Volume 15, Number 1, pp. 29-43 (2013)
www.math-res-pub.org/cma

A Positive Solution of a Schrödinger-Poisson System with Critical Exponent

Lirong Huang*
Department of Mathematics,
University of Aveiro
3810-193, Aveiro, Portugal
Eugénio M. Rocha ${ }^{\dagger}$
Department of Mathematics,
University of Aveiro
3810-193, Aveiro, Portugal
(Communicated by Irena Lasiecka)

Abstract

We use variational methods to study the existence of at least one positive solution of the following Schrödinger-Poisson system $$
\begin{cases}-\Delta u+u+l(x) \phi u=k(x)|u|^{2^{*}-2} u+\mu h(x)|u|^{q-2} u & \text { in } \mathbb{R}^{3}, \\ -\Delta \phi=l(x) u^{2} & \text { in } \mathbb{R}^{3},\end{cases}
$$ under some suitable conditions on the non-negative functions l, k, h and constant $\mu>0$, where $2 \leq q<2^{*}$ (critical Sobolev exponent).

AMS Subject Classification: 35J20, 35J70
Keywords: Schrödinger-Poisson system; Variational methods; Critical growth; Positive solution

1 Introduction

In this paper, we study the existence of solutions of the system (1.2) involving a critical growth with the following form

$$
\begin{cases}-\Delta u+u+l(x) \phi u=k(x)|u|^{2^{*}-2} u+\mu h(x)|u|^{q-2} u & \text { in } \mathbb{R}^{3}, \tag{1.1}\\ -\Delta \phi=l(x) u^{2} & \text { in } \mathbb{R}^{3},\end{cases}
$$

[^0]where $2 \leq q<2^{*}$. We use the standard Mountain Pass Theorem to show the existence of a solution. However, since the nonlinearity involves a critical exponent, the Sobolev embedding $H^{1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{s}\left(\mathbb{R}^{3}\right)(2 \leq s \leq 6)$ is not compact. This will create great difficulies in the proof of the Palais-Smale condition. We will transform the problem into a nonlocal elliptic equation in \mathbb{R}^{3} and we also consider the limiting case $q=2$.

It is known that the Schrödinger-Poisson systems have a strong physical meaning because they appear in quantum mechanics models (see e.g. [6, 9, 22]) and in semiconductor theory (see e.g. [4, 5, 23, 24]). In particular, systems like (1.2) have been introduced in Benci-Fortunato [4, 5] as a model describing solitary waves for the nonlinear stationary Schrödinger equations in three-dimensional space interacting with the electrostatic field which is not a priori assigned. Further applications to superconductors are currently under investigation.

Very recently, Cerami-Vaira [10] studied the existence of positive solutions for the Schrödinger-Poisson system

$$
\begin{cases}-\Delta u+u+l(x) \phi u=f(x, u) & \text { in } \mathbb{R}^{3} \tag{1.2}\\ -\Delta \phi=l(x) u^{2} & \text { in } \mathbb{R}^{3}\end{cases}
$$

where they considered $f(x, u)=k(x)|u|^{p-2} u$ with $4<p<6$ and assumed that $l \in L^{2}\left(\mathbb{R}^{3}\right)$ and $k: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are non-negative functions satisfying $\lim _{|x| \rightarrow+\infty} l(x)=0, l \neq 0, \lim _{|x| \rightarrow+\infty} k(x)=$ $k_{\infty}>0$ and $k(x)-k_{\infty} \in L^{6 /(6-p)}\left(\mathbb{R}^{3}\right)$.

After Cerami-Vaira [10] many researchers have looked to problem (1.2), such as D'Avenia-Pomponio-Vaira [18], Li-Peng-Wang [21], Sun-Chen-Nieto [27] and Vaira [30], under various assumptions on the non-constant function l. Similar problems continue to attract attention as one can see from the latest works of He -Zou [20] and their references.

Before Cerami-Vaira [10] similar problems to (1.2), with constant function l, had also been widely investigated. We point out the works of Ambrosetti-Ruiz [2], Coclite [12], D’Avenia [17], D'Aprile et al. [13, 14, 15, 16], Ruiz [26] and others. Among of these, Azzollini-Pomponio [3], D’Aprile-Mugnai [14] and Zhao-Zhao [32] dealt with critical exponent case.

There are no existence results about system (1.1) with non-constant function l. In ZhaoZhao [32], they studied a similar system to (1.1) with function $l=1$. They established the existence of at least one positive solution for $4 \leq q<2^{*}$ and at least one positive radial solution for $2<q<4$ with some restrictions on functions k, h and μ. Moreover, note that there was no information about the case where $q=2$.

The main result, in this work, generalizes some of above results. We consider the following hypotheses (H) :
$\left(H_{l}\right) l \in L^{2}\left(\mathbb{R}^{3}\right) \cap L^{\infty}\left(\mathbb{R}^{3}\right), l(x) \geq 0$ for any $x \in \mathbb{R}^{3}$ and $l \not \equiv 0 ;$
$\left(H_{k_{1}}\right) k(x) \geq 0$ for any $x \in \mathbb{R}^{3}$;
$\left(H_{k_{2}}\right)$ There exists $x_{0} \in \mathbb{R}^{3}, \delta_{1}>0$ and $\rho_{1}>0$ such that $k\left(x_{0}\right)=\max _{\mathbb{R}^{3}} k(x)$ and $\mid k(x)-$ $k\left(x_{0}\right)\left|\leq \delta_{1}\right| x-\left.x_{0}\right|^{\alpha}$ for $\left|x-x_{0}\right|<\rho_{1}$ with $1 \leq \alpha<3$;
$\left(H_{h_{1}}\right) h \in L^{6 /(6-q)}\left(\mathbb{R}^{3}\right)$ and $h(x) \geq 0$ for any $x \in \mathbb{R}^{3}$ and $h \not \equiv 0 ;$
$\left(H_{h_{2}}\right)$ There are $\delta_{2}>0$ and $\rho_{2}>0$ such that $h(x) \geq \delta_{2}\left|x-x_{0}\right|^{-\beta}$ for $\left|x-x_{0}\right|<\rho_{2}$ and $2-\frac{q}{2}<\beta<3$, where x_{0} is given by $\left(H_{k_{2}}\right)$;
$\left(H_{h_{\mu}}\right) 0<\mu<\bar{\mu}$ when $2 \leq q<4 ; \mu>0$ when $4 \leq q<6$, where $\bar{\mu}$ is defined by

$$
\bar{\mu}:=\mu_{h}=\inf _{u \in H^{1}\left(\mathbb{R}^{3}\right) \backslash\{0\}}\left\{\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+u^{2}\right) d x: \int_{\mathbb{R}^{3}} h(x)|u|^{q} d x=1\right\} .
$$

Remark 1.1. The hypotheses $\left(H_{k_{1}}\right)$ and $\left(H_{k_{2}}\right)$ mean that $k \in L^{\infty}\left(\mathbb{R}^{3}\right)$.
Remark 1.2. The function k, which satisfies a Hölder condition of order α with $1 \leq \alpha<3$ on $H^{1}\left(\mathbb{R}^{3}\right)$ and achieves its maximum, is a special case of $\left(H_{k_{2}}\right)$.

