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Abstract

A classical result due to A. P. Calderón states that Bessel potential spaces and Sobolev
spaces defined on the same Lebesgue space and of the same integer order are isomor-
phic. We show that this result remains true when we replace Lebesgue spaces by some
particular subspaces of Wiener amalgam space.
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1 Introduction

The classical Bessel Potential space BLp(Rd )
β

, β ≥ 0 and 1 < p <∞, consists of all

u =Gβ ∗ f ,

where f belongs to Lp(Rd) and Gβ is the Bessel kernel of order β. It is well-known (see

[C], [S], [A-H]) that when β is a natural number the space BLp(Rd )
β

(endowed with the norm
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Gβ ∗ f 7→ ‖ f ‖Lp(Rd)) is isomorphic to the classical Sobolev space Wβ, p(Rd). This result has
been extended to the variable exponent setting, that is, when the exponent p is a measurable
function p : Rd → [p∗, p∗],1 < p∗ < p∗ <∞ (see [A-S], [G-H-N], [Cr]).
The aim of this paper is to show that the isomorphism between Sobolev spaces and Bessel
potential spaces mentioned above holds when we replace the Lebesgue space by the sub-
space (Lq, lp)α

c, 0, 1< q≤ α < p <∞, of the Wiener amalgam space (Lq, lp). ( We refer to the
next section for the definitions and the properties of theses spaces.) The spaces (Lq, lp)α

c, 0
have been introduced by Fofana in [Fo2]. They are closely related to the Lebesgue spaces
and have attracted steadily increasing interest. Indeed, boundedness properties of Riesz
transforms on (Lq, lp)α

c, 0 and Riesz potential operators between (Lq, lp)α
c, 0 spaces have been

recently established in [D-F-S]. In this same paper, the Sobolev space W1
(
(Lq, lp)α

c, 0

)
(see

Section 3) was introduced and analogues of Sobolev inequality and Rellich-Kondrachov
compactness theorem have been obtained in this setting. As an application, the authors
have established an existence theorem for the equation div F = f with f ∈ (Lq, lp)α

c, 0. Fur-
thermore, it has been showed in [F-K-D] that if a locally integrable function has its Riesz
potential in a given Lebesgue space, then this function belongs to a space (Lq, lp)α

c, 0.
As in [Cr], we give an application to solve some nonhomogeneous differential equations.
More precisely, we show that for all non-negative integers m and for all f ∈ (Lq, lp)α

c, 0,
1 ≤ q ≤ α ≤ p ≤ 2, the equation

(I −∆)mu = f (1.1)

has a solution in a Bessel potential space defined within the framework of the spaces
(Lq, lp)α

c, 0.
The remainder of this paper is organized as follows. In Section 2 we recall background

notions about the spaces (Lq, lp)α
c, 0 and their connections with some classical spaces arising

in Harmonic Analysis. We also give some auxiliary results which will be used throughout
the text. In Section 3, we describe the Sobolev spaces W1

(
(Lq, lp)α

c, 0

)
. Our main result,

Theorem 4.7, is established in Section 4 where we study the Bessel potential spaces on
(Lq, lp)α

c, 0 and their connections with the Sobolev spaces defined within this framework.
Section 5 is devoted to the solvability of (1.1).

2 The spaces (Lq, lp)α
c, 0

Notation 2.1. The euclidean spaceRd is endowed with its usual scalar product (x, ξ) 7→ x.ξ

and the norm of x ∈ Rd is denoted by |x|.

We denote by L0 = L0(Rd, C) the space of equivalence classes (modulo equality Lebesgue

almost everywhere) of Lebesgue measurable complex functions on Rd.

For 1≤ q ≤∞, ‖ ·‖q denotes the usual norm on the classical Lebesgue space Lq = Lq(Rd, C)
and q′ the conjugate of q: 1

q
+ 1

q′
= 1 with the convention 1

∞
= 0.

For any real r > 0

• Ir
k
=

d

Π
j=1

[
k jr,

(
k j +1

)
r
)
, k =

(
k j

)
1≤ j≤d

∈ Zd,

• Jr
x =

d

Π
j=1

(
x j −

r
2 , x j +

r
2

)
, x = (x j)1≤ j≤d ∈ R

d.
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Let 1 ≤ q, α, p ≤∞.

• For any f ∈ L0 and any real number r > 0

r ‖ f ‖q, p =



( ∑
k∈Zd

(
‖ fχIr

k
‖q

)p
) 1

p

if 1 ≤ p <∞,

sup
k∈Zd

∥∥∥ fχIr
k

∥∥∥
q

if p =∞,

where χA denotes the characteristic function of the subset A of Rd.

• (Lq, lp) = (Lq, lp) (Rd, C) =
{
f ∈ L0 : 1 ‖ f ‖q, p <∞

}
.

• ‖ f ‖q, p, α = sup
r>0

r
d
(

1
α−

1
q

)
r‖ f ‖q, p, f ∈ L0.

• (Lq, lp)α = (Lq, lp)α (Rd, C) =
{

f ∈ L0 : ‖ f ‖q, p, α <∞
}
.

