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Some Jensen type inequalities for square-convex functions of selfadjoint operators in
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1 Introduction

Let A be a selfadjoint linear operator on a complex Hilbert space (H;<.,.)) . The Gelfand map
establishes a *-isometrically isomorphism @ between the set C (S p(A)) of all continuous
functions defined on the spectrum of A, denoted S p(A), an the C*-algebra C* (A) generated
by A and the identity operator 15 on H as follows (see for instance [14, p. 3]):

For any f,g € C(Sp(A)) and any «,f € C we have

() D(af+pg)=ad()+FO(g);

(i) ©(fg)=0(f)®(g)and O(f)=D(f);

(i) 10 (Il = I1f1l := Supyes pay LF O

(iv) @ (fo) =1y and ©(f;) = A, where fo(tr) =1 and f;(t) =t fort e Sp(A).
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With this notation we define

f(A):=D(f) forall feC(Sp(A))

and we call it the continuous functional calculus for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function on S p(A), then
f() >0 for any ¢ € Sp(A) implies that f(A) >0, i.e. f(A) is a positive operator on H.
Moreover, if both f and g are real valued functions on S p (A) then the following important
property holds:

f(@®) >g() forany t € S p(A) implies that f(A) > g(A) (P)

in the operator order of B(H).
For a recent monograph devoted to various inequalities for functions of selfadjoint op-
erators, see [14] and the references therein. For other results, see [20], [21], [16] and [18].
Let U be a selfadjoint operator on the complex Hilbert space (H,{.,.)) with the spectrum
S p(U) included in the interval [m, M] for some real numbers m < M and let {E,}, be its
spectral family. Then for any continuous function f : [m, M] — R, it is well known that we
have the following spectral representation in terms of the Riemann-Stieltjes integral:

M
(f(U)x,y>=f Of(/l)d(<Eax,y>), (1.1)

for any x,y € H. The function g, (1) := (E.x,y) is of bounded variation on the interval
[m, M] and

8x,y (m—0)=0and 8x,y M) = x,y
for any x,y € H. It is also well known that g, (1) := (E,x, x) is monotonic nondecreasing
and right continuous on [m, M].

The following result that provides an operator version for the Jensen inequality is due
to Mond & Pecarié [19] (see also [14, p. 5]):

Theorem 1.1 (Mond- Pecari¢, 1993, [19]). Let A be a selfadjoint operator on the Hilbert
space H and assume that S p (A) C [m, M] for some scalars m, M withm < M. If h is a convex
function on [m,M], then

h((Ax,x)) < (h(A)x,x) (MP)

for each x € H with ||x|| = 1.
As a special case of Theorem 1.1 we have the following Holder-McCarthy inequality:

Theorem 1.2 (Holder-McCarthy, 1967, [17]). Let A be a selfadjoint positive operator on a
Hilbert space H. Then for all x € H with ||x|| = 1,

(i) (A"x,x)>{(Ax,x) forallr>1,

(ii) {(A"x,x) <{Ax,x)" forall0<r<1;

(iii) If A is invertible, then (A" x,x) > (Ax,x)" for all r < 0.

For recent results concerning the vectorial Jensen inequality for continuous convex
functions of selfadjoint operators (MP) see [5]-[11].

In this paper we introduce the concept of square-convex functions that can be naturally
extended to complex-valued functions. We establish here the corresponding Jensen type
inequality, provide some simple examples and obtain a number of reverse inequalities of
interest.
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2 Jensen’s Inequality for Square-convex Functions

We introduce the following class of complex valued functions:

Definition 2.1. A function f : [a,b] c R — C is called square-convex on [a, b] if the asso-
ciated function ¢ : [a,b] — [0,00), ¢ (1) = |f(t)|2 is convex on [a,b].

A simple example of such a function is the concave power function f : [a,b] C [0,00) —
[0,00), f(t) =1 withre [%, 1] . Also, if h: [a,b] — [0, 00) is convex then the complex valued
function f : [a,b] cR — C given by f(¢) = W2 et is square-convex on [a,b].