Remark 1.3. In Lemma 2.3, we show that $\bar{\mu}$ is achieved.
By a solution (u, ϕ) in $H^{1}\left(\mathbb{R}^{3}\right) \times D^{1,2}\left(\mathbb{R}^{3}\right)$ of problem (1.1), we mean that for any $v \in$ $H^{1}\left(\mathbb{R}^{3}\right)$ it holds

$$
\left\{\begin{array}{l}
\int_{\mathbb{R}^{3}}(\nabla u \nabla v+u v+l(x) \phi u v) d x=\int_{\mathbb{R}^{3}}\left(k(x)|u|^{2^{*}-2} u v+\mu h(x)|u|^{q-2} u v\right) d x \\
\int_{\mathbb{R}^{3}} \nabla \phi \nabla v d x=\int_{\mathbb{R}^{3}} l(x) u^{2} v d x
\end{array}\right.
$$

We say the solution is positive if $u(x)>0$ and $\phi(x)>0$ for all $x \in \mathbb{R}^{3}$.
We shall prove the following theorem.
Theorem 1.4. Assume the hypotheses (H) hold and $2 \leq q<2^{*}$. Then problem (1.1) has at least one positive solution $\left(u, \phi_{u}\right)$ in $H^{1}\left(\mathbb{R}^{3}\right) \times D^{1,2}\left(\mathbb{R}^{3}\right)$.

To prove the result above, we use a combination of techniques, e.g. techniques motivated by Willem [31], to overcome the lack of compactness of the Sobolev embedding, and methods used by Chen-Li-Li [11] and Zhao-Zhao [32], to estimate carefully the energy level.

Notations. Throughout this paper, $L^{p} \equiv L^{p}\left(\mathbb{R}^{3}\right)(1 \leq p<+\infty)$ is the usual Lebesgue space with the norm $\|u\|_{p}^{p}=\int_{\mathbb{R}^{3}}|u|^{p} d x ; L^{\infty} \equiv L^{\infty}\left(\mathbb{R}^{3}\right)$ is the space of all essentially bounded functions with the norm $\|u\|_{\infty}=\operatorname{ess} \sup |u| ; H^{1} \equiv H^{1}\left(\mathbb{R}^{3}\right)$ denotes the usual Sobolev space with the norm $\|u\|^{2}=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|u|^{2}\right) d x ; H^{-1}$ is the dual space of H^{1} and $\langle\cdot, \cdot\rangle \equiv\langle\cdot, \cdot\rangle_{H^{-1} \times H^{1}}$ is dual bracket; $D^{1} \equiv D^{1,2}\left(\mathbb{R}^{3}\right)$ is the completion of $C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ with respect to the norm $\|u\|_{D}^{2}=\int_{\mathbb{R}^{3}}|\nabla u|^{2} d x ; B_{\rho}(x)$ and B_{ρ} denote a ball with radius ρ centred at x and 0 , respectively in a related space. Let $u^{+}=\max \{u, 0\}$ and $u^{-}=\max \{-u, 0\}$. We denote strong (weak) convergence for a sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ and u in a Banach space by $u_{n} \rightarrow u\left(u_{n} \rightharpoonup u\right)$, respectively. N is used to denote the dimension, so $N=3$ if there is no special explanation. The so-called critical Sobolev exponent is denoted by $2^{*}=\frac{2 N}{N-2}$. The symbol C denotes different positive constants and the value of C is allowed to change from line to line and in the same formula.

2 Preliminaries

In this section, we are going to give some preliminary lemmas. Since our methods are variational, first of all, it is necessary to transform the problem (1.1) into a Schrödinger
equation with a nonlocal term. In fact, for any $u \in H^{1}$, denote $L_{u}(v)$ the linear functional in D^{1} by

$$
L_{u}(v)=\int_{\mathbb{R}^{3}} l(x) u^{2} v d x .
$$

It follows from the hypothesis $\left(H_{l}\right)$, Hölder and Sobolev inequalities that

$$
\begin{equation*}
\left|L_{u}(v)\right| \leq\|l\|_{\infty}\|u\|_{12 / 5}^{2}\|v\|_{6} \leq C\|l l\|_{\infty}\|u\|_{12 / 5}^{2}\|v\|_{D} . \tag{2.1}
\end{equation*}
$$

Hence, the Lax-Milgram theorem implies that there exists, for each u in H^{1}, a unique $\phi_{u} \in$ D^{1} such that

$$
\int_{\mathbb{R}^{3}} \nabla \phi_{u} \nabla v=\int_{\mathbb{R}^{3}} l(x) u^{2} v d x \quad \text { for any } v \in D^{1},
$$

i.e., ϕ_{u} is the weak solution of $-\Delta \phi=l(x) u^{2}$. It holds

$$
\phi_{u}(x)=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{l(y) u^{2}(y)}{|x-y|} d y .
$$

In particular, we have

$$
\begin{equation*}
\left\|\phi_{u}\right\|_{D}^{2}=\int_{\mathbb{R}^{3}}\left|\nabla \phi_{u}\right|^{2} d x=\int_{\mathbb{R}^{3}} l(x) \phi_{u} u^{2} d x . \tag{2.2}
\end{equation*}
$$

Using (2.1) and (2.2), we obtain

$$
\begin{equation*}
\left\|\phi_{u}\right\|_{6} \leq C\left\|\phi_{u}\right\|_{D} \leq C\|u\|_{12 / 5}^{2} \leq C\|u\|^{2} \tag{2.3}
\end{equation*}
$$

and

$$
\int_{\mathbb{R}^{3}} l(x) \phi_{u}(x) u^{2}(x) d x \leq C\|u\|^{4} .
$$

Thus $F: H^{1} \rightarrow \mathbb{R}$ is well defined with

$$
\begin{equation*}
F(u)=\int_{\mathbb{R}^{3}} l(x) \phi_{u}(x) u^{2}(x) d x . \tag{2.4}
\end{equation*}
$$

To give the smoothness of the functional F (about the smoothness, we can find the statement in previous works, but we didn't find complete details), first, it is necessary to introduce the following lemma.

Lemma 2.1. [25, p.31] Let $0<\beta<N$ and $f \in L^{q}\left(\mathbb{R}^{N}\right), g \in L^{r}\left(\mathbb{R}^{N}\right)$ with $\frac{1}{q}+\frac{1}{r}+\frac{\beta}{N}=2$ and $1<q, r<\infty$. Then

$$
\int_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{|f(x) \| g(y)|}{|x-y|^{\beta}} d x d y \leq C(q, r, \beta, N)\|f\|_{q}\|g\|_{r}, \quad x, y \in \mathbb{R}^{N},
$$

where $C(q, r, \beta, N)$ is a positive constant depending on q, r, β and N.
Lemma 2.2. If the hypothesis $\left(H_{l}\right)$ holds, then $F \in C^{1}\left(H^{1}, \mathbb{R}\right)$.

Proof. From Lemma 2.1 and hypothesis $\left(H_{l}\right)$ we obtain

$$
\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\left|l(x) u^{2}(x)\right||l(y) u(y) v(y)|}{|x-y|} d x d y
$$

$\leq C\|u\|_{12 / 5}^{2}\|u v\|_{6 / 5} \leq C\|u\|_{12 / 5}^{2}\|u\|_{12 / 5}\|v\|_{12 / 5}$
for any $u, v \in H^{1}$. Then we may use the Lebesgue Theorem and Fubini Theorem and get

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{F(u+t v)-F(u)}{t} \\
= & \lim _{t \rightarrow 0} \int_{\mathbb{R}^{3}} \frac{l(x)}{t}\left((u+t v)^{2}\left(\phi_{u}+2 t \int_{\mathbb{R}^{3}} \frac{l(y) u(y) v(y)}{|x-y|} d y+t^{2} \phi_{v}\right)-\phi_{u} u^{2}\right) d x \\
= & 2 \int_{\mathbb{R}^{3}} l(x)\left(u^{2}(x) \int_{\mathbb{R}^{3}} \frac{l(y) u(y) v(y)}{|x-y|} d y+u(x) v(x) \int_{\mathbb{R}^{3}} \frac{l(y) u^{2}(y)}{|x-y|} d y\right) d x \\
= & 4 \int_{\mathbb{R}^{3}} l(x) \phi_{u} u v d x .
\end{aligned}
$$

