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Abstract

We establish a long time decay for linearized dynamics of nonlinear Hamilton system
which describes interaction of a charged particle with the Klein-Gordon field. The
main contribution is deriving the decay for the frozen linearized system for initial data
which are symplectic orthogonal to the root space of the linear differential operator
involved.
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1 Introduction. Charged Particle in Klein-Gordon Field

Method of symplectic projection appears to be fruitful in establishing soliton-type asymp-
totics for a variety of Hamilton systems, [1]–[10]. In the present paper we consider the
system of a charged particle interacting with the Klein-Gordon field which reads [8],
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ψ̇(x, t) = π(x, t), π̇(x, t) = Δψ(x, t)−m2ψ(x, t)−ρ(x−q(t)), x ∈ R3,

q̇(t) = p(t)/
√

1+ p2(t), ṗ(t) =
∫
ψ(x, t)∇ρ(x−q(t))dx,

(1.1)

wherem> 0. This is a Hamilton system with the Hamilton functional

H(ψ,π,q, p) =
1
2

∫ (
|π(x)|2+ |∇ψ(x)|2+m2|ψ(x)|2

)
dx+

∫
ψ(x)ρ(x−q)dx+

√
1+ p2. (1.2)

The system (1.1) is translation-invariant and admits soliton solutions

Ya,v(t) = (ψv(x−vt−a),πv(x−vt−a),vt+a, pv), pv = v/
√

1−v2 (1.3)

for all a,v ∈ R3 with |v| < 1. The statesSa,v := Ya,v(0) form the solitary manifold

S := {Sa,v : a,v ∈ R3, |v| < 1}. (1.4)

Let ρ be a real valued function of the Sobolev classH2(R3), compactly supported, and
spherically symmetric, i.e.

ρ,∇ρ,∇∇ρ ∈ L2(R3), ρ(x) = 0 for |x| ≥ Rρ, ρ(x) = ρ1(|x|). (1.5)

We require that all “modes” of the wave field are coupled to the particle, this is formalized
by the Wiener condition

ρ̂(k) = (2π)−3/2
∫

eikxρ(x)dx, 0 for all k ∈ R3 . (1.6)

2 Symplectic Projection, Linearization, and Decay for the
Linearized Dynamics

We sketch the derivation of the linearized dynamics of the system (1.1) and make a state-
ment on its time decay. For details see [8].

2.1 Hamilton form and symplectic structure

The system (1.1) reads as the Hamilton system

Ẏ= JDH(Y), J :=




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



, Y= (ψ,π,q, p) ∈ E, (2.1)

whereDH is the Fŕechet derivative of the Hamilton functional (1.2), andE is the phase
space of the system consisting of finite energy statesY= (ψ,π,q, p), see [8, Definition 2.1].
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Let us identify the tangent space toE, at every point, withE. Consider the symplectic form

Ω defined onE byΩ =

∫
dψ(x)∧dπ(x)dx+dq∧dp, i.e.

Ω(Y1,Y2) = 〈Y1, JY2〉, Y1,Y2 ∈ E, (2.2)

where
〈Y1,Y2〉 := 〈ψ1,ψ2〉+ 〈π1,π2〉+q1q2+ p1p2

and〈ψ1,ψ2〉 =
∫
ψ1(x)ψ2(x)dx, etc. It is clear that the formΩ is non-degenerate, i.e.

Ω(Y1,Y2) = 0 for every Y2 ∈ E =⇒ Y1 = 0.

Definition 2.1. i) Y1 - Y2 means thatY1 ∈ E, Y2 ∈ E, andY1 is symplectic orthogonal toY2,
i.e. Ω(Y1,Y2) = 0.

ii) A projection operatorP : E → E is called symplectic orthogonal ifY1 - Y2 for Y1 ∈
KerP andY2 ∈ =P.

2.2 Linearization on the solitary manifold

Let us consider a solution to the system (1.1), and split it as the sum

Y(t) = S(σ(t))+Z(t), (2.3)

whereσ(t) = (b(t),v(t)) is an arbitrary smooth function oft ∈ R. In detail, denoteY =

(ψ,π,q, p) andZ = (Ψ,Π,Q,P). Then (2.3) means that

ψ(x, t) = ψv(t)(x−b(t))+Ψ(x−b(t), t), q(t) = b(t)+Q(t)
π(x, t) = πv(t)(x−b(t))+Π(x−b(t), t), p(t) = pv(t) +P(t)

∣∣∣∣∣∣ (2.4)

Let us substitute (2.4) to (1.1), and linearize the equations inZ. We obtain

Ż(t) = A(t)Z(t)+T(t)+N(t), t ∈ R. (2.5)