The following version of Jensen inequality holds:

Theorem 2.2. Let A be a selfadjoint operator on the Hilbert space H and assume that
S p(A) C [m, M] for some scalars m,M withm < M. If f : [m,M] C R — C is a continuous
square-convex function on [m, M), then for any x € H with ||x|| = 1 we have the inequality

|f CAx, x)I < |If (A) ] 2.1

Proof. We give here two proofs. The first is using the Mond-Pecari¢ result (MP) and the
continuous functional calculus. The second is using the spectral representation (1.1) and
the Jensen inequality for the Riemann-Stieltjes integral with monotonic nondecreasing in-
tegrators.

1. Writing the (MP) inequality for / = |f|> we have

IF CAx, P < (1P (A)x.x) 2.2)

for any x € H with ||x]| = 1.
However by the continuous functional calculus we have

(£ (A)x,x) = (F(A) £ (A)x,x) = ((f (A f (A)x,x) 2.3)
=(fA)x.fA)x)=]f @A)
for any x € H with ||x]| = 1.
Therefore (2.2) becomes |f ((Ax, x))[*> < ||f (A) x||> which is equivalent with (2.1).

2. If {E,}; is the spectral family of the operator A, then by the spectral representation
(1.1) we have (see for instance [15, p. 257])

M M
1F ()2l = f IO AIESP = f O d(E 0 2.4)

for any x € H with ||x]| = 1.
The following inequality is the well known Jensen’s inequality for the Riemann-Stieltjes
integral with monotonic nondecreasing integrators u : [a,b] - R

1 b 1 b
u(b—)—u(a)\fa @([)du(t)Z(D(mL tdu(t)), (2.5)

provided that @ is continuous convex on [a,b].
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Applying the inequality (2.5) for the functions ® = |f|*> and u = (E(yx,x) for a fixed

x € H with ||x|| = 1, we have
M
f ( f td ((E;x, X>))
m—0

which gives the inequality [f ((Ax, x))|> < ||f (A) x||* for any x € H with ||x|| = 1. o

2

M
f Olf(t)lzd(<sz,x>) >

m

It is known that for any positive operator B we have the inequality <32x, x> > (Bx, x)?
for any x € H with ||x]| = 1. Utilising this inequality we have then

ILF A Xl = (1f (AP x, x) = (1 (A)]x, x)?

which gives that
Ilf (A) xl| = (| f (Al x, x) (2.6)

for any x € H with ||x|| = 1, where A is a selfadjoint operator on the Hilbert space H with
S p(A) C [m, M] for some scalars m, M withm < M and f : [m,M] C R — C is a continuous
function on [m, M].

We can provide the following refinement of (2.6):

Corollary 2.3. Let A be a selfadjoint operator on the Hilbert space H and assume that
Sp(A) C [m,M] for some scalars m, M with m < M. If f : [m,M] C R — C is a continuous
square-convex function on [m,M] and f is concave in absolute value, i.e. |f| is concave,
then for any x € H with ||x|| = 1 we have the inequality

ILf (A) xl| > 1 f ((Ax, x))| = (| f (A)] x, x) (2.7)
for any x € H with ||x|| = 1.

The proof is obvious since the second inequality in (2.7) follows by (MP) applied for
the concave function & = |f].
Remark 2.4. We notice that the function f(¢) =t with r € [%, 1] is concave and square-
convex on [0, o). Therefore, for any positive operator we have the inequalities

HA’xH > (Ax,x)" = (A"x,x) (2.3)

for any x € H with ||x|| = 1 and r € [1.1].
Consider the function f(f) = In(¢+1). We observe that it is concave and positive on
(0, 00) and if define ¢ (¢) = [In(z+ 1)]?, then we have that

¢’ (1) =

2
i 1)2 [1-In(t+1)], t> -1,

showing that f is square-convex on the interval [0,e —1]. Therefore, for any selfadjoint
operator A with S p(A) € [0,e — 1] we have the inequality

A+ 1) x]| = In((Ax,x)+1) > (In(A+ 1) x, x) 2.9
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for any x € H with ||x]| = 1.
Another example for trigonometric functions is for instance f (f) = cost,t € [ ] The
functlon p() = cos?t has the second derivative ¢” (t) = =2 cos (2¢) which is positive for 7 €

] Therefore, for any selfadjoint operator A with S p(A) C [” z ] we have the inequality

[lcosAx|| > [cos{(Ax, x)| > (cosAx,x) (2.10)

for any x € H with ||x]| = 1.