Hence the Gateaux derivative of F on H^{1} exists and $\left\langle\frac{1}{4} F^{\prime}(u), v\right\rangle=\int_{\mathbb{R}^{3}} l(x) \phi_{u} u v d x$. Let $u_{n} \rightarrow u$ in H^{1} and $v \in H^{1}$, then by $\left(H_{l}\right)$ we obtain

$$
\begin{align*}
& \left\|F^{\prime}\left(u_{n}\right)-F^{\prime}(u)\right\|_{H^{-1}}=\sup _{\|v\|=1}\left|\left\langle F^{\prime}\left(u_{n}\right)-F^{\prime}(u), v\right\rangle\right| \\
= & 4 \sup _{\|v\|=1}\left|\int_{\mathbb{R}^{3}} l(x)\left(\phi_{u_{n}} u_{n}-\phi_{u_{n}} u+\phi_{u_{n}} u-\phi_{u} u\right) v d x\right| \tag{2.5}\\
\leq & 4\|l\| \|_{\infty} \sup _{\|v\|=1}\left(\left\|\phi_{u_{n}}\right\| 6\left\|u_{n}-u\right\|_{12 / 5}\|v\|_{12 / 5}+\int_{\mathbb{R}^{3}}\left|\phi_{u_{n}}-\phi_{u} \| u v\right| d x\right) .
\end{align*}
$$

It follows from Lemma 2.1 that

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}}\left|\phi_{u_{n}}-\phi_{u} \| u v\right| d x \\
= & \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\left|u(x) v(x) \| u_{n}^{2}(y)-u^{2}(y)\right|}{|x-y|} d x d y \\
\leq & C\left\|u_{n}^{2}-u^{2}\right\|_{6 / 5}\|u v\|_{6 / 5} \leq C\left\|u_{n}^{2}-u^{2}\right\|_{6 / 5}\|u\|_{12 / 5}\|v\|_{12 / 5} .
\end{aligned}
$$

From (2.3), (2.5), (2.6) and the fact that $u_{n} \rightarrow u$ in H^{1}, we obtain

$$
\left\|F^{\prime}\left(u_{n}\right)-F^{\prime}(u)\right\|_{H^{-1}} \rightarrow 0
$$

Thus F has a continuous Gateaux derivative on H^{1}. Therefore $F \in C^{1}\left(H^{1}, \mathbb{R}\right)$.
Let's introduce the Euler functional of the problem (1.1) as $I: H^{1} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
I(u)=\frac{1}{2}\|u\|^{2}+\frac{1}{4} F(u)-\int_{\mathbb{R}^{3}}\left(\frac{1}{2^{*}} k(x)\left|u^{+}\right|^{2^{*}}+\frac{\mu}{q} h(x)\left|u^{+}\right|^{q}\right) d x . \tag{2.6}
\end{equation*}
$$

By Lemma 2.2 we know that the functional I is of class C^{1} and its critical points are weak solutions of (1.1).

To prove Theorem 1.4, we still need some other preliminary lemmas.

Lemma 2.3. Assume that the hypothesis $\left(H_{l}\right)$ holds. Then F is a weakly continuous functional.

Proof. Suppose $u_{n} \rightharpoonup u$ in H^{1}. Since $u_{n} \rightarrow u$ in $L_{l o c}^{2}$, going if necessary to a subsequence, we can assume that

$$
u_{n} \rightarrow u \text { a.e. in } \mathbb{R}^{3} \quad \text { and } \quad \phi_{u_{n}} \rightarrow \phi_{u} \text { a.e. in } \mathbb{R}^{3}
$$

In fact, the last statement is true since, by $\left(H_{l}\right)$ and Hölder inequality, we have

$$
\begin{align*}
\left|\phi_{u_{n}}(x)-\phi_{u}(x)\right| & \leq \frac{1}{4 \pi} \int_{\mathbb{R}^{3}}\left|l(y) \| u_{n}^{2}(y)-u^{2}(y)\right| \frac{1}{|x-y|} d y \\
& \leq C\left\|u_{n}^{2}-u^{2}\right\|_{L^{2}\left(B_{R}(x)\right)}\left(\int_{|x-y| \leq R} \frac{1}{|x-y|^{2}} d y\right)^{1 / 2} \\
& +C\left\|u_{n}^{2}-u^{2}\right\|_{L^{4 / 3}\left(B_{R}^{c}(x)\right)}\left(\int_{|x-y|>R} \frac{1}{|x-y|^{4}} d y\right)^{1 / 4} \tag{2.7}\\
& \leq C\left\|u_{n}^{2}-u^{2}\right\|_{L^{2}\left(B_{R}(x)\right)}+C R^{-\frac{1}{4}}\left\|u_{n}^{2}-u^{2}\right\|_{L^{4 / 3}\left(B_{R}^{c}(x)\right)} \\
& \rightarrow 0
\end{align*}
$$

as $n \rightarrow \infty$ and $R \rightarrow \infty$. Then $\phi_{u_{n}} u_{n}^{2} \rightarrow \phi_{u} u^{2}$ a.e. on \mathbb{R}^{3}. Moreover, the sequence $\left(\phi_{u_{n}} u_{n}^{2}\right)_{n \in \mathbb{N}}$ is bounded in L^{2}, since

$$
\int_{\mathbb{R}^{3}}\left(\phi_{u_{n}} u_{n}^{2}\right)^{2} d x \leq\left(\int_{\mathbb{R}^{3}} \phi_{u_{n}}^{6} d x\right)^{1 / 3}\left(\int_{\mathbb{R}^{3}} u_{n}^{6} d x\right)^{2 / 3}=\left\|\phi_{u_{n}}\right\|_{6}^{2}\left\|u_{n}\right\|_{6}^{4} \leq C\left\|u_{n}\right\|^{6}
$$

Hence $\phi_{u_{n}} u_{n}^{2} \rightharpoonup \phi_{u} u^{2}$ in L^{2}. By $\left(H_{l}\right)$ we have

$$
F\left(u_{n}\right)=\int_{\mathbb{R}^{3}} l(x) \phi_{u_{n}} u_{n}^{2} d x \rightarrow \int_{\mathbb{R}^{3}} l(x) \phi_{u} u^{2} d x=F(u)
$$

We have proved that F is weakly continuous.
Lemma 2.4. Assume the hypothesis $\left(H_{l}\right)$ holds. Let $u_{n} \rightharpoonup u$ in H^{1}, then

$$
F\left(u_{n}-u\right)=F\left(u_{n}\right)-F(u)+o(1) .
$$

Proof. Since $\left(H_{l}\right)$ holds, from the proof of [32, Lemma 2.1], the result follows.

From a similar proof as in [31, Lemma 2.13], we obtain the next result.
Lemma 2.5. If the hypothesis $\left(H_{h_{1}}\right)$ holds and $2 \leq q<6$, then the functional

$$
\psi_{h}: H^{1} \rightarrow \mathbb{R}: u \mapsto \int_{\mathbb{R}^{3}} h(x)|u|^{q} d x
$$

is weakly continuous.
Lemma 2.6. Suppose the hypothesis $\left(H_{h_{1}}\right)$ holds and $2 \leq q<4$. Then the following infimum

$$
\begin{equation*}
\bar{\mu}:=\mu_{h}=\inf _{u \in H^{1} \backslash\{0\}}\left\{\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+u^{2}\right) d x: \int_{\mathbb{R}^{3}} h(x)|u|^{q} d x=1\right\} \tag{2.8}
\end{equation*}
$$

is achieved.