We denote by M1(Rd) the space of finite measures on Rd and by M∞(Rd) that of Radon

measures µ on Rd satisfying

sup
x∈Rd

|µ|(J1
x ) < +∞,

where |µ| stands for the total variation of the measure µ.

It is known (see [Fo1]) that for 1 ≤ q ≤ α ≤ p ≤ ∞,
(
(Lq, lp)α, ‖ · ‖q, p, α

)
is a complex

Banach space. It is clearly a subspace of the well-known Wiener amalgam spaces (Lq, lp)
(see [Ho]) and closely related to the Lebesgue spaces as described below.

Proposition 2.2. ([Fo1]or [Fo2]). Suppose that 1 ≤ q ≤ α ≤ p ≤∞. We have:

• ‖ f ‖q, p, α ≤ ‖ f ‖α, f ∈ L0

and consequently, Lα ⊂ (Lq, lp)α

• ‖ f ‖α, p, α = ‖ f ‖α, f ∈ L0

and therefore (Lα, lp)α = Lα

• there is a real constant C > 0 such that

‖ f ‖q, α, α ≤ ‖ f ‖α ≤C‖ f ‖q, α, α, f ∈ L0

and so (Lq, lα)α = Lα

• for any u ∈ Rd,

‖τu f ‖q, p, α ≤ 2d
(
1+ 1

p

)
3

d
q ‖ f ‖q, p, α, f ∈ L0,

where τu denotes the translation operator with translation vector u.

In [Fo2], Fofana has introduced some special subspaces of (Lq, lp)α defined as below.

Definition 2.3. For 1 ≤ q ≤ α ≤ p ≤∞, we define :
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a) (Lq, lp)αc =
{

f ∈ (Lq, lp)α : limu→0 ‖τu f − f ‖q, p, α = 0
}

b) (Lq, lp)α0 =
{

f ∈ (Lq, lp)α : limr→∞ ‖ fχRd\Jr
0
‖q, p, α = 0

}

c) (Lq, lp)α
c, 0 = (Lq, lp)αc ∩ (Lq, lp)α0 .

In [D-F-S], it was proved that (Lq, lp)α
c, 0 is closed in (Lq, lp)α.

Let us recall that for f ∈ L0, g ∈ L0 and µ a Radon measure on Rd, the convolution products
g∗ f and µ∗ f are given by the formulas

g∗ f (x) =
∫

Rd

f (x− y)g(y)dy and µ∗ f (x) =
∫

Rd

f (x− y)dµ(y)

at all points x ∈ Rd where these integrals are defined. We have the following Young’s
inequality.

Theorem 2.4. Suppose that 1 ≤ q ≤ α ≤ p <∞. There exists a constant C > 0 such that for

any element (µ, f ) of M1(Rd)× (Lq, lp)α we have

‖µ∗ f ‖q, p, α ≤C|µ|(Rd )‖ f ‖q, p, α. (2.1)

In particular, for any element (g, f ) of L1 × (Lq, lp)α, we have

‖g∗ f ‖q, p, α ≤C‖g‖1 ‖ f ‖q, p, α.

Proof. For α = q or α = p, the result is known since in these cases (Lq, lp)α = Lα.
We now suppose that 1 ≤ q < α < p <∞.
For any x ∈ Rd we have

|µ∗ f (x)| ≤
∫

Rd

| f (x− y)| d|µ|(y)

and by Hölder’s inequality

|µ∗ f (x)| ≤
(
|µ|(Rd)

) 1
q′

(∫

Rd

| f (x− y)|q d|µ|(y)

) 1
q

.

So, for any (r, k) ∈ R∗+ ×Z
d, we have

∫

Ir
k

|µ∗ f (x)|qdx ≤
(
|µ|(Rd)

) q

q′

∫

Ir
k

(∫

Rd

|τy f (x)|qd|µ|(y)

)
dx

=
(
|µ|(Rd)

) q

q′

∫

Rd


∫

Ir
k

|τy f (x)|qdx

d|µ|(y)

(by Fubini theorem)

=
(
|µ|(Rd)

) q

q′

∫

Rd

‖τy fχIr
k
‖

q
qd|µ|(y).
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It follows that


∑

k∈Zd

‖(µ∗ f )χIr
k
‖

p
q



1
p

≤
(
|µ|(Rd)

) 1
q′


∑

k∈Zd

(∫

Rd

‖τy fχIr
k
‖

q
qd|µ|(y)

) p

q



1
p

=
(
|µ|(Rd)

) 1
q′


∑

k∈Zd

(∫

Rd

‖τy fχIr
k
‖

q
qd|µ|(y)

) p

q



q

p×
1
q

.

By using Minkowski’s inequality we get


∑

k∈Zd

‖(µ∗ f )χIr
k
‖

p
q



1
p

≤
(
|µ|(Rd)

) 1
q′



∫

Rd


∑

k∈Zd

(
‖τy fχIr

k
‖

q
q

) p

q



q

p

d|µ|(y)



1
q

=
(
|µ|(Rd)

) 1
q′



∫

Rd


∑

k∈Zd

‖τy fχIr
k
‖

p
q



q

p

d|µ|(y)



1
q

.

