1/q
≤Cs−α−N/2p′

{∫ 1

0

( t1−α

(1+ t)N/2p′

)q dt
t
+

∫ ∞
1

( t−1−α

(1+ t)N/2p′

)q dt
t

}1/q
≤Cs−α−N/2p′ ,

where the constant C in the final inequality depends on α,N,k, p and q. �

3 Besov spaces associated with operators

3.1 Definitions of Besov spaces

Firstly, we use a similar approach as in [2] to define a “space of test functions”.

Definition 3.1. Suppose L satisfies (S ) and (K). Let −1<α< 1 and 1≤ p,q≤∞.A function
f is in the space of test functionsMα,Lp,q if f = Lg for some g, and the following are satisfied:

(i) ‖ f ‖Ḃα,Lp,q
<∞;

(ii) There is a C > 0 such that

| f (x)|+ |g(x)| ≤Ce−αd(x,x0)2
(3.1)

for some x0 ∈ X, and for every x ∈ X.
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For q =∞, we assume, in addition, that

‖t−αΨt(L) f ‖p→ 0 as t→ 0 or t→∞,

and when p =∞, we assume that

e−sL f → f in Ḃα,L∞,q as s→ 0.

Let pk,t(·,y) be the kernel of Ψk,t(L) = tkLke−tL. Proposition 3.1 in [2] implies that for
any t > 0 and x ∈ X,

kt(x, ·) = k∗t (·, x) = p∗1,t(·, x) ∈Mα,L
∗

p,q ,

−1 < α < 1 and 1 ≤ p,q ≤∞. Thus for any f ∈
(
M
−α,L∗
p′,q′
)′, and for each t > 0 and x ∈ X,

Ψt(L) f (x) = ( f ,kt(x, ·)) =
∫
X

f (x)kt(x, ·)dµ(x)

is well-defined, where (·, ·) denotes the pairing between a linear functional and a test func-
tion.

Definition 3.2. Suppose L satisfies (S ) and (K). Let −1 < α < 1 and 1 ≤ p,q ≤∞.We define
the Besov space Ḃα,Lp,q associated to an operator L by

Ḃα,Lp,q =

{
f ∈
(
M
−α,L∗
p′,q′
)′ : ‖ f ‖Ḃα,Lp,q

<∞
}
,

where

‖ f ‖Ḃα,Lp,q
=

{∫ ∞
0

(t−α‖Ψt(L)( f )‖p)q dt
t

}1/q
.

Definition 3.3. Suppose L satisfies (S ) and (K). Let −1 < α < 1, 1 ≤ p,q ≤ ∞ and s > 0.
Let f ∈

(
M
−α,L∗
p′,q′
)′. Define a linear functional e−sL f onM−α,L

∗

p′,q′ by

(e−sL f ,φ) = ( f ,e−sL∗φ), ∀φ ∈M−α,L
∗

p′,q′ . (3.2)

4 Properties of Besov spaces associated with operators

4.1 Embedding theorem

Theorem 4.1. Suppose that L satisfies (S ) and (K). Let 1 ≤ p1 ≤ p2 ≤∞, −1 < α2 ≤ α1 < 1
and α1−

min(n,N)
2p1

= α2−
min(n,N)

2p2
. Then

Ḃα1,L
p1,q ⊆ Ḃα2,L

p2,q ,

for every 1 ≤ q ≤∞.

Proof. The proof is a modification of that in Theorem 4.1 (iv) in [2].
Suppose f ∈ Ḃα1,L

p,q . Because

Ψ2t(L) f = 2e−tLΨt(L) f , t > 0,
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from the kernel bound condition (K), it follows that for all x ∈ X,

Ψ2t(L) f (x) ≤C
∫
X

e−αd(x,y)2/t

tmin(n,N)/2 |Ψt(L) f (y)|dµ(y).

Let r ≥ 0, where 1
p2
= 1

p1
+ 1

r −1. By applying a similar argument as in the proof of Young’s
inequality (see e.g., Theorem 1.2.12 in [11]) and Lemma 2.1, it follows that

‖Ψ2t(L)‖p2

≤C‖Ψt(L) f ‖p1

(
sup

y

∥∥∥∥∥e−αd(·,y)2/t

tmin(n,N)/2

∥∥∥∥∥
r

)
≤C‖Ψt(L) f ‖p1 tmin(n,N)( 1

p2
− 1

p1
)/2
.