Proof. Let $\left(u_{n}\right)_{n \in \mathbb{N}} \subset H^{1}$ be a minimizing sequence such that

$$
\int_{\mathbb{R}^{3}} h(x)\left|u_{n}\right|^{9} d x=1 \quad \text { and } \quad \int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right) d x \rightarrow \mu_{h}, \quad \text { as } n \rightarrow \infty .
$$

So $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in H^{1}. Then there exists a subsequence satisfying $u_{n} \rightharpoonup u$ in H^{1}. Since $h \in L^{6 /(6-q)}$, by Lemma 2.5, we have

$$
\int_{\mathbb{R}^{3}} h(x)\left|u_{n}\right|^{q} d x \rightarrow \int_{\mathbb{R}^{3}} h(x)|u|^{q} d x . \quad \text { Hence } \int_{\mathbb{R}^{3}} h(x)|u|^{q} d x=1 .
$$

Then, by the weakly lower semi-continuous property of the norm, we get

$$
\mu_{h}=\lim _{n \rightarrow \infty} \inf \int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right) d x \geq \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+u^{2}\right) d x \geq \mu_{h} .
$$

Thus the infimum μ_{h} is achieved.
Lemma 2.7. Suppose the hypotheses $\left(H_{l}\right),\left(H_{k_{1}}\right),\left(H_{h_{1}}\right)$ and $\left(H_{h_{\mu}}\right)$ hold. Then $I(0)=0$ and (I_{1}) there are constants $\rho, \alpha>0$ such that $\left.I\right|_{\partial B_{\rho}} \geq \alpha$; and
(I_{2}) there is $\bar{u} \in H^{1} \backslash \bar{B}_{\rho}$ such that $I(\bar{u})<0$.
Proof. It is clear from the definition of I that $I(0)=0$. To prove $\left(I_{1}\right)$ and $\left(I_{2}\right)$, we consider $2 \leq q<4$ and $4 \leq q<6$ respectively. First, for $2 \leq q<4$, we have $0<\mu<\bar{\mu}$ by $\left(H_{h_{\mu}}\right)$. It follows from $\left(H_{k_{1}}\right)$, Lemma 2.6 and Sobolev inequality that

$$
\begin{aligned}
I(u) & =\frac{1}{2}\|u\|^{2}+\frac{1}{4} F(u)-\left.\frac{1}{2^{*}} \int_{\mathbb{R}^{3}} k(x)\left|u^{+} 2^{*} d x-\frac{\mu}{q} \int_{\mathbb{R}^{3}} h(x)\right| u^{+}\right|^{q} d x \\
& \geq \frac{1}{2}\|u\|^{2}-C\|u\|^{2^{*}}-\frac{\mu}{q \bar{\mu}}\|u\|^{2}=\|u\|^{2}\left(\frac{1}{2}-\frac{\mu}{q \bar{\mu}}-C\|u\|^{2^{*}-2}\right) .
\end{aligned}
$$

Set $\rho=\|u\|$, small enough such that $C \rho^{2^{*}-2} \leq \frac{1}{2}\left(\frac{1}{2}-\frac{\mu}{q \bar{\mu}}\right)$. Hence we have

$$
\begin{equation*}
I(u) \geq \frac{1}{2}\left(\frac{1}{2}-\frac{\mu}{q \bar{\mu}}\right) \rho^{2} . \tag{2.9}
\end{equation*}
$$

Take $\alpha=\frac{1}{2}\left(\frac{1}{2}-\frac{\mu}{q \bar{\mu}}\right) \rho^{2}$. Then we get the result $\left(I_{1}\right)$. By (2.3) and the fact that $\mu h(x) \geq 0$, for fixed u_{0} with $\left\|u_{0}\right\|=1$ and $\operatorname{supp}\left(u_{0}\right) \subset \operatorname{supp}(k)$, we have

$$
I\left(t u_{0}\right) \leq t^{2^{*}}\left(\frac{1}{2 t^{4}}\left\|u_{0}\right\|^{2}+\frac{C}{4 t^{2}}\left\|u_{0}\right\|^{4}-\frac{C}{2^{*}} \int_{\mathbb{R}^{3}} k(x)\left|u_{0}^{+}\right|^{*} d x\right) .
$$

Let t be large enough such that $t>\rho$ and

$$
\frac{1}{2 t^{4}}\left\|u_{0}\right\|^{2}+\frac{C}{4 t^{2}}\left\|u_{0}\right\|^{4}-\frac{C}{2^{*}} \int_{\mathbb{R}^{3}} k(x)\left|u_{0}^{+}\right|^{*} d x<0 .
$$

Take $\bar{u}=t u_{0}$. Then $\left(I_{2}\right)$ follows.

Next, we consider $4 \leq q<6$, so $\mu>0$ by $\left(H_{h_{\mu}}\right)$. Since $\left(H_{k_{1}}\right)$ and $\left(H_{h_{1}}\right)$ hold, the Hölder inequality and Sobolev inequality implies that

$$
\begin{aligned}
I(u) & =\frac{1}{2}\|u\|^{2}+\frac{1}{4} F(u)-\frac{1}{2^{*}} \int_{\mathbb{R}^{3}} k(x)\left|u^{+}\right|^{2^{*}} d x-\frac{\mu}{q} \int_{\mathbb{R}^{3}} h(x)\left|u^{+}\right|^{q} d x \\
& \geq \frac{1}{2}\|u\|^{2}-C\|u\|^{2^{*}}-\frac{\mu}{q}\|h\|_{\frac{6}{6-q}}\|u\|_{6}^{q} \\
& \geq\|u\|^{2}\left(\frac{1}{2}-C\|u\|^{2^{*}-2}-C\|u\|^{q-2}\right)
\end{aligned}
$$

for each $\mu>0$ fixed. Hence (I_{1}) follows from the similar estimate with (2.9). The proof of $\left(I_{2}\right)$ is the same to the case $2 \leq q<4$.

3 The proof of Theorem 1.4

To prove Theorem 1.4, we will apply the Mountain Pass Theorem to find a solution of problem (1.1) and then prove that it is a positive solution. Let us first recall (one of the versions of) the Mountain Pass Theorem.

Mountain Pass Theorem [1]. Let E be a real Banach space and $I \in C^{1}(E, R)$. Suppose $I(0)=0$ and
(I_{1}) there are constants $\rho, \alpha>0$ such that $\left.I\right|_{\partial B_{\rho}} \geq \alpha$; and
$\left(I_{2}\right)$ there is $\bar{u} \in E \backslash \bar{B}_{\rho}$ such that $I(\bar{u})<0$. If I satisfies the $(P S)_{c}$-condition, where c is defined as

$$
\begin{equation*}
c=\inf _{g \in \Gamma u \in g[0,1]} I(u) \text { with } \Gamma=\{g \in C([0,1], E): g(0)=0, g(1)=\bar{u}\} . \tag{3.1}
\end{equation*}
$$

Then I possesses a critical value $c \geq \alpha$.
Since Lemma 2.7 shows that the functional I has the Mountain Pass geometry, to apply this theorem to the functional I with $E \equiv H^{1}$, it is enough to prove that the Palais-Smale condition holds at the level c (the $(P S)_{c}$-condition for short), which means that every sequence $\left(u_{n}\right)_{n \in \mathbb{N}} \subset H^{1}$ such that $I\left(u_{n}\right) \rightarrow c$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in H^{-1} implies that $\left(u_{n}\right)_{n \in \mathbb{N}}$ possesses a convergent subsequence in H^{1}.