Hence, from Proposition 2.2 we deduce that

r
d
(

1
α−

1
q

)

∑

k∈Zd

‖(µ∗ f )χIr
k
‖

p
q



1
p

≤
(
|µ|(Rd)

) 1
q′

(∫

Rd

‖τy f ‖
q
q, p, α d|µ|(y)

) 1
q

≤ C|µ|(Rd)‖ f ‖q, p, α

where C = 2d
(
1+ 1

p

)
3

d
q . Therefore,

‖µ∗ f ‖q, p, α ≤ C|µ|(Rd )‖ f ‖q, p, α.

The particular case follows by taking dµ(x) = g(x)dx with g ∈ L1. �

As a consequence of Theorem 2.4, we have the following result.

Theorem 2.5. Suppose that 1 ≤ q ≤ α ≤ p <∞. We have the following assertions.

(i) If (µ, f ) ∈ M1(Rd)× (Lq, lp)αc then µ∗ f ∈ (Lq, lp)αc .

(ii) If (µ, f ) ∈ M1(Rd)× (Lq , lp)α0 then µ∗ f ∈ (Lq, lp)α0 .

Proof. i) Assume that (µ, f ) ∈ M1(Rd)× (Lq, lp)αc . Let u be an element of Rd. Notice that
τu(µ∗ f )−µ∗ f = (τu f − f )∗µ. According to Proposition 2.2, τu f belongs to (Lq, lp)α. Then
τu f − f belongs to (Lq, lp)α. It follows from Theorem 2.4 that µ∗ f and τu(µ∗ f )−µ∗ f are
two elements of (Lq, lp)α and

‖τu(µ∗ f )−µ∗ f ‖q, p, α ≤C|µ|(Rd )‖τu f − f ‖q, p, α.

From limu→0 ‖τu f − f ‖q, p, α = 0 we deduce that limu→0 ‖τu(µ ∗ f )−µ ∗ f ‖q, p, α = 0. Thus,
µ∗ f belongs to (Lq, lp)αc .
ii) Assume that (µ, f ) ∈ M1(Rd) × (Lq, lp)α0 . Theorem 2.4 asserts that µ ∗ f belongs to
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(Lq, lp)α.
Let δ > 0 and η > 0. For x ∈ Rd\J

η+δ

0 we have

µ∗ f (x) =
∫

Rd

f (x− y)dµ(y)

=

∫

Jδ0

f (x− y)dµ(y)+
∫

Rd\Jδ0

f (x− y)dµ(y)

=

∫

Jδ0

f (x− y)χJ
η

0
(x− y)dµ(y)+

∫

Jδ0

f (x− y)χ
Rd\J

η

0
(x− y)dµ(y)

+

∫

Rd\Jδ0

f (x− y)dµ(y).

Since x− y ∈ J
η

0 and y ∈ Jδ0 imply that x ∈ J
η

0 + Jδ0 ⊂ J
η+δ

0 , we have for x ∈ Rd\J
η+δ

0 ,

µ∗ f (x) =
∫

Jδ0

f (x− y)χ
Rd\J

η

0
(x− y)dµ(y)+

∫

Rd\Jδ0

f (x− y)dµ(y).

Equivalently, for x ∈ Rd\J
η+δ

0 ,

µ∗ f (x) = (µbJδ0)∗ fχ
Rd\J

η

0
(x)+ [µb(Rd\Jδ0)]∗ f (x),

where µbJδ0 and µb(Rd\Jδ0) denote the restriction of µ to Jδ0 andRd\Jδ0 respectively. It follows
that

|(µ∗ f )χ
Rd \J

η+δ

0
| ≤ |(µbJδ0)∗ fχRd\J

η

0
|+ |[µb(Rd\Jδ0)]∗ f |.

Therefore,

‖(µ∗ f )χ
Rd\J

η+δ

0
‖q, p, α ≤ ‖(µbJ

δ
0)∗ fχ

Rd\J
η

0
‖q, p, α+ ‖[µb(R

d\Jδ0)]∗ f ‖q, p, α.

By Theorem 2.4, we have

‖(µbJδ0)∗ fχ
Rd\J

η

0
‖q, p, α ≤ C|µbJδ0 |(R

d)‖ fχ
Rd\J

η

0
‖q, p, α

≤ C|µ|(Rd )‖ fχRd\J
η

0
‖q, p, α

and
‖[µb(Rd\Jδ0)]∗ f ‖q, p, α ≤C|µ|(Rd\Jδ0)‖ f ‖q, p, α.

In addition,
lim
η→∞
‖ fχ

Rd\J
η

0
‖q, p, α = 0 and lim

δ→∞
|µ|(Rd\Jδ0) = 0.

So, for ε > 0, there exists a real number N > 0 such that for δ > N and η > N, we have

‖(µ∗ f )χ
Rd \J

η+δ

0
‖q, p, α < ε.

This shows that limr→∞ ‖(µ∗ f )χRd\Jr
0
‖q, p, α = 0. We conclude that µ∗ f belongs to (Lq, lp)α0 .