The following reverse of Jensen’s inequality holds:

Theorem 2.5. With the assumptions of Theorem 2.2 we have

_ 2 _ 2 172
ILf (A)x]| < <(M1H 4) 'f(m)jlwtfj: mlw)lf (M) x,x> (2.11)
e 12 > 27112
|4+ ([ wa)| [ omP+irane]";
1/2
<4 (I« (] )
X[F @P? +1F MOPP 7 p > 1.1 /p+ 1/ = 1
max {| f (m)|, |f (M)I};
for any x € H with ||x|| = 1.
Proof. Utilising the convexity of the function |f|?> we have
2
If(t)|2=|f (M_I)Zt;z—mw) (2.12)
L M=DIf e+ G=m)|f M)P

M—-m
[+ e = 25 ][ L mf + 1 )P

1 [(M = )7+ (t —m)?]"/4
M=m| x[ifemP?+1ranpr]” p>1tet=1

max{|f (m)? | f (M)P} (M —m)

for any t € [m, M]. For the last inequality we used the Holder inequality for two positive
numbers.
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Applying the property (P) to the inequality (2.12) we have

(If (AP x.x) 2.13)
- <|f<m>|2 (M1 = A) +|f (M) (A=mlp) >
= X, X

[%+< M—m

X, x>

([(2mty (4] )

x| (m)P? +1f yr]

A— m;M 1y

M-m

|1 )P +1f (M)

IA

,p>l,%+ =1

1
q

max {|f ()P, |f (M)

for any x € H with ||x]| = 1.

Since <|f(A)|2 X, x> =||f (A) x||, then by taking the square root in (2.13) we deduce the
desired result (2.11). O

Remark 2.6. If we consider a selfadjoint operator A with S p(A) C [0,e— 1], then by (2.11)
we get

ln (A + 1) x| < (Ax,x)/?

e —

for any x € H with ||x|| = 1. In particular, for any selfadjoint operator P with 0 < P < 1y we
have from (2.11) that

In(P+ 1) x| < (Px,x)"/?In2

for any x € H with ||x]| = 1.

3 General Reverses
In this section some upper bounds for the positive quantity
0 <IIf (A) P = 1f (Ax, )P

for x € H with ||x]| = 1, where f : [m,M] C R — C is a continuous square-convex function
on [m, M] and A is a selfadjoint operator on the Hilbert space H with S p(A) C [m, M] are
obtained.

Theorem 3.1. Let A be a selfadjoint operator on the Hilbert space H and assume that
S p(A) C [m, M] for some scalars m,M withm < M. If f : [m,M] Cc R — C is a continuous
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square-convex function on [m, M), then for any x € H with ||x|| = 1 we have the inequality

0 <IIf (A) > = |f (Ax, X)) 3.1)
M —{(Ax, x) (Ax,x)—m}

< 2max ,
{ M-m M-m

y [lf(m>|2+ If (M) M+m

2

5 [If(m)lz +1f (M)
- 2

(5

M+m

].