Lemma 3.1. Assume $\left(H_{l}\right),\left(H_{k_{1}}\right),\left(H_{h_{1}}\right)$ and $\left(H_{h_{\mu}}\right)$ hold. Then the functional I satisfies the $(P S)_{c}$-condition for $c \in\left(0, \frac{1}{N} \mathcal{S}^{\frac{N}{2}}\|k\|_{\infty}^{-\frac{N-2}{2}}\right)$, where \mathcal{S} denotes the best Sobolev constant defined by

$$
\begin{equation*}
\mathcal{S}=\inf _{u \in D^{1} \backslash\{0\}} \frac{\int_{\mathbb{R}^{3}}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{3}}|u|^{2^{*}} d x\right)^{2 / 2^{*}}} \tag{3.2}
\end{equation*}
$$

Proof. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a $(P S)_{c}$-sequence of I at the level $c \in\left(0, \frac{1}{N} \mathcal{S}^{\frac{N}{2}}\|k\|_{\infty}^{-\frac{N-2}{2}}\right)$, i.e.,

$$
\begin{equation*}
I\left(u_{n}\right) \rightarrow c \text { and } I^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } H^{-1} \tag{3.3}
\end{equation*}
$$

Step 1. We consider $2 \leq q<4$, so we get $0<\mu<\bar{\mu}$ by ($H_{h_{\mu}}$). Then by the Sobolev inequality, Lemma 2.6 and $k(x) \geq 0$ for any $x \in \mathbb{R}^{3}$, for large n we have

$$
\begin{align*}
& c+1+\left\|u_{n}\right\| \geq I\left(u_{n}\right)-\frac{1}{4}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
= & \frac{1}{4}\left\|u_{n}\right\|^{2}+\left(\frac{1}{4}-\frac{1}{2^{*}}\right) \int_{\mathbb{R}^{3}} k(x)\left|u_{n}^{+}\right|^{*} d x+\left(\frac{\mu}{4}-\frac{\mu}{q}\right) \int_{\mathbb{R}^{3}} h(x)\left|u_{n}^{+}\right|^{q} d x \\
\geq & \frac{1}{4}\left\|u_{n}\right\|^{2}+\left(\frac{1}{4}-\frac{1}{2^{*}}\right) \int_{\mathbb{R}^{3}} k(x)\left|u_{n}^{+}\right|^{*} d x+\left(\frac{1}{4}-\frac{1}{q}\right) \frac{\mu}{\bar{\mu}}\left\|u_{n}\right\|^{2} \tag{3.4}\\
\geq & \left(\frac{1}{4}+\left(\frac{1}{4}-\frac{1}{q}\right) \frac{\mu}{\bar{\mu}}\right)\left\|u_{n}\right\|^{2},
\end{align*}
$$

which implies $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in H^{1}, since $0<\mu<\bar{\mu}$ and $2 \leq q<4$. Passing if necessary to a subsequence, we can assume that

$$
\begin{gathered}
u_{n} \rightarrow u \quad \text { in } H^{1}, \quad u_{n} \rightarrow u \quad \text { a.e. in } \mathbb{R}^{3}, \\
\nabla u_{n}-\nabla u \quad \text { in } L^{2}, \quad \text { and } u_{n} \rightarrow u \text { in } L^{2} .
\end{gathered}
$$

Let us define $w_{n}=k(x)\left|u_{n}^{+}\right|^{N+2 / N-2}$ and $w=k(x)\left|u^{+}\right|^{N+2 / N-2}$. Since $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{2^{*}}$ and $k \in L^{\infty}$, then w_{n} is bounded in $L^{2 N / N+2}$ and so $w_{n} \rightharpoonup w$ in $L^{2 N / N+2}$. Note that for any $v \in H^{1}$, we have $v \in L^{2 N / N-2}, \nabla v \in L^{2}$ and $v \in L^{2}$. Hence

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} w_{n} v d x \rightarrow \int_{\mathbb{R}^{3}} w v d x \text {, i.e., } \int_{\mathbb{R}^{3}} k(x)\left|u_{n}^{+}\right|^{*-1} v d x \rightarrow \int_{\mathbb{R}^{3}} k(x)\left|u^{+}\right|^{2^{*}-1} v d x, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left(\nabla u_{n} \nabla v+u_{n} v\right) d x \rightarrow \int_{\mathbb{R}^{3}}(\nabla u \nabla v+u v) d x . \tag{3.6}
\end{equation*}
$$

From the proof of Lemma 2.3 and Lemma 2.5 we also have

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} h(x)\left|u_{n}^{+}\right|^{q-1} v d x \rightarrow \int_{\mathbb{R}^{3}} h(x)\left|u^{+}\right|^{q-1} v d x, \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} l(x) \phi_{u_{n}} u_{n} v d x \rightarrow \int_{\mathbb{R}^{3}} l(x) \phi_{u} u v d x . \tag{3.8}
\end{equation*}
$$

Combining (3.5)-(3.8), for $u_{n} \rightharpoonup u$ in H^{1}, we obtain

$$
\begin{align*}
\left\langle I^{\prime}\left(u_{n}\right), v\right\rangle & =\int_{\mathbb{R}^{3}}\left(\nabla u_{n} \nabla v+u_{n} v\right) d x+\int_{\mathbb{R}^{3}} l(x) \phi_{u_{n}} u_{n} v d x \\
& -\int_{\mathbb{R}^{3}} k(x)\left|u_{n}^{+}\right|^{2^{*}-1} v d x-\mu \int_{\mathbb{R}^{3}} h(x)\left|u_{n}^{+}\right| q^{q-1} v d x \tag{3.9}\\
& \rightarrow \int_{\mathbb{R}^{3}}(\nabla u \nabla v+u v) d x+\int_{\mathbb{R}^{3}} l(x) \phi_{u} u v d x-\int_{\mathbb{R}^{3}} k(x)\left|u^{+}\right|^{*-1} v d x \\
& -\left.\mu \int_{\mathbb{R}^{3}} h(x)\left|u^{+}\right|\right|^{q-1} v d x=\left\langle I^{\prime}(u), v\right\rangle .
\end{align*}
$$

On the other hand, by the fact $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in H^{-1}, we get that $\left\langle I^{\prime}\left(u_{n}\right), v\right\rangle \rightarrow 0$ for any $v \in H^{1}$. So $\left\langle I^{\prime}(u), v\right\rangle=0$ for any $v \in H^{1}$, i.e.

$$
\begin{equation*}
-\Delta u+u+l(x) \phi_{u} u=k(x)\left|u^{+}\right|^{2^{*}-1}+\mu h(x)\left|u^{+}\right|^{q-1} . \tag{3.10}
\end{equation*}
$$

In particular, $\left\langle I^{\prime}(u), u\right\rangle=0$ and then from Lemma 2.6 and $k(x) \geq 0$ we obtain

$$
\begin{align*}
I(u) & =\frac{1}{4}\left\langle I^{\prime}(u), u\right\rangle+\frac{1}{4}\|u\|^{2}+\left(\frac{1}{4}-\frac{1}{2^{*}}\right) \int_{\mathbb{R}^{3}} k(x)\left|u^{+}\right|^{2^{*}} d x+\left(\frac{\mu}{4}-\frac{\mu}{q}\right) \int_{\mathbb{R}^{3}} h(x)\left|u^{+}\right|^{q} d x \\
& \left.\geq\left(\frac{1}{4}+\left(\frac{1}{4}-\frac{1}{q}\right)\right) \overline{\bar{\mu}}\right)\|u\|^{2} \geq 0 . \tag{3.11}
\end{align*}
$$