�
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In the sequel, we shall denote by C∞ the class of indefinitely differentiable functions on
R

d. The Schwartz space of rapidly decreasing C∞-functions on Rd will be denoted by S.
Let j be an element of {1, 2, ..., d}. It is well-known (see [G]) that the Riesz transform R j

defined by

R j f (x) = lim
ε→0

Γ(d+1
2 )

π
d+1

2

∫

|y|>ε

f (x− y)
y j

|y|d+1
dy, f ∈ S, x = (x1, x2, ..., xd) ∈ Rd

extends to a linear bounded operator on Lq for 1 < q < ∞. Recently, this boundedness
property of the Riesz transforms was generalized as follows.

Proposition 2.6. (See [D-F-S]). Suppose that 1< q≤ α< p ≤∞. Then the Riesz transforms

R j for j = 1, 2, ..., d satisfy

‖R j( f )‖q, p, α ≤C‖ f ‖q, p, α, f ∈
(
Lq, lp)α

c, 0 ,

where C is a positive constant not depending on f .

In order to recall an approximation property in (Lq, lp)α
c, 0, we introduce the following

notation.

Notation 2.7. We denote by ρ a fixed element of C∞, non-negative, with support included

in the unit ball B(0, 1) = {x ∈ Rd / |x| ≤ 1} and satisfying
∫
Rd ρ(x)dx = 1.

ω is a fixed element of C∞ satisfying χJ1
0
≤ ω < χJ2

0
.

We set

ρm(x) = mdρ(mx) and ωm(x) = ω
(

x

m

)
, x ∈ Rd, m ∈N∗.

With Notation 2.7, we state the following result established in [D-F-S].

Proposition 2.8. Let 1 ≤ q ≤ α ≤ p ≤∞. Then

lim
m→∞
‖( fωm)∗ρm − f ‖q, p, α = 0, f ∈

(
Lq, lp)α

c, 0 .

Proposition 2.8 shows that the closure of the space D of infinitely differentiable func-
tions on Rd with compact support in (Lq, lp)α is the space (Lq, lp)α

c, 0.

3 The Sobolev spaces W1
(
(Lq, lp)α

c, 0

)

We fix q, α, p ∈ [1, ∞] such that q ≤ α ≤ p and q <∞.

Definition 3.1. The Sobolev space W1
(
(Lq, lp)α

c, 0

)
is defined as follows:

W1
((

Lq, lp)α
c, 0

)
= { f ∈

(
Lq, lp)α

c, 0 :
∂ f

∂x j

∈
(
Lq, lp)α

c, 0 , j = 1, 2, ..., d},

where ∂ f

∂x j
stands for the partial derivative of f with respect to the j-th coordinate in the

sense of distribution.
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The Sobolev spaces W1
(
(Lq, lp)α

c, 0

)
have been introduced in [D-F-S]. In the following

proposition, we list some of their properties.

Proposition 3.2. a) The mapping f 7→ ‖ f ‖W1((Lq , lp)α) where

‖ f ‖W1((Lq , lp)α) = ‖ f ‖q, p, α+

d∑

j=1

‖
∂ f

∂x j

‖q, p, α

is a norm on W1
(
(Lq, lp)α

c, 0

)
.

b)
(
W1

(
(Lq, lp)α

c, 0

)
, ‖ · ‖W1 ((Lq , lp)α)

)
is a complex Banach space.

c) For any f ∈W1
(
(Lq, lp)α

c, 0

)
, we have

lim
m→∞
‖( fωm)∗ρm − f ‖W1((Lq , lp)α) = 0,

where ωm and ρm are defined as in Notation 2.7.

Notice that Definition 3.1 and the assertions a) and b) of Proposition 3.2 hold if we take
(Lq, lp)α or (Lq, lp)αc in place of (Lq, lp)α

c, 0 (see [D-F-S]).
A consequence of Proposition 2.8 and Proposition 3.2 is the following result.

Theorem 3.3. A function f belongs to W1
(
(Lq, lp)α

c, 0

)
if and only if there exists a sequence

( fm)m≥1 such that

a) each fm ∈ D

b) ‖ f − fm‖q, p, α→ 0

c) For each 1 ≤ i ≤ d, the sequence
(
∂ fm
∂xi

)
converges in (Lq, lp)α.

Proof. The necessary part is an immediate consequence of Proposition 3.2.
Conversely, suppose that the assertions a), b), and c) hold. Then ( fm)m≥1 is a Cauchy se-
quence in the Banach space W1 ((Lq, lp)α). So there exists a function g ∈W1 ((Lq, lp)α) such
that fm→ g in W1 ((Lq, lp)α). It follows from b) that f = g. Therefore, f ∈W1 ((Lq, lp)α).
Since ( fm) and (∂ fm

∂x j
) are two sequences of elements ofD, their limits in (Lq, lp)α belong to

(Lq, lp)α
c, 0. �

More generally, for any non-negative integer k, the Sobolev space Wk
(
(Lq, lp)α

c, 0

)
is

defined as the space of all elements f ∈ (Lq, lp)α
c, 0 satisfying ∂γ f

∂xγ
∈ (Lq, lp)α

c, 0 whenever
|γ| ≤ k. This space can be equipped with the norm

‖ f ‖Wk((Lq, lp)α) =
∑

|γ|≤k

‖
∂γ f

∂xγ
‖q, p, α,

(
∂0 f

∂x0
= f

)
. (3.1)
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4 The Bessel Potential spaces B
(Lq, lp)α

c, 0

β

If µ ∈ M1(Rd) and f ∈ L1 then their respective Fourier transforms µ̂ and f̂ are defined by

µ̂(ξ) =
∫

Rd

e2πix.ξ dµ(x), ξ ∈ Rd

and

f̂ (ξ) =
∫

Rd

e2πix.ξ f (x)dx, ξ ∈ Rd.