Then we have

‖ f ‖
Ḃα2 ,L

p2 ,q

≤C
{∫ ∞

0
(t−α2‖Ψ2t(L) f ‖p2)q dt

t

}1/q
≤C
{∫ ∞

0

(
t−α2+min(n,N)( 1

p2
− 1

p1
)/2
‖Ψt(L) f ‖p1

)q dt
t

}1/q
=C‖ f ‖

Ḃα1 ,L
p1 ,q
.

Thus we have finished proving the Theorem. �

4.2 Norm equivalence

Proposition 4.4 in [2] gave the result that the Besov norms defined by tkLke−tL are equivalent
to each other for positive k ≥ 1. In the next proposition we show the equivalence of Besov
norms of more general class of functions Ψt(L) with suitable decay at 0 and infinity.

Proposition 4.2. Suppose L satisfies (S ) and (K). Let 0 < α < 1 and 1 ≤ p,q ≤ ∞. For any
f ∈
(
M
−α,L∗
p′,q′
)′, we define a family of Besov norms by

‖ f ‖Ḃα,Ψt (L)
p,q

=

{∫ ∞
0

(t−α‖Ψt(L) f ‖p)q dt
t

}1/q
for q <∞ and

‖ f ‖Ḃα,Ψt (L)
p,q

= sup
t>0

t−α‖Ψt(L) f ‖p

for q =∞. Assume that Ψt(L) and Ψ̃t(L) are two classes of functions of L which satisfy the
following conditions:

(i) Ψ(ξ) and Ψ̃(ξ) are holomorphic functions on the positive x-axis such that Ψ(ξ) and
Ψ̃(ξ) tend to 0 as ξ tends to 0 and as ξ tends to infinity.

(ii) The operators Ψt(L) and Ψ̃t(L) have kernel bounds (K).
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(iii) There exists ˜̃Ψt(L) with kernel bounds (K) such that

Ψ̃t(L) = Ψt(L) ˜̃Ψt(L).

(iv) The functions Ψ(ξ) and Ψ̃(ξ) satisfy for some constant C

Ψ̃t(L) =Ct
d
dt

(Ψt(L)).

Then the Besov norms with respect to Ψt(L) and Ψ̃t(L) are equivalent to each other.

Proof. The proof is a modification of that in Proposition 4.4 in [2].
First, it follows from condition (iii) that there exists a constant C such that

‖Ψ̃t(L) f ‖p
= ‖ ˜̃Ψt(L)Ψt(L) f ‖p
≤ ‖ ˜̃Ψt(L)‖p→p‖Ψt(L) f ‖p
≤C‖Ψt(L) f ‖p,

This then gives
‖ f ‖

Ḃα,Ψ̃t (L)
p,q

≤C‖ f ‖Ḃα,Ψt (L)
p,q
.

To obtain the reverse inequality, first assume 1 ≤ q < ∞. Recall Hardy’s inequality: For
0 < r <∞ and non-negative measurable function g,(∫ ∞

0
t−r−1
[∫ t

0
g(s)ds

]q
dt
)1/q
≤

q
r

(∫ ∞
0

t−r−1[tg(t)]q dt
)1/q
.

(See for example, Lemma 3.14, Chapter V in [15].)
Next, it follows from condition (iv) that, for every φ ∈M−α,L

∗

p′,q′ ,

d
ds

(Ψs(L) f ,φ) = (
1
s
Ψ̃s(L) f ,φ),∫ t

u
(Ψ̃s(L) f ,φ)

ds
s
= (Ψt(L) f ,φ)− (Ψu(L) f ,φ)

= (Ψt(L) f ,φ)− ( f ,Ψu(L∗)φ).

By condition (i) and an argument similar to the proof of Theorem 3.4 in [2], we observe
that Ψu(L∗)φ→ 0 inM−α,L

∗

p′,q′ norm as u→ 0. It follows that

(Ψt(L) f ,φ) =
∫ t

0
(Ψ̃s(L) f ,φ)

ds
s

(4.1)

inMα,Lp,q . This and Hardy’s inequality with g(s) =
1
s
‖Ψ̃s(L) f ‖p gives{∫ ∞

0
(t−α‖Ψt(L) f ‖p)q dt

t

}1/q
≤

{∫ ∞
0

t−αq
(∫ t

0
‖Ψ̃s(L) f ‖p

ds
s

)q dt
t

}1/q
≤

q
r

{∫ ∞
0

t−αq
( t
t
‖Ψ̃t(L) f ‖p

)q dt
t

}1/q
=

q
r

{∫ ∞
0

(
t−α‖Ψ̃t(L) f ‖p

)q dt
t

}1/q
,
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where r = αq > 0; that is,

‖ f ‖Ḃα,Ψt (L)
p,q

≤
q
r
‖ f ‖

Ḃα,Ψ̃t (L)
p,q
.