Proof. First of all, we recall the following result obtained by the author in [12] that provides
a refinement and a reverse for the weighted Jensen’s discrete inequality:

(%5

)] (O I 2

im0 {1 g 62
1 < 1 <

< — D(x)—D| — X

=P, - Di (xi) [Pn ;ple]

<n max {p,
i€fl,...,

Seofi5)

where ® : C — R is a convex function defined on the convex subset C of the linear space X,
{Xi}ieq1,....ny are vectors and {p;};c(; ., are nonnegative numbers with P, := 37, p; > 0.
For n = 2 we deduce from (3.2) that

. D (x)+D(y) xX+y
2m1n{t,1—t}[ > —d)( > ) (3.3)
<t D) +(1-DDOH)—D(tx+(1-0)y)
D(x)+D(y) x+y
SZmax{t,l—t}[ : —<I>( : )
for any x,ye C and t € [0,1].
Since | f |2 is convex, then we have
If OF = 1f (Ax, x)P (3.4)
2
- (A s
M- |f ) +(t—m)|f (M)
M-m
| ((M—(Ax,x))m+((Ax,x)—m)M)2
— f e
m

for any ¢ € [m, M] and any x € H with ||x]| = 1.
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Fix x € H with [|x]| = 1 and apply the inequality (P) to get in the operator order the
following inequality

If (AP = 1f (Ax, ) 1y (3.5)
_ P M1y —A) +1f (M)P (A= mlpy)
- M—-m
(M = (Ax, x))m+ ({Ax, x) —m) M \[*
-\f m 1y.
—m
We notice that (3.5) implies the following vectorial inequality
(If (AP x,x) =1 (Ax, )P (3.6)
B |f () (M = (Ax, x) + | f (M)* {Ax, x) —m1 )
- M-m
‘ ((M— (Ax, x))m + ((Ax, x) —m)M) 2
_ f M_
m

for any x € H with ||x|| = 1. This inequality is also of interest in itself.
Now, on applying the second inequality in (3.3) we have

|f (M) (M — (Ax, x)) +|f (M)I* (Ax,x) —m1p)
M—-m
' ((M—<Ax,x))m+((Ax,x)—m)M)
— f M_
m
M —{Ax,x) {(Ax,x)—m
M-m °~ M-m
2 2 2
X[If(m)l +1f (M) _‘f(M+m) ]

2

S2max{

2 2

for any x € H with ||x|| = 1.
The last part is obvious since
M—{(Ax,x) (Ax,x)—m
M-m °~ M-m
for any x € H with ||x]| = 1. O

<1

Remark 3.2. Utilising the elementary inequality 0 < va— Vb < Va—b provided 0 < b < a
we get from (3.1) the simpler, however the coarser inequality

0 < |If (A xll = 1f (Ax, )| (3.7)
M —(Ax, x) 12 (Ax,x)—m 12
< ‘/imax{(M—_m) ,(W)

2 2

|f ) +1f (M) M+m
= \5[ 2 _‘f( 2

y [If(m)l2 +HIf (M ’f(M+m)

2]1/2
)2]1/2
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for any x € H with ||x]| = 1.

Example 3.3. If we apply the inequality (3.1) for the square-convex function f (¢) = " with
re [%, 1] on [m, M] with 0 < m < M, then we get:

0 < [|a"x - (Ax, x> (3.8)
M—{Ax,x) (Ax,x)—m
M-m ° M-m }
m2r+M2r M+m 2r
2 _( 2 ”
m* + M*" (M+m)2’]

< Zmax{

<2

2 2

for any x € H with ||x]| = 1.

Theorem 3.4. With the assumptions of Theorem 3.1 we have for any x € H with ||x|| = 1 that

0 < IIf (A) x> = |f (Ax, )P (3.9)
(M_<Ax’}3)_(,<:x’x>_m) SUPye(m.ary O (£;m, M)
<

T (M -m)Dy(Ax,x);m,M), (Ax,x) #m,M,

where ) ) 5 )
_ I MOP =1FOF 1F@OF =1f )
Oy (t;m, M) = T — (3.10)
Proof. By denoting
2 _ 2
A M) = (t—m)lf(M)Ilw FM-DIf P FOR. temM]
-m
we have
As(t;m, M) (3.11)
_t=m)f MP+M-)|f ) — (M -m)|f (D)
a M-m
_t-mIf M+ M -D|f ) —(M—t+t—-m)|f @)
B M-m
_a=m)[Ilf MDP = 1f OF | =M =0)|If OF = 1f (m)P]
a M-m
_ M-n(-—m) ;;)_(’ _m)(Df(t;m,M)
for any t € (m,M).
Since
|f (m)I* (M = (Ax, X)) + | f (M)I* ((Ax, x) —m1p) 3.12)
M—-m
l ((M—(Ax,x))m+((Ax,x)—m)M)2
— f M_
m