Let 1 ≤ q ≤ α ≤ p <∞ and let β ≥ 0. The Bessel kernel Gβ can be introduced in terms of
Fourier transform by

Ĝβ(x) = (1+4π2|x|2)−
β

2 , x ∈ Rd.

It is well-known (see [S]) that for all x ∈ Rd, Gβ(x) > 0, and ‖Gβ‖1 = 1.
For f ∈ (Lq, lp)α

c, 0 we set

Fβ( f ) =

{
Gβ ∗ f if β > 0,
f if β = 0.

According to Theorem 2.4, the convolution product written above is well defined. More
precisely, we have Fβ( f ) ∈ (Lq, lp)α

c, 0 with

‖Fβ( f )‖q, p, α ≤C‖ f ‖q, p, α, (4.1)

where C is a positive constant not depending on f .

The Bessel potential space B
(Lq, lp)αc, 0

β
is defined as

B
(Lq , lp)αc, 0
β

= {Fβ( f ) : f ∈
(
Lq, lp)α

c, 0}.

The norm of f ∈ B
(Lq , lp)αc, 0

β
is written as ‖ f ‖

B
(Lq, lp)αc, 0
β

, and is defined to be the (Lq, lp)α norm

of a function g that satisfies Fβ(g) = f . In other words,

‖ f ‖
B

(Lq , lp)αc, 0
β

= ‖g‖q, p, α, i f f = Fβ(g). (4.2)

The following result ensures that relation (4.2) gives a consistent definition of ‖ f ‖
B

(Lq, lp)αc, 0
β

.

Theorem 4.1. Suppose that β ≥ 0 and 1 ≤ q ≤ α ≤ p <∞. If g1 and g2 are two elements of

(Lq, lp)α
c, 0 such that Fβ(g1) = Fβ(g2), then g1 = g2.

For the proof of Theorem 4.1, we need the following results.

Lemma 4.2. (See [D]). Let n be an integer satisfying n > d. If µ ∈ M∞(Rd) and ϕ ∈ S then

∫

Rd

|ϕ(x)| d|µ|(x) ≤C sup
x∈Rd

|µ|(J1
x) sup

x∈Rd

(1+ |x|)n |ϕ(x)|,

where C is a constant not depending on µ and ϕ.
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Lemma 4.3. (See [S]). For β ≥ 0, Fβ : f 7→Gβ ∗ f is a mapping of S onto itself.

Proof of Theorem 4.1. Let us consider φ ∈ S and g ∈ (Lq, lp)α
c, 0. We have

∫

Rd

Fβ(g)(x)φ(x)dx =

∫

Rd

(∫

Rd

Gβ(x− y)g(y)dy

)
φ(x)dx,

and ∫

Rd

∫

Rd

|Gβ(x− y)| |g|(y)|φ(x)|dy dx =

∫

Rd

h(x)|φ|(x)dx

where h =Gβ ∗ |g| belongs to (Lq, lp)α
c, 0. Since the measure h(x)dx belongs to M∞(Rd) and

φ belongs to S, we deduce from Lemma 4.2 that

∫

Rd

h(x)|φ|(x)dx <∞.

Therefore, we may apply Fubini-Tonelli theorem to get

∫

Rd

Fβ(g)(x)φ(x)dx =

∫

Rd

g(y)

(∫

Rd

Gβ(x− y)φ(x)dx

)
dy

=

∫

Rd

g(y)

(∫

Rd

Gβ(y− x)φ(x)dx

)
dy

=

∫

Rd

g(y)(Gβ ∗φ)(y)dy

=

∫

Rd

g(y)Fβ(φ)(y)dy.

Therefore, if g1 and g2 belong to (Lq, lp)α
c, 0 and Fβ(g1) = Fβ(g2) then

∫

Rd

(g1−g2)(y)Fβ(φ)(y)dy = 0, φ ∈ S.

It follows from Lemma 4.3 that
∫
Rd (g1 − g2)(y)ψ(y)dy = 0 for all ψ ∈ S and therefore g1 =

g2. �

Remark 4.4. It is an immediate consequence of the definition of the Bessel potential space
and inequality (4.1) that

B
(Lq , lp)αc, 0

β
⊂ B

(Lq , lp)αc, 0
γ and ‖ f ‖

B
(Lq, lp)αc, 0
γ

≤C ‖ f ‖
B

(Lq, lp)αc, 0
β

if β > γ,

where C is a positive constant not depending on f . Also Fβ is an isomorphism of B
(Lq , lp)αc, 0
γ

onto B
(Lq , lp)αc, 0

γ+β
, if γ ≥ 0, β ≥ 0.