Finally, assume q =∞. Then by (4.1) and Minkowski’s inequality, it follows that

t−α‖Ψt(L) f ‖p

≤ t−α
∫ t

0
s−α‖Ψ̃s(L) f ‖psα

ds
s

≤

(
sup
s>0

s−α‖Ψ̃s(L) f ‖p
)
t−α
∫ t

0
sα−1 ds

=
1
α
‖ f ‖

Ḃα,Ψ̃t (L)
p,∞
.

Hence the reverse inequality for q =∞ follows. Thus the proof of the proposition is com-
plete. �

Next we look more at the equivalence of Besov norms of more general class of func-
tions. Let 0<α< 1 and f ∈ domain of Lα. Assume L has a bounded holomorphic functional
calculus on L2. We have

‖ f ‖Ḃα,Lp,q

=

{∫ ∞
0

(
t−α‖Ψt(L) f ‖p

)q dt
t

}1/q
=

{∫ ∞
0

(
t−α‖tLe−tL f ‖p

)q dt
t

}1/q
=

{∫ ∞
0

(
t−α
(∫
X

∣∣∣tLe−tL f
∣∣∣p dx
)1/p)q dt

t

}1/q
=

{∫ ∞
0

(∫
X

∣∣∣t−αtLe−tL f
∣∣∣p dx
)q/p dt

t

}1/q
,

If we replace tLe−tL by tkLke−tL for k ≥ 1 > α, put Ψ̃t(z) = (tz)−αΨt(z) and g = Lα f , with
g ∈ Lp, then it follows that

‖ f ‖Ḃα,Lp,q

=

{∫ ∞
0

(∫
X

∣∣∣t−αtkLke−tL f
∣∣∣p dx
)q/p dt

t

}1/q
=

{∫ ∞
0

(∫
X

∣∣∣tk−αLk−αLαe−tL f
∣∣∣p dx
)q/p dt

t

}1/q
=

{∫ ∞
0

(∫
X

∣∣∣tk−αLk−αe−tLLα f
∣∣∣p dx
)q/p dt

t

}1/q
=

{∫ ∞
0

(∫
X

∣∣∣Ψ̃t(L)g
∣∣∣p dx
)q/p dt

t

}1/q
=

{∫ ∞
0
‖Ψ̃t(L)g‖qp

dt
t

}1/q
.
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Let Ψ̃t(L) = t−αL−αΨt(L) and β̃t(L) = t−αL−αβt(L). Then [12] gives us that the Besov norms
with respect to Ψ̃t(L) and β̃t(L) are equivalent to each other for the case p = q = 2. That is,

‖ f ‖Ḃα,Ψt (L)
2,2

=

{∫ ∞
0
‖Ψ̃t(L)g‖22

dt
t

}1/2
≈ ‖ f ‖Ḃα,βt (L)

2,2
=

{∫ ∞
0
‖β̃t(L)g‖22

dt
t

}1/2
.

Furthermore, in [5] we have that, for 1 < p <∞,∥∥∥∥∥{∫ ∞
0
|Ψ̃t(L)g|2

dt
t

}1/2∥∥∥∥∥
p
≈

∥∥∥∥∥{∫ ∞
0
|β̃t(L)g|2

dt
t

}1/2∥∥∥∥∥
p
.

When p = 2, it follows that∥∥∥∥∥{∫ ∞
0
|Ψ̃t(L)g|2

dt
t

}1/2∥∥∥∥∥
p

=

{∫
X

(∫ ∞
0

∣∣∣Ψ̃t(L)g
∣∣∣2 dt

t

)p/2
dx
}1/p

=

{∫
X

(∫ ∞
0

∣∣∣Ψ̃t(L)g
∣∣∣2 dt

t

)2/2
dx
}1/2

=

{∫
X

(∫ ∞
0

∣∣∣Ψ̃t(L)g
∣∣∣2 dt

t

)
dx
}1/2

=

{∫ ∞
0

(∫
X

∣∣∣Ψ̃t(L)g
∣∣∣2 dx
) dt

t

}1/2
=

{∫ ∞
0

(∫
X

∣∣∣Ψ̃t(L)g
∣∣∣2 dx
)2/2 dt

t

}1/2
=

{∫ ∞
0
‖Ψ̃t(L)g‖22

dt
t

}1/2
= ‖ f ‖Ḃα,Ψt (L)

2,2
.