Let $v_{n}=u_{n}-u$ and so $v_{n}-0$ in H^{1}. Hence, using the given hypotheses, the Brézis-Lieb Lemma [7] implies that

$$
\begin{gathered}
\left\|u_{n}\right\|^{2}=\left\|v_{n}\right\|^{2}+\|u\|^{2}+o(1), \\
\int_{\mathbb{R}^{3}} k(x)\left|u_{n}^{+}\right|^{*} d x=\int_{\mathbb{R}^{3}} k(x)\left|v_{n}^{+}\right|^{2^{*}} d x+\int_{\mathbb{R}^{3}} k(x)\left|u^{+}\right|^{*} d x+o(1), \\
\int_{\mathbb{R}^{3}} h(x)\left|u_{n}^{+}\right|^{q} d x=\left.\int_{\mathbb{R}^{3}} h(x)\left|v_{n}^{+}\right|\right|^{q} d x+\int_{\mathbb{R}^{3}} h(x)\left|u^{+}\right|^{q} d x+o(1),
\end{gathered}
$$

and hence by Lemma 2.4 we have

$$
I\left(u_{n}\right)=I(u)+\frac{1}{2}\left\|v_{n}\right\|^{2}+\frac{1}{4} F\left(v_{n}\right)-\frac{1}{2^{*}} \int_{\mathbb{R}^{3}} k(x)\left|v_{n}^{+}\right|^{*} d x-\frac{1}{2} \int_{\mathbb{R}^{3}} h(x)\left|v_{n}^{+}\right|^{q} d x+o(1),
$$

and

$$
\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\left\langle I^{\prime}(u), u\right\rangle+\left\|v_{n}\right\|^{2}+F\left(v_{n}\right)-\int_{\mathbb{R}^{3}} k(x)\left|v_{n}^{+}\right|^{2^{*}} d x-\left.\mu \int_{\mathbb{R}^{3}} h(x)\left|v_{n}^{+}\right|\right|^{q} d x+o(1) .
$$

Therefore it follows from Lemma 2.3, Lemma 2.5 and the hypotheses $I\left(u_{n}\right) \rightarrow c$ and $I^{\prime}\left(u_{n}\right) \rightarrow$ 0 in H^{-1} that

$$
\begin{equation*}
c=\lim _{n \rightarrow \infty} I\left(u_{n}\right)=I(u)+\lim _{n \rightarrow \infty} \frac{1}{2}\left\|v_{n}\right\|^{2}-\lim _{n \rightarrow \infty} \frac{1}{2^{*}} \int_{\mathbb{R}^{3}} k(x)\left|v_{n}^{+}\right|^{2^{*}} d x, \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle I^{\prime}(u), u\right\rangle+\lim _{n \rightarrow \infty}\left\|v_{n}\right\|^{2}-\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{3}} k(x)\left|v_{n}^{+}\right|^{2} d x=0 . \tag{3.13}
\end{equation*}
$$

Using (3.10) and (3.13) we obtain

$$
\left\|v_{n}\right\|^{2}-\int_{\mathbb{R}^{3}} k(x)\left|v_{n}^{+}\right|^{2^{*}} d x \rightarrow-\left\langle I^{\prime}(u), u\right\rangle=0 .
$$

Now we may assume that

$$
\left\|v_{n}\right\|^{2} \rightarrow b \quad \text { and } \int_{\mathbb{R}^{3}} k(x)\left|v_{n}^{+}\right|^{2^{*}} d x \rightarrow b
$$

By Sobolev's inequality we have

$$
\left\|v_{n}\right\|^{2} \geq \int_{\mathbb{R}^{3}}\left|\nabla v_{n}\right|^{2} d x \geq \mathcal{S}\left(\int_{\mathbb{R}^{3}}\left|v_{n}^{+}\right|^{2^{*}} d x\right)^{2 / 2^{*}}
$$

which means that

$$
\int_{\mathbb{R}^{3}} k(x)\left|v_{n}^{+}\right|^{2^{*}} d x \leq\|k\|_{\infty} \int_{\mathbb{R}^{3}}\left|v_{n}^{+}\right|^{*} d x \leq\|k\|_{\infty}\left(\mathcal{S}^{-1}\left\|v_{n}\right\|^{2}\right)^{2^{*} / 2},
$$

i.e., $b \leq\|k\|_{\infty}\left(\mathcal{S}^{-1} b\right)^{2^{*} / 2}$. So we get that $b=0$ or $b \geq \mathcal{S}^{\frac{N}{2}}\|k\|_{\infty}^{-\frac{N-2}{2}}$. Assume $b \geq \mathcal{S}^{\frac{N}{2}}\|k\|_{\infty}^{\|_{\infty}}$. Then combining (3.11) and (3.12), we obtain

$$
c \geq \frac{1}{2} b-\frac{1}{2^{*}} b=\frac{1}{N} b \geq \frac{1}{N} S^{\frac{N}{2}}\|k\|_{\infty}^{-\frac{N-2}{2}},
$$

which contradicts the fact that $c<\frac{1}{N} \mathcal{S}^{\frac{N}{2}}\|k\|_{\infty}^{\|_{\infty}^{\frac{N-2}{2}}}$. Hence $b=0$.
Step 2. For $4 \leq q<6$ and $\mu>0$, we obtain that

$$
\begin{aligned}
& c+1+\left\|u_{n}\right\| \geq I\left(u_{n}\right)-\frac{1}{4}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
= & \frac{1}{4}\left\|u_{n}\right\|^{2}+\left(\frac{1}{4}-\frac{1}{2^{*}}\right) \int_{\mathbb{R}^{3}} k(x)\left|u_{n}^{+}\right|^{*} d x+\left(\frac{\mu}{4}-\frac{\mu}{q}\right) \int_{\mathbb{R}^{3}} h(x)\left|u_{n}^{+}\right|^{q} d x \geq \frac{1}{4}\left\|u_{n}\right\|^{2},
\end{aligned}
$$

which implies that $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in H^{1}. To finish this step, we just need to replace (3.4) in Step 1 by the above inequality. The rest of the proof is similar to Step 1, so we omit it here.

Lemma 3.2. Suppose the hypotheses (H) hold. Then $c<\frac{1}{N} \mathcal{S}^{\frac{N}{2}}\|k\|_{\infty}^{-\frac{N-2}{2}}$.
Proof. The idea here is to find a path in Γ such that the maximum of the functional I at this path is strictly less than $\frac{1}{N} \mathcal{S}^{\frac{N}{2}}\|k\|_{\infty}^{-(N-2) / 2}$. To construct this path, we need the extremal function $u_{\varepsilon, x_{0}}$ for the embedding $D^{1} \hookrightarrow L^{6}$, where

$$
u_{\varepsilon, x_{0}}=C \frac{\varepsilon^{1 / 4}}{\left(\varepsilon+\left|x-x_{0}\right|^{2}\right)^{1 / 2}} .
$$

Here C is a normalizing constant and x_{0} is given in $\left(H_{k_{2}}\right)$. Let $\varphi \in C_{0}^{\infty}$ be such that $0 \leq$ $\varphi \leq 1,\left.\varphi\right|_{B_{R_{2}}} \equiv 1$ and supp $\varphi \subset B_{2 R_{2}}$ for some $R_{2}>0$. Set $v_{\varepsilon}=\varphi u_{\varepsilon, x_{0}}$ and then $v_{\varepsilon} \in H^{1}$ with $v_{\varepsilon}(x) \geq 0$ for each $x \in \mathbb{R}^{3}$. The following asymptotic estimates hold if ε is small enough (see Brézis-Nirenberg [8]):

$$
\begin{align*}
& \left\|\nabla v_{\varepsilon}\right\|_{2}^{2}=k_{1}+O\left(\varepsilon^{\frac{1}{2}}\right), \quad\left\|v_{\varepsilon}\right\|_{2^{*}}^{2}=k_{2}+O(\varepsilon), \tag{3.14}\\
& \left\|v_{\varepsilon}\right\|_{s}^{s}= \begin{cases}O\left(\varepsilon^{\frac{s}{4}}\right) & s \in[2,3), \\
O\left(\varepsilon^{\frac{s}{4}}|\ln \varepsilon|\right) & s=3, \\
O\left(\varepsilon^{\frac{6-s}{4}}\right) & s \in(3,6),\end{cases} \tag{3.15}
\end{align*}
$$

with $k_{1} / k_{2}=\mathcal{S}$, and $2 \leq s<2^{*}$. We know the path $t v_{\varepsilon} \in \Gamma$. For the rest, we will prove

$$
\begin{equation*}
\max _{t \geq 0} I\left(t v_{\varepsilon}\right)<\frac{1}{N} \mathcal{S}^{\frac{N}{2}}\|k\|_{\infty}^{-(N-2) / 2} \tag{3.16}
\end{equation*}
$$

for small ε. Since $I\left(t v_{\varepsilon}\right) \rightarrow-\infty$ as $t \rightarrow \infty$, there exists $t_{\varepsilon}>0$ such that $I\left(t_{\varepsilon} v_{\varepsilon}\right)=\max _{t \geq 0} I\left(t v_{\varepsilon}\right)$. Also by Lemma 2.7, $\max _{t \geq 0} I\left(t v_{\varepsilon}\right) \geq \alpha>0$. Then we have $I\left(t_{\varepsilon} v_{\varepsilon}\right) \geq \alpha>0$. Thus from the continuity of I, we may assume that there exists some positive t_{0} such that $t_{\varepsilon} \geq t_{0}>0$.