To precise the connection between the scale of potential spaces B
(Lq , lp)αc, 0

β
and that of

Sobolev spaces Wk
(
(Lq, lp)α

c, 0

)
, we will use the following lemmas.
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Lemma 4.5. (See [S]). Let δ > 0.

(i) There exists a finite measure µδ on Rd such that its Fourier transform µ̂δ is given by

µ̂δ(x) =
(2π|x|)δ

(1+4π2|x|2)
δ
2

.

(ii) There exists a pair of finite measures νδ and λδ on Rd such that

(1+4π2|x|2)
δ
2 = ν̂δ(x)+ (2π|x|)δλ̂δ(x).

Lemma 4.6. Suppose that 1 < q ≤ α < p < ∞ and β ≥ 1. Then f belongs to B
(Lq , lp)αc, 0
β

if

and only if for j = 1, 2, ..., d,
∂ f

∂x j
and f belong to B

(Lq , lp)αc, 0

β−1 . Moreover, the two norms

‖ f ‖
B

(Lq, lp)αc, 0
β

and ‖ f ‖
B

(Lq, lp)αc, 0
β−1

+

d∑

j=1

‖
∂ f

∂x j

‖
B

(Lq, lp)αc, 0
β−1

are equivalent.

Proof. a) For the proof of the necessary part, we will examine two cases.
Particular case. Assume that f ∈ S. Then, according to Lemma 4.3, there exists g ∈ S

such that f = Fβ(g). Let j be an element of {1, 2, ..., d}. We have

(
∂ f

∂x j

)̂
(x) = −2iπx j f̂ (x)

= −2iπx j(Gβ ∗g)̂(x)

= −2iπx jĜβ(x)̂g(x)

= −2iπx j(1+4π2|x|2)
−β

2 ĝ(x)

= (1+4π2|x|2)
−(β−1)

2

−i
x j

|x|

2π|x|

(1+4π2|x|2)
1
2

ĝ(x)

 .

According to Lemma 4.5, there exists a finite measure µ1 on Rd such that µ̂1(x) = 2π|x|

(1+4π2 |x|2)
1
2

.

It follows that
(
∂ f

∂x j

)̂
(x) = Ĝβ−1(x)

(
−i

x j

|x|
µ̂1(x)̂g(x)

)

= Ĝβ−1(x)

(
−i

x j

|x|
(µ1 ∗g)̂(x)

)

= Ĝβ−1(x)(−R j(µ1 ∗g))̂(x).

By Theorem 2.5 and Proposition 2.6, g( j) = −R j(µ1 ∗g) belongs to (Lq, lp)α
c, 0 and satisfies

(
∂ f

∂x j

)̂
(x) = Ĝβ−1(x)ĝ( j)(x)

= (Gβ−1 ∗g( j) )̂(x)

=
(
Fβ−1(g( j))

)̂
(x).
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Hence,
∂ f

∂x j

= Fβ−1(g( j)).

General case. Assume that f ∈B
(Lq , lp)αc, 0

β
. Then f =Fβ(g) with g∈ (Lq, lp)α

c, 0. According to
Proposition 2.8, there exists a sequence (gm) ∈ D (hence in S) such that gm→ g in (Lq, lp)α.
For each integer m , let us set fm = Fβ(gm). Then, from inequality (4.1), we have fm→ f in
(Lq, lp)α. It follows from the particular case that for each integer m and each j = 1, 2, ..., d,

∂ fm

∂x j

= Fβ−1(g( j)
m ),

where g
( j)
m = −R j(µ1 ∗gm). Since µ1 is a finite measure, Theorem 2.4 asserts that k 7→ µ1 ∗k

is a bounded operator in (Lq, lp)αand then, thanks to Theorem 2.5 µ1 ∗ k ∈ (Lq, lp)α
c, 0. In

addition, k 7→ R j(µ1 ∗ k) is a bounded operator in (Lq, lp)α since the Riesz transforms R j

are bounded in (Lq, lp)α according to Proposition 2.6. Therefore, for j = 1, 2, ..., d, the
sequence (g( j)

m ) converges to g( j) = −R j(µ1 ∗g) in (Lq, lp)α. Then, from inequality (4.1), we

have ∂ fm
∂x j
→ Fβ−1(g( j)) in (Lq, lp)α. So the sequence ( fm) converges in the Banach space

W1 ((Lq, lp)α). Thus ∂ f

∂x j
= Fβ−1(g( j)) and

d∑

j=1

‖
∂ f

∂x j

‖
B

(Lq, lp)αc, 0
β−1

=

d∑

j=1

‖g( j)‖q, p, α

≤ C‖g‖q, p, α,

where C is a real constant not depending on g. It follows that

d∑

j=1

‖
∂ f

∂x j

‖
B

(Lq, lp)αc, 0
β−1

≤C‖ f ‖
B

(Lq , lp)αc, 0
β

.

Combining this inequality with the estimate ‖ f ‖
B

(Lq , lp)αc, 0
β−1

≤C‖ f ‖
B

(Lq, lp)αc, 0
β

, we get

‖ f ‖
B

(Lq, lp)αc, 0
β−1

+

d∑

j=1

‖
∂ f

∂x j

‖
B

(Lq, lp)αc, 0
β−1

≤C‖ f ‖
B

(Lq, lp)αc, 0
β

. (4.3)

b)To prove the converse, assume that for j = 1, 2, ..., d, ∂ f

∂x j
and f belong to B

(Lq , lp)αc, 0
β−1 .