=Ar((Ax,x);m,M)
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for any x € H with ||x]| = 1, then by (3.6) and (3.11) we have the following inequality

0 < |1 (A)x* = 1f (Ax, x)I* (3.13)

M- _
< (M —{(Ax,x)) ((Ax,x) —m) O (A, x) s, M)
M-m
M—(Ax,x))((Ax,x)— .
(- 1)3)—(21 xx)m) SUP e (m, M) q)f (t;m, M)

IA

7 (M —m) Dy ((Ax, x);m, M).
The first branch holds for any x € H with ||x|| = 1. The second branch holds if (Ax, x) # m, M,
x € H with ||x]| = 1. O

Example 3.5. If we apply the second inequality from (3.9) for the square-convex function
f@) =1 withre [%, 1] on [m, M] with 0 < m < M, then for any selfadjoint operator A with
Sp(A) C[m,M] we get:

0 < [|A7x* - ¢Ax, x> (3.14)
1 M2r —(A 2r A 2r _ .2r
<Yom—m Ax, )" (Ax,x)" —m
4 M —(Ax,x) (Ax,x)—m

for any x € H with ||x]| = 1 and {(Ax, x) # m, M.

4 More Reverses for Differentiable Functions

In order to prove another reverse of the Jensen’s inequality, we need the following Griiss
type result obtained in [3]. For the sake of completeness, we give here a simple proof.

Lemma 4.1. Let A be a selfadjoint operator with S p(A) C [m, M] for some real numbers
m<M.Ifh,g:[m,M]— R are continuous with 6 := minep, 3 g (t) and A := max,em an 8 (7),
then

[(h(A) g (A) x,x) = (h(A) x, x) (g (A) x, x)| 4.1
1

<

(A=06)(|h(A) = (h(A) x,x)- 1] x, x)

(A=) [Ih )P~ () xx]

<

for any x € H with ||x]| = 1.

Proof. Since ¢ := minse[m p & (t) and A := maxepn,am g (2), we have
A+

t —_
g(®) >

for any ¢ € [m, M] and for any x € H with ||x|| = 1.
If we multiply the inequality (4.2) with | () — (h(A) x, x)| we get

0 < %(A—é), 4.2)

A+6 A+6
‘h(r)g(r>—<h<A>x,x>g<z>— ; h(o) + ; (h(A)x,%) 4.3)

< 5 (A=9)Ih(0) = (h(A)x,x)],

N =
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for any ¢ € [m, M] and for any x € H with ||x]| = 1.
Now, if we apply the property (P) for the inequality (4.3) and a selfadjoint operator B
with S p(B) c [m, M], then we get the following inequality of interest in itself:

Kh(B)g(B)y,y)—<(h (A)x x)(g(B)y,y) 4.4)
A A+
S22 By + P20 e

1
< 5 (A=6)(|h(B)=(h(A) x,x)- 1uly,y),

N

for any x,y € H with ||x|| = |[y|| = 1.
If we choose in (4.4) y = x and B = A, then we deduce the first inequality in (4.1).
Now, by the Schwarz inequality in H we have

(h(A) = <h(A) x, x)- 1l x, x) < [[|R(A) = (h(A) x,x) - L] x|
= |l (A)x = (h(A) x, x) - x|
1/2
= [l (4) 21 = (A) x, x)?
for any x € H with ||x|| = 1, and the second part of (4.1) is also proved. O

For other related results see [1] and [2].

Before we state the next result, we say that the function f : I — Cis square differentiable
on [ if the function |f ? is differentiable on I. It is clear that, if f is differentiable on / then
it is square differentiable on / and

d(1f?) df i
T ke (f ) 2Re (f dt)
—Z[Re(f)Re(flf)+Im(f)Im((;];)]

For a real function g : [m, M] — R and two distinct points a, € [m, M] we recall that the
divided difference of g in these points is defined by

8p)-gla)
B—a

With these preparations we can state and prove another reverse of the Jensen inequality.