Moreover from $I\left(t v_{\varepsilon}\right) \rightarrow-\infty$ as $t \rightarrow \infty$ and $I\left(t_{\varepsilon} v_{\varepsilon}\right) \geq \alpha>0$, we get that there exists T_{0} such that $t_{\varepsilon} \leq T_{0}$. Hence $t_{0} \leq t_{\varepsilon} \leq T_{0}$. Let $I\left(t_{\varepsilon} v_{\varepsilon}\right)=A(\varepsilon)+B(\varepsilon)+C(\varepsilon)$, where

$$
\begin{gathered}
A(\varepsilon)=\frac{t_{\varepsilon}^{2}}{2} \int_{\mathbb{R}^{3}}\left|\nabla v_{\varepsilon}\right|^{2} d x-\frac{t_{\varepsilon}^{2^{*}}}{2^{*}} \int_{\mathbb{R}^{3}} k\left(x_{0}\right)\left|v_{\varepsilon}\right|^{2^{*}} d x, \\
B(\varepsilon)=\frac{t_{\varepsilon}^{2^{*}}}{2^{*}} \int_{\mathbb{R}^{3}} k\left(x_{0}\right)\left|v_{\varepsilon}\right|^{2^{*}} d x-\frac{t_{\varepsilon}^{2^{*}}}{2^{*}} \int_{\mathbb{R}^{3}} k(x)\left|v_{\varepsilon}\right|^{2^{*}} d x,
\end{gathered}
$$

and

$$
C(\varepsilon)=\frac{t_{\varepsilon}^{2}}{2} \int_{\mathbb{R}^{3}}\left|v_{\varepsilon}\right|^{2} d x+\frac{t_{\varepsilon}^{4}}{4} F\left(v_{\varepsilon}\right)-\frac{t_{\varepsilon}^{2} \mu}{2} \int_{\mathbb{R}^{3}} h(x)\left|v_{\varepsilon}\right|^{q} d x
$$

since $v_{\varepsilon}^{+}=v_{\varepsilon}$. First, we claim that

$$
\begin{equation*}
A(\varepsilon) \leq \frac{1}{N} \mathcal{S}^{\frac{N}{2}}\|k\|_{\infty}^{-\frac{N-2}{2}}+C \varepsilon^{1 / 2} \tag{3.17}
\end{equation*}
$$

Indeed, let $g(t)=\frac{t^{2}}{2} \int_{\mathbb{R}^{3}}\left|\nabla v_{\varepsilon}\right|^{2} d x-\frac{t^{2^{*}}}{2^{*}} \int_{\mathbb{R}^{3}} k\left(x_{0}\right)\left|v_{\varepsilon}\right|^{2^{*}} d x$. It is clear that $g(t)$ achieves its maximum value at some T_{ε}. So

$$
0=g^{\prime}\left(T_{\varepsilon}\right)=T_{\varepsilon} \int_{\mathbb{R}^{3}}\left|\nabla v_{\varepsilon}\right|^{2} d x-T_{\varepsilon}^{2^{*}-1} \int_{\mathbb{R}^{3}} k\left(x_{0}\right)\left|v_{\varepsilon}\right|^{2^{*}} d x
$$

That is,

$$
T_{\varepsilon}=\left(\frac{\int_{\mathbb{R}^{3}}\left|\nabla v_{\varepsilon}\right|^{2} d x}{\int_{\mathbb{R}^{3}} k\left(x_{0}\right)\left|v_{\varepsilon}\right|^{2^{*}} d x}\right)^{\frac{1}{2^{*}-2}}
$$

Therefore, from (3.14), we have

$$
g\left(T_{\varepsilon}\right)=\sup _{t \geq 0} g(t)=\frac{1}{N} \frac{\left(\int_{\mathbb{R}^{3}}\left|\nabla v_{\varepsilon}\right|^{2} d x\right)^{N / 2}}{\left(\int_{\mathbb{R}^{N}} k\left(x_{0}\right)\left|v_{\varepsilon}\right|^{2^{*}} d x\right)^{N-2 / 2}}=\frac{1}{N} \mathcal{S}^{\frac{N}{2}}\|k\|_{\infty}^{-\frac{N-2}{2}}+C \varepsilon^{1 / 2}
$$

Then (3.17) follows. Secondly, we claim that $B(\varepsilon) \leq C \varepsilon^{1 / 2}$. In fact, since $t_{0} \leq t_{\varepsilon} \leq T_{0}$ and $k \in L^{\infty}$, by the definition of $v_{\varepsilon},\left(H_{k_{2}}\right)$ and using a change of variables with $1 \leq \alpha<3$, we have

$$
\begin{aligned}
B(\varepsilon) & =\frac{t_{\varepsilon}^{2^{*}}}{2^{*}} \int_{\mathbb{R}^{3}}\left(k\left(x_{0}\right)-k(x)\right)\left|v_{\varepsilon}\right|^{2^{*}} d x \\
& \leq C \delta_{1} \int_{\left|x-x_{0}\right|<\rho_{1}} \frac{\left|x-x_{0}\right|^{\alpha} \varepsilon^{3 / 2}}{\left(\varepsilon+\left|x-x_{0}\right|^{2}\right)^{3}} d x+C \int_{\left|x-x_{0}\right| \geq \rho_{1}} \frac{\varepsilon^{3 / 2}}{\left(\varepsilon+\left|x-x_{0}\right|^{2}\right)^{3}} d x \\
& \leq C \delta_{1} \varepsilon^{\frac{3}{2}} \int_{0}^{\rho_{1}} \frac{r^{2+\alpha}}{\left(\varepsilon+r^{2}\right)^{3}} d r+C \varepsilon^{\frac{3}{2}} \int_{\rho_{1}}^{\infty} r^{-4} d r \\
& =C \delta_{1} \varepsilon^{\frac{\alpha}{2}} \int_{0}^{\rho_{1} \varepsilon^{-\frac{1}{2}}} \frac{\rho^{2+\alpha}}{\left(1+\rho^{2}\right)^{3}} d \rho+C \rho_{1}^{-3} \varepsilon^{3 / 2} \\
& \leq C \delta_{1} \varepsilon^{\frac{\alpha}{2}}+C \varepsilon^{3 / 2} \leq C \varepsilon^{\frac{1}{2}}
\end{aligned}
$$

So we have proved our claim. Therefore, to finish the proof, it is enough to show

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{C(\varepsilon)}{\varepsilon^{1 / 2}}=-\infty \tag{3.18}
\end{equation*}
$$