Then f = Fβ−1(g) and ∂ f

∂x j
= Fβ−1

(
h j

)
with g, h j ∈ (Lq, lp)α

c, 0.
For any j ∈ {1, 2, ..., d} and any ψ ∈ D we have

∫

Rd

h j(x)Fβ−1 (ψ) (x)dx =

∫

Rd

Fβ−1(h j)(x)ψ(x)dx

=

∫

Rd

∂ f

∂x j

(x)ψ(x)dx

= −

∫

Rd

f (x)
∂ψ

∂x j

(x)dx
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and
∫

Rd

f (x)
∂ψ

∂x j

(x)dx =

∫

Rd

Fβ−1(g)(x)
∂ψ

∂x j

(x)dx

=

∫

Rd

g(x)Fβ−1

(
∂ψ

∂x j

)
(x)dx

=

∫

Rd

g(x)
∂

∂x j

[
Fβ−1(ψ)

]
(x)dx

= −

∫

Rd

∂g

∂x j

(x)Fβ−1 (ψ) (x)dx.

So ∫

Rd

h j(x)Fβ−1 (ψ) (x)dx =

∫

Rd

∂g

∂x j

(x)Fβ−1 (ψ) (x)dx.

A simple limiting argument leads us to

∫

Rd

h j(x)Fβ−1 (ψ) (x)dx =

∫

Rd

∂g

∂x j

(x)Fβ−1 (ψ) (x)dx, ψ ∈ S, j = 1, 2, ..., d.

By Lemma 4.3, we have

∫

Rd

h j(x)ψ(x)dx =

∫

Rd

∂g

∂x j

(x)ψ(x)dx, ψ ∈ S, j = 1, 2, ..., d.

Therefore,

h j =
∂g

∂x j

(x), j = 1, 2, ..., d.

It follows that g ∈ W1
(
(Lq, lp)α

c, 0

)
. According to Theorem 3.3, there exists a sequence

(gm) ∈ D (hence in S), such that gm→ g in W1 ((Lq, lp)α). Since F1 is a mapping of S onto
itself, we can write, for each integer m, gm = F1(hm) with hm ∈ S.
Let x be an element of Rd. According to Lemma 4.5, part (ii) , with δ = 1, there exists a
pair of finite measures ν1 and λ1 on Rd such that

(1+4π2|x|2)
1
2 = ν̂1(x)+2π|x|λ̂1(x).

Then, since Ĝ1(x) = (1+4π2|x|2)−
1
2 , we have

ĥm(x) = ĥm(x)Ĝ1(x)
(
ν̂1(x)+2π|x|λ̂1(x)

)

= (G1 ∗hm)̂ (x)
(
ν̂1(x)+2π|x|λ̂1(x)

)

= F̂1(hm)(x)
(
ν̂1(x)+2π|x|λ̂1(x)

)

= ĝm(x)
(
ν̂1(x)+2π|x|λ̂1(x)

)

= ĝm(x)ν̂1(x)+ λ̂1(x)
d∑

j=1

2π
x2

j

|x|
ĝm(x).
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As it is well-known (see [S]) that for any j ∈ {1, 2, ..., d}

(
R j

(
∂gm

∂x j

))̂
(x) = 2π

x2
j

|x|
ĝm(x),

we have

ĥm(x) = ĝm(x)ν̂1(x)+ λ̂1(x)
d∑

j=1

(
R j

(
∂gm

∂x j

))̂
(x)

= ĝm(x)ν̂1(x)+ λ̂1(x)


d∑

j=1

R j

(
∂gm

∂x j

)

̂

(x).

So

hm = ν1 ∗gm+λ1 ∗


d∑

j=1

R j

(
∂gm

∂x j

) .

It follows that

‖hm‖q, p, α ≤C

‖gm‖q, p, α+

d∑

j=1

‖
∂gm

∂x j

‖q, p, α

 ,

where C is a real constant not depending on gm.
Let us consider the sequence ( fm) defined by fm = Fβ−1(gm). Then, for each integer m, we
have

fm = Fβ(hm) and ‖ fm‖
B

(Lq, lp)αc, 0
β

= ‖hm‖q, p, α.

Thus, for each integer m,

‖ fm‖
B

(Lq, lp)αc, 0
β

≤C

‖gm‖q, p, α+

d∑

j=1

‖
∂gm

∂x j

‖q, p, α

 .

The same inequality holds when fm is replaced by fm− fm′, and gm is replaced by gm−gm′ (m
and m′ being any non-negative integers). This shows that the sequence ( fm) also converges

in B
(Lq , lp)αc, 0

β
. Hence, by letting m→∞, we obtain f ∈ B

(Lq , lp)αc, 0

β
and

‖ f ‖
B

(Lq, lp)αc, 0
β

≤C

‖g‖q, p, α+

d∑

j=1

‖
∂g

∂x j

‖q, p, α

 .