Here the operatorA(t) = Av,w depends on two parameters,v= v(t), andw= ḃ(t) and can be
written in the form

Av,w




Ψ

Π

Q
P




:=




w ∙ ∇ 1 0 0
Δ−m2 w ∙ ∇ ∇ρ∙ 0

0 0 0 Bv

〈∙,∇ρ〉 0 〈∇ψv, ∙∇ρ〉 0







Ψ

Π

Q
P



, (2.6)

whereBv = ν(E−v⊗v). Furthermore,T(t) = Tv,w is given by

Tv,w =




(w−v) ∙ ∇ψv− v̇ ∙ ∇vψv

(w−v) ∙ ∇πv− v̇ ∙ ∇vπv

v−w
−v̇ ∙ ∇vpv



, (2.7)

wherev = v(t), w = w(t), σ = σ(t) = (b(t),v(t)), Z = Z(t), andN(t) is a second order term
with respect toZ.

Note that the formulas (2.7), (3.21) imply thatT(t) ∈ TS(σ(t))S, the tangent space to the
manifoldS at the pointσ(t), t ∈R. This fact suggests the unstable character of the nonlinear
dynamics along the solitary manifold.
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2.3 Symplectic decomposition of dynamics and decay for transversal
component

Let us split the dynamics in two components: along the manifoldS and in transversal
directions. The equation (2.5) is obtained without any assumption onσ(t) in (2.3). We
choose

S(σ(t)) := ΠY(t). (2.8)

Let us fix someβ > 3/2. Eβ it the weighted version of the phase space introduced in [8,
Definition 2.1],‖ ∙ ‖β is the norm inEβ.

Proposition 2.2. [8, Proposition 6.4]. Let (2.8) hold and let initial data be sufficiently close
toS in the norm‖ ∙ ‖β. Then

‖Z(t)‖−β ≤
C

(1+ |t|)3/2
, t ≥ 0. (2.9)

Let us comment on two main difficulties in proving (2.9). First, the linear part of the
equation (2.5) is non-autonomous, hence we cannot apply directly known methods of scat-
tering theory. So we reduce the problem to the analysis of thefrozenlinear equation,

Ẋ(t) = A1X(t), t ∈ R, (2.10)

whereA1 is the operatorAv1,v1 defined by (2.6) withv1 = v(t1) for a fixed t1. Then we
estimate the error by the method of majorants.

Second, even for the frozen equation (2.10), the decay of type (2.9) for all solutions
does not hold without the orthogonality condition of type (2.8). Namely, the equation (2.10)
admits thesecular solutionswhich arise by differentiation of the soliton (1.3) in the param-
etersa andv1 in the moving coordinatey= x−v1t. Hence, we have to take into account the
orthogonality condition (2.8) in order to avoid the secular solutions. For this purpose we
will apply this symplectic orthogonal projection which kills the “runaway solutions”.

Definition 2.3. i) For v∈ R3 with |v| < 1 denote byΠv the symplectic orthogonal projection
of E onto the tangent spaceTS(σ)S, andPv = I −Πv.
ii) Denote byZv = PvE the space symplectic orthogonal toTS(σ)S with σ = (b,v) (for an
arbitraryb ∈ R).

Now we have the symplectic orthogonal decomposition

E = TS(σ)S+Zv, σ = (b,v), (2.11)

and the symplectic orthogonality (2.8) can be written in the following equivalent forms,

Πv(t)Z(t) = 0, Pv(t)Z(t) = Z(t). (2.12)

Note that the tangent spaceTS(σ)S is invariant under the operatorAv,v, hence the spaceZv

is also invariant:Av,vZ ∈ Zv on a dense domain ofZ ∈ Zv.
Our main result is the following proposition which will be one of the main ingredients

for proving (2.9). Let us consider the Cauchy problem for the equation (2.10) withA= Av,v

for a fixedv ∈ V and fix aβ > 3/2.
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Proposition 2.4. Let (1.5) and (1.6) hold,|v| ≤ ṽ< 1, and X0 ∈ E. Then
i) The equation (2.10), with A1 = A= Av,v, admits the unique solution eAtX0 := X(t) ∈C(R,E)
with the initial condition X(0)= X0.
ii) For X0 ∈ Zv∩Eβ, the solution X(t) has the following decay,

‖eAtX0‖−β ≤
C(ṽ)

(1+ |t|)3/2
‖X0‖β, t ∈ R. (2.13)

3 Proof of Proposition 2.4

Let us discuss our strategy of the proof. We apply the Fourier-Laplace transform

X̃(λ) =
∫ ∞

0
e−λtX(t)dt, Reλ > 0 (3.1)

to (2.10) and obtain
λX̃(λ) = AX̃(λ)+X0, Reλ > 0. (3.2)