Actually, from the definition of $v_{\varepsilon},\left(H_{h_{2}}\right)$ and for any ε such that $0<\varepsilon \leq \rho_{2}^{2}$, it follows that

$$
\begin{aligned}
\int_{\mathbb{R}^{3}} h(x)\left|v_{\varepsilon}\right|^{q} d x & \geq C \delta_{2} \int_{\left|x-x_{0}\right|<\rho_{2}} \frac{\left|x-x_{0}\right|^{-\beta} \varepsilon^{q / 4}}{\left(\varepsilon+\left|x-x_{0}\right|^{2}\right)^{q / 2}} d x+\int_{\left|x-x_{0}\right| \geq \rho_{2}} h(x)\left|v_{\varepsilon}\right|^{q} d x \\
& \geq C \delta_{2} \varepsilon^{q / 4} \int_{0}^{\rho_{2}} \frac{r^{2}}{r^{\beta}\left(\varepsilon+r^{2}\right)^{q / 2}} d r \\
& =C \delta_{2} \varepsilon^{\frac{3}{2}-\frac{q}{4}-\frac{\beta}{2}} \int_{0}^{\rho_{2} \varepsilon^{-\frac{1}{2}}} \frac{\rho^{2}}{\rho^{\beta}\left(1+\rho^{2}\right)^{q / 2}} d \rho \\
& \geq C \delta_{2} \varepsilon^{\frac{3}{2}-\frac{q}{4}-\frac{\beta}{2}} \int_{0}^{1} \frac{\rho^{2}}{2^{q} \rho^{\beta}} d \rho=C \varepsilon^{\frac{3}{2}-\frac{q}{4}-\frac{\beta}{2}}
\end{aligned}
$$

Therefore, by the fact that $t_{0} \leq t_{\varepsilon} \leq T_{0}$ and hypothesis $\left(H_{l}\right)$, we have

$$
\begin{aligned}
C(\varepsilon) & =\frac{t_{\varepsilon}^{2}}{2} \int_{\mathbb{R}^{3}}\left|v_{\varepsilon}\right|^{2} d x+\frac{t_{\varepsilon}^{4}}{4} F\left(v_{\varepsilon}\right)-\frac{t_{\varepsilon}^{2} \mu}{2} \int_{\mathbb{R}^{3}} h(x)\left|v_{\varepsilon}\right|^{q} d x \\
& \leq C\left\|v_{\varepsilon}\right\|_{2}^{2}+C\left\|v_{\varepsilon}\right\|_{12 / 5}^{4}-\mu C \varepsilon^{\frac{3}{2}-\frac{q}{4}-\frac{\beta}{2}} \\
& \leq C \varepsilon^{\frac{1}{2}}+C \varepsilon-\mu C \varepsilon^{\frac{3}{2}-\frac{q}{4}-\frac{\beta}{2}}
\end{aligned}
$$

It follows from $2-\frac{q}{2}<\beta<3$ that for fixed μ we have

$$
\frac{C(\varepsilon)}{\varepsilon^{1 / 2}} \leq C+C \varepsilon^{\frac{1}{2}}-\mu C \varepsilon^{1-\frac{q}{4}-\frac{\beta}{2}} \rightarrow-\infty, \text { as } \varepsilon \rightarrow 0
$$

So we prove the claim (3.18). Therefore (3.16) follows.
Proof of Theorem 1.4. It follows from Lemma 3.1 and Lemma 3.2 that the functional I satisfies the $(P S)_{c}$-condition at the level c defined by (3.1). And by Lemma 2.7, the functional I has the Mountain Pass geometry. Hence the functional I has a critical value $c>0$. That is, there exists a nontrivial $u \in H^{1}$ such that $I^{\prime}(u)=0$, which means that $\left(u, \phi_{u}\right)$ is the nontrivial solution of system (1.1).

Since $0=\left\langle I^{\prime}(u), u^{-}\right\rangle=\left\|u^{-}\right\|^{2}+\int_{R^{3}} l(x) \phi_{u}\left|u^{-}\right|^{2} d x \geq\left\|u^{-}\right\|^{2}$, then $u \geq 0$ in \mathbb{R}^{3}. By standard arguments as in DiBenedetto [19] and Tolksdorf [28], we have that $u \in L^{\infty}$ and $u \in C_{l o c}^{1, \gamma}$ with $0<\gamma<1$. Furthermore, by Harnack's inequality (see Trudinger [29]), $u(x)>0$ for any $x \in \mathbb{R}^{3}$. Thus $\left(u, \phi_{u}\right)$ is a positive solution of system (1.1).

Acknowledgments

The authors thank the referees for their careful reading of the manuscript and insightful comments. This work was supported by FEDER funds through COMPETE - Operational Programme Factors of Competitiveness ("Programa Operacional Factores de Competitividade") and by Portuguese funds through the Center for Research and Development in Mathematics and Applications (University of Aveiro) and the Portuguese Foundation for Science and Technology ("FCT-Fundaco para a Ciencia e a Tecnologia"), within project PEstC/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690. L. Huang also acknowledges the partial support of the PhD fellowship SFRH /BD/ 51162/2010.

References

[1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), pp 349-381.
[2] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math. 10 (2008), pp 391-404.
[3] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear SchrödingerMaxwell equations, J. Math. Anal. Appl. 345 (2008), pp 90-108.
[4] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), pp 283-293.
[5] V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys. 14 (2002), pp 409-420.
[6] R. Benguria, H. Brézis and E. H. Lieb, The Thomas-Fermi-Von Weizsäcker theory of atoms and molecules, Comm. Math. Phys. 79 (1981), pp 167-180.
[7] H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 8 (1983), pp 486-490.
[8] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), pp 437-477.
[9] I. Catto and P. L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 1: A necessary and sufficient condition for the stability of general molecular system, Comm. Partial Differential Equations, 17 (1992), pp 1051-1110.
[10] G. Cerami and G. Vaira, Positive solutions for some non-autonomous SchrödingerPoisson systems, J. Differential Equations, 248 (2010), pp 521-543.
[11] J. Chen, S. Li and Y. Li, Multiple solutions for a semilinear equation involving singular potential and critical exponent, Z. angew. Math. Phys. 56 (2005), pp 453-474.
[12] G. M. Coclite, A Multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal. 7 (2003), pp 417-423.
[13] T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), pp 114.
[14] T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-GordonMaxwell equations, Adv. Nonlinear Stud. 4 (2004), pp 307-322.
[15] T. D'Aprile and J. Wei, On bound states concentrating on spheres for the MaxwellSchrödinger equations, SIAM J. Math. Anal. 37 (2005), pp 321-342.
[16] T. D'Aprile and J. Wei, Standing waves in the Maxwell-Schrödinger equations and an optimal configuration problem, Calc. Var. Partial Differential Equations, 25 (2006), pp 105-137.
[17] P. D'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud. 2 (2002), pp 177-192.
[18] P. D’Avenia, A. Pomponio and G. Vaira, Infinitely many positive solutions for a Schrödinger-Poisson system, Nonlinear Anal. 74 (2011), pp 5705-5721.
[19] E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), pp 827-850.
[20] X. He and W. Zou, Existence and concentration of ground states for SchrödingerPoisson equations with critical growth, J. Math. Phys. 53 (2012), 023702.
[21] G. Li, S. Peng and C. Wang, Multi-bump solutions for the nonlinear SchrödingerPoisson system, J. Math. Phys. 52 (2011), 053505.
[22] E. H. Lieb, Thomas-Fermi and related theories and molecules, Rev. Modern Phys. 53 (1981), pp 603-641.
[23] P. L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1984), pp 33-97.
[24] P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, SpringerVerlag, New York, 1990.
[25] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vols. II, IV, Elsevier (Singapore) Pte Ltd., 2003.
[26] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006), pp 655-674.
[27] J. Sun, H. Chen and J. J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 252 (2012), pp 3365-3380.
[28] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), pp 126-150.
[29] N. S. Trudinger, On Harnack type inequality and their applications to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), pp 721-747.
[30] G. Vaira, Ground states for Schrödinger-Poisson type systems, Ricerche mat. 60 (2011), pp 263-297.
[31] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
[32] L. Zhao and F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal. 70 (2009), pp 2150-2164.

[^0]: *E-mail address: lirong@ua.pt
 ${ }^{\dagger}$ E-mail address: eugenio@ua.pt