It follows that

‖ f ‖
B

(Lq, lp)αc, 0
β

≤C

‖ f ‖B(Lq, lp)αc, 0
β−1

+

d∑

j=1

‖
∂ f

∂x j

‖
B

(Lq, lp)αc, 0
β−1

 . (4.4)

Inequality (4.4) together with inequality (4.3) end the proof. �

The following result gives the identity between the potential spaces B
(Lq , lp)αc, 0

β
and the

Sobolev spaces Wk
(
(Lq, lp)α

c, 0

)
.
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Theorem 4.7. Suppose that k is a positive integer and 1 < q ≤ α < p <∞. Then B
(Lq , lp)αc, 0

k
=

Wk
(
(Lq, lp)α

c, 0

)
in the sense that f ∈ B

(Lq , lp)αc, 0

k
if and only if f ∈ Wk

(
(Lq, lp)α

c, 0

)
, and the

two norms given respectively by (3.1) and (4.2) are equivalent.

Proof. The identity between Wk
(
(Lq, lp)α

c, 0

)
and B

(Lq , lp)αc, 0

k
is complete, and obvious, when

k = 0. However, it is clear that if k ≥ 1, then f ∈ Wk
(
(Lq, lp)α

c, 0

)
if and only if f and ∂ f

∂x j

belong to Wk−1
(
(Lq, lp)α

c, 0

)
for j = 1, ..., d. The two norms

‖ f ‖
Wk

(
(Lq , lp)αc, 0

) and ‖ f ‖
Wk−1

(
(Lq , lp)αc, 0

) +
d∑

j=1

‖
∂ f

∂x j

‖
Wk−1

(
(Lq , lp)αc, 0

)

are also obviously equivalent. Thus Lemma 4.6 extends the identity of Wk
(
(Lq, lp)α

c, 0

)
and

B
(Lq , lp)αc, 0

k
from k = 0 to k = 1, 2, .... �

5 Solvability of nonhomogeneous differential equations

Let us recall that in [Ho], the Fourier transform f 7→ f̂ defined on L1 has been extended to
the spaces (Lq, lp). In fact, F. Holland proved that if f belongs to (Lq, lp), 1 ≤ q, p ≤ 2, then
there exists a unique element f̂ ∈

(
Lp′ , lq

′
)

such that for any sequence (rn)n≥1 of positive real

numbers increasing to∞, the sequence
(

f̂χJ
rn
0

)
n≥1

converges in
(
Lp′ , lq

′
)

to f̂ . In addition,

∫

Rd

g (x) f̂ (x) dx =

∫

Rd

ĝ(x) f (x) dx, g ∈
(
Lq, lp)

and

1‖ f̂ ‖p′, q′ ≤C 1‖ f ‖q, p

where C is a real constant depending on d, q and p.
In [Fo3], I. Fofana has proved the following Hausdorff-Young inequalities.

Proposition 5.1. Suppose that 1 ≤ q ≤ α ≤ p ≤ 2. Then there exists a positive real constant

K such that we have

r
−d

(
1
q−

1
p

)
r‖ f̂ ‖p′, q′ ≤ K 1

r
‖ f ‖q, p, f ∈

(
Lq, lp) , r > 0

and

‖ f̂ ‖p′, q′, α′ ≤ K ‖ f ‖q, p, α, f ∈
(
Lq, lp)α .

The following result is an existence theorem for equation (1.1).

Theorem 5.2. Suppose that 1 ≤ q ≤ α ≤ p ≤ 2. Let f be an element of (Lq, lp)α
c, 0 and let m

be a non-negative integer. Then the equation

(I −∆)mu = f

has a solution u ∈ B
(Lq , lp)αc, 0

2m
.
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Proof. It is well-known that the operator (I −∆)m is defined via the Fourier transform by

[(I −∆)mu]̂(x) = (1+4π2|x|2)mû(x), x ∈ Rd.

Thus, equation (1.1) may be written as

(1+4π2|x|2)mû(x) = f̂ (x), x ∈ Rd

that is
û = (1+4π2|x|2)−m f̂ ,

and therefore
û = Ĝ2m f̂ .

As f belongs to (Lq, lp)α
c, 0, Proposition 2.8 asserts that there exists a sequence ( fk) of el-

ements of D (hence of S) such that fk → f in (Lq, lp)α. For each integer k, let us set
uk = G2m ∗ fk. Since the Fourier transform is a bounded linear operator from (Lq, lp)α into(
Lp′ , lq

′
)α′

and the operator TG2m
defined by TG2m

( f ) =G2m ∗ f is also a bounded linear op-

erator on (Lq, lp)α
c, 0, we have on the one hand ûk = ̂G2m ∗ fk→ ̂G2m ∗ f in

(
Lp′ , lq

′
)α′

and on

the other hand, ûk = Ĝ2m f̂k→ Ĝ2m f̂ in
(
Lp′ , lq

′
)α′

. Therefore,

̂G2m ∗ f = Ĝ2m f̂ .

It follows that
û = ̂G2m ∗ f .

Hence u =G2m ∗ f is a solution of (1.1) and u belongs to B
(Lq , lp)αc, 0
2m

. �
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