Therefore [5] also gives us that the Besov norms with respect to Ψ̃t(L) and β̃t(L) are equiv-
alent to each other for the case p = q = 2. That is,

‖ f ‖Ḃα,Ψt (L)
2,2

=

{∫ ∞
0
‖Ψ̃t(L)g‖22

dt
t

}1/2
≈ ‖ f ‖Ḃα,βt (L)

2,2
=

{∫ ∞
0
‖β̃t(L)g‖22

dt
t

}1/2
.

The following proposition extends the Besov norm equivalence result of Proposition
4.4 in [2] to non-integer k ≥ 1.

Proposition 4.3. Suppose L satisfies (S ) and (K). Let −1 < α < 1 and 1 ≤ p,q ≤ ∞. For
any f ∈

(
M
−α,L∗
p′,q′
)′, and k = 1,2, . . ., we define a family of Besov norms by

‖ f ‖Ḃα,L,kp,q
=

{∫ ∞
0

(t−α‖tkLke−tL f ‖p)q dt
t

}1/q
for q <∞ and

‖ f ‖Ḃα,L,kp,q
= sup

t>0
t−α‖tkLke−tL f ‖p

for q =∞, where tkLke−tL f (x) = ( f , pk,t(x, ·)). Then these norms for different values of non-
integer w, for k < w < k+1, are equivalent to each other.
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Proof. Let w = k+α, where 0 < α < 1. Firstly, it can be seen that

‖twLwe−tL f ‖p
= ‖tαLαe−tL/2tkLke−tL/2 f ‖p
≤ ‖tαLαe−tL/2‖p→p‖tkLke−tL/2 f ‖p
≤C‖tkLke−tL/2 f ‖p,

where the final inequality is true because the operator norm ‖tαLαe−tL/2‖p→p is uniformly
bounded, which follows from interpolation (see [11]) between α = 0 and α = 1. Therefore
we have

‖ f ‖Ḃα,L,wp,q
≤C‖ f ‖Ḃα,L,kp,q

for any non-integer value w, where k < w < k+1.
To prove the reverse inequality, observe that

‖tk+1Lk+1e−tL f ‖p
= ‖t1−αL1−αe−tL/2tk+αLk+αe−tL/2 f ‖p
≤ ‖t1−αL1−αe−tL/2‖p→p‖tk+αLk+αe−tL/2 f ‖p
≤C‖tk+αLk+αe−tL/2 f ‖p,

=C‖twLwe−tL/2 f ‖p,

where the final inequality is true because the operator norm ‖t1−αL1−αe−tL/2‖p→p is uni-
formly bounded, which follows from interpolation between α = 0 and α = 1. Therefore we
have

‖ f ‖Ḃα,L,k+1
p,q

≤C‖ f ‖Ḃα,L,wp,q

for any non-integer value w, where k < w < k+ 1. Hence the proof of the proposition is
complete. �

Next we see if we have norm equivalence when we replace the semigroup tkLke−tL by
the resolvent tkLk(tL+1)−m, for k < m.

Let λ > 0. The Laplace transform gives

(λI+L)−m =
1

m!

∫ ∞
0

sm−1e−λse−sL ds.

We have

(tL+1)−m

=
[
t
(
L+

1
t
)]−m

= t−m(L+ 1
t
)−m

=
t−m

m!

∫ ∞
0

sm−1e−s/te−sL ds.
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Then for k < m, it follows that

tkLk(tL+1)−m

=
tk−m

m!

∫ ∞
0

sm−1e−s/tLke−sL ds

=
t−m

m!

∫ ∞
0

sm−1e−s/ttkLke−sL ds

=
t−m

m!

∫ ∞
0

sme−s/t
( t

s

)k
skLke−sL ds

s
.

Therefore we have

‖tkLk(tL+1)−m‖p

≤
t−m

m!

∫ ∞
0

sme−s/t
( t

s

)k
‖skLke−sL‖p

ds
s

≤Ct−m
∫ ∞

0
sme−s/t

( t
s

)k ds
s
.

By change of variables s/t→ w it then follows that

‖tkLk(tL+1)−m‖p

≤C
∫ ∞

0
wm−ke−w ds

w

≤C
∫ ∞

0
wm−k−1e−w ds

≤C.

By using the above and also observing that

‖tkLke−tL‖p

≤ ‖tkLk(tL+1)−m‖p‖(tL+1)me−tL‖p

≤C‖tkLk(tL+1)−m‖p

≤C,

this gives a simpler proof for Proposition 4.4 in [2] than by using Hardy’s inequality.
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