[@.B:8] :=

Theorem 4.2. Let [ be an interval and f : I — C be a square-convex, square differentiable
function on I (the interior of I). If A is a selfadjoint operator on the Hilbert space H with
S p(A) C [m,M] cl, then

0 <[If ()l = 1f (Ax, 2D (4.5)
1
< 5 ([¢Ax2) MFE] = (A ) PP ) 1A = (A ) Tl )

([<Ax 2 MFP] =m0 1 fP]) [IAP - (Ax.?]

-Jkl'—l\)l

(M —m) ([(Ax,x) M)~ | m.(Ax. 2 | £P])



Some Jensen Type Inequalities 53

for any x € H with ||x]| = 1 and {(Ax, x) # m, M.
We also have

0 < IIf (A)xl” = 1f ((Ax, ) (4.6)
< % ([€Ax.x, MLIFP| = |m, (Ax, ), 1 £P]) 1A = ¢Ax, x) - Lol , )
_ % (d(lflz () d(|f|;)<m>]<lA e L
< %(d(m;z . d(lfjt) (m)][lmxn2 ~ax 02"
g % W‘"”{d('fiz () d(lfl;) (m))

for any x € H with ||x]| = 1 and {(Ax, x) # m, M.
Proof. Let x € H with ||x]| = 1 and define the function J, : [m, M] — R by
LPO-1P(Axx)
t_<Ax’x>” t# (Ax,x)
O, (1) =
2

WAy,

Since the function f is a square-convex, square differentiable function on i, then the function

is continuous and monotonic on [m, M].
Therefore we have that

A(P)em 1R eI (Ax o) _

- m— (Ax. ) <6x(0) 4.7
_POn - 1P Ay _ d(F) )
- M —(Ax,x) - dt

for any x € H with ||x|| = 1 and (Ax, x) # m, M.
Applying the Griiss type result (4.1) for the functions &, (f) = t — (Ax,x) and g, (¥) =
0x(1),t € [m,M] we have that

KA (A) 8 (A) x, x) = (hx (A) X, x) (81 (A) X, X)) (4.8)

< % ([¢Axx0, MLIFP| = [, (Ax, 20, 1£P))
X (1 (A) = (e (A) %, %) - 11|, %)

< % ([¢Axx0, MLIFP| = [, (Ax, 20, 1£P))
x [l (A) 2P = (hy (A2 x?] 7

for any x € H with ||x|| = 1 and (Ax, x) # m, M.
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Since
(he (A) g (A) x, %) = || f (A) xII* = | f (Ax, X)),
(hy(A)x,x) =0, hy(A) =y (A) x,x) - 1g = A—(Ax,x)- 1y

and
lI7x (A) xII* = [|Ax]]* = (Ax, x)?
then by (4.8) we deduce the second and the third inequality in (4.5).
The last part follows from the fact that

1
IAX|* - (Ax, x)* < 1 (M —m)?,

for any x € H with ||x|| = 1.
The inequality follows by (4.7) and the theorem is proved. O

Example 4.3. If we apply the second inequality from (3.9) for the square-convex function
f() =t withre [%, 1] on [m, M] with 0 < m < M, then for any selfadjoint operator A with
S p(A) C [m, M] we get the following refinement of (3.14):

0 < [|A7x* - ¢Ax, x> 4.9)

1
< E<|A—<Ax,x>-1H|x,x>

[ MY — (Ax,x)*"  (Ax,x)* —m?"]
M —{Ax,x) (Ax,x)—m

X

< %(qun2 ~(Ax, )

’MZr _ (Ax, x>2r (Ax, x>2r _ m2r'

M —(Ax, x) B (Ax,x)—m |

M2r _ (Ax, x>2r (Ax, x>2r _ m2r
M —(Ax, x) B (Ax,x)—m

X

1
Sz(M—m)[

for any x € H with ||x]| = 1 and (Ax, x) # m, M.
From (4.6) we also have:

0 < [|A7x* - ¢Ax, x> (4.10)
< 3 (A~ (A0 Tul )

M2 — (Ax, x>2r (Ax, x>2r —m2r
M —{Ax,x) B (Ax,x)—m

r(MZ’_l —mz’_l)(lA —(Ax,x)- 1] x, x)
(M2 =) [lAx? — Ax 2]

IA

IA

< %r(M—m)(Mzr‘l _m2r—1)’

for any x € H with ||x|| = 1 and (Ax, x) # m, M.
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In the recent paper [4] we have obtained the following reverse of the Jensen inequality:

Lemma 4.4. Let I be an interval and h : I — R be a convex and differentiable function on I
whose derivative f’ is continuous on I . If A is a selfadjoint operators on the Hilbert space
H with S p(A) € [m,M] Cl, then

(0 <)(h(A)x, x) —h({Ax,x)) < (W' (A)Ax,x) —(Ax,x)- (W' (A) x,x) 4.11)
for any x € H with ||x|| = 1.

Utilising this result we are able to provide a different reverse for the Jensen inequality
2.1).

Theorem 4.5. Let I be an interval and f : I — C be a square-convex, square differentiable
function on I and with the derivative continuous on 1. If A is a selfadjoint operator on the
Hilbert space H with S p(A) C [m, M] cl, then

0 < 1/ (A) P~ If ((Ax, )P 12
Ad(l )@ . d(1£1)(A)
A (I,
5 - ) 4A - A 1ylx0)
<
%(M—Wl)< d(lfgt)(A) _ <d(|f5t)(A)x, x> 1g|x, x>
! (d(|f|;)<M) _ d(lfl;)(’"))(||Ax||2 —(Ax, X>2)1/2
< AP | fdse)a 2"
%(M_m)[ (Iflh)( )\ _< (lflhﬂ )x,x> }
| d(fP) ) a(ifP2)em)
SZ(M"")[ a @ |

for any x € H with ||x]| = 1.
Proof. If we write the inequality (4.11) for h = |f]> we get

O I (A A =1 f (Ax, X)) (4.13)

d(1f7)A) d(1fP)A)
< <ATx, x> —(Ax,x)- <Tx,x>

for any x € H with ||x]| = 1.
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Further, on making use of the Gruss’ type inequality (4.1) we also have

’

dt

< d(fP )(A)x x>_

dt

N < d(IfP)A) ,x>

(IA—<(Ax,x)- 14| x,x)

X, x>

1/2

(d(lflz)(M) d(lflz)(m))
2
<
2(M <d(|f|2)(A) <d(|f|2)(A) >‘1H
4 (AUE00 _ SR AP - (A x?)
<
| A0y |F - Ja0m)m - \?
Q(M—m) ar X —< 7 x,x>
1 d(1fP) M) d(\fP)(m)
SZ(M_’")[ a

and the proof is completed.

4.14)

O

Example 4.6. If we apply the second inequality from (4.12) for the square-convex function
f@ =1t withre [%, 1] on [m, M] with 0 < m < M, then for any selfadjoint operator with

Sp(A) C[m,M] we get

0 < |A7A||* — Ax, x>

<2r [(Azrx, x> —{Ax,x)- <A2’_1x, x>]

(Mz"1 —m2"1)<|A —(Ax,x)-1g|x,x)
<r
(M—m)<|A2r—1 —<A2r—1x,x>- lH’x,x>
(M2r—1 _m2r—1)(”AxH2 _ (Ax,x>2)1/2
<r 12
(M —m) [”Az’_lx“2 - <A2’_1x, x>2
1

< —r(M- m)(MZr -

2r—1)

[\

for any x € H with ||x]| = 1.

(4.15)

Finally, we observe that the interested reader may obtain other similar results by con-
sidering the square-convex, square-differentiable functions ¢ (#) = In(¢+1),# € [0,e — 1] and

@(t) =cost,t e [%,g]
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