Then the solutionX(t) is given by

X̃(λ) = −(A−λ)−1X0, Reλ > 0 (3.3)

if the resolventR(λ) = (A−λ)−1 exists for Reλ > 0.
The analyticity ofX̃(λ) and Paley-Wiener arguments (see [11]) should provide the ex-

istence of aE−β - valued distributionX(t), t ∈ R, with a support in [0,∞). Formally,

X(t) =
1
2π

∫

R
eiωt X̃(iω+0)dω, t ∈ R. (3.4)

However, to check the continuity ofX(t) for t≥ 0, we need additionally a bound forX̃(iω+0)
at large|ω|. Finally, for the time decay ofX(t), we need an additional information on the
smoothness and decay ofX̃(iω+ 0). More precisely, we should prove that the function
X̃(iω+0)

i) is smooth outsideω = 0 andω = ±μ, whereμ = μ(v) > 0,

ii) decays in a certain sense as|ω| → ∞.

iii) admits the Puiseux expansion atω = ±μ.

iv) is analytic atω = 0 if X0 ∈ Zv = PvE andX0 ∈ Eβ.

Then the decay (2.9) would follow from the Fourier-Laplace representation (3.4).
We will check with detail the properties of type i)-iv) only for the last two components

Q̃(λ) and P̃(λ) of the vectorX̃(λ) = (Ψ̃(λ), Π̃(λ), Q̃(λ), P̃(λ)). The properties provide the
decay (2.9) for the vector componentsQ(t) andP(t) of the solutionX(t).

However, we will not prove the properties of type i)-iv) for the field componentsΨ(x,λ)
andΠ(x,λ). We prove the decay (2.9) for the field components directly from the time-
dependent field equations of the system (2.10), using the decay of the componentQ(t) and
a version of strong Huygens principle for the Klein-Gordon equation, [8].
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3.1 Constructing the resolvent

To justify the representation (3.3), we construct the resolvent as a bounded operator inE for
Reλ > 0. We will write (Ψ(y),Π(y),Q,P) instead of (̃Ψ(y,λ), Π̃(y,λ), Q̃(λ), P̃(λ)) to simplify
the notations. Then (3.2) reads

(A−λ)




Ψ

Π

Q
P



= −




Ψ0

Π0

Q0

P0



, whereA




Ψ

Π

Q
P



=




Π+v ∙ ∇Ψ
ΔΨ−m2Ψ+v ∙ ∇Π+Q ∙ ∇ρ

BvP
−〈∇Ψ,ρ〉+ 〈∇ψv,Q ∙ ∇ρ〉



.

It is the system of equations

Π(y)+v ∙ ∇Ψ(y)−λΨ(y) = −Ψ0(y)

ΔΨ(y)−m2Ψ(y)+v ∙ ∇Π(y)+Q ∙ ∇ρ(y)−λΠ(y) = −Π0(y)

BvP−λQ= −Q0

−〈∇Ψ(y),ρ(y)〉+ 〈∇ψv(y),Q ∙ ∇ρ(y)〉−λP= −P0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y ∈ R3. (3.5)

Step i)Let us consider the first two equations. In Fourier space they become

Π̂(k)− ivkΨ̂(k)−λΨ̂(k) = −Ψ̂0(k)

(−k2−m2)Ψ̂(k)− (ivk+λ)Π̂(k) = −Π̂0(k)+ iQkρ̂(k)

∣∣∣∣∣∣∣∣∣
k ∈ R3 . (3.6)

This implies

Ψ̂ =
1

D̂
((ikv+λ)Ψ̂0+Π̂0− ikQρ̂), (3.7)

Π̂ =
1

D̂
(−(k2+m2)Ψ̂0+ (ikv+λ)Π̂0− i(ikv+λ)kQρ̂), (3.8)

where
D̂ = D̂(λ) = k2+m2+ (ikv+λ)2. (3.9)

From now on we use the system of coordinates inx-space in whichv = (|v|,0,0), hence
vk= |v|k1. Substitute (3.7) to the 4-th equation of (3.5) and obtain

∫
ik

D̂
((ikv+λ)Ψ̂0+Π0− ikQρ̂)ρ̂dk+

∫
kψ̂vkQρ̂dk−λP= −P0.

Since

ψ̂v(k) = −
ρ̂(k)

k2+m2− (kv)2
, π̂v(k) = i(kv)ψ̂v(k), (3.10)

see [8], we come to
(K −H(λ))Q+λP= P0+Φ(λ),

where

Φ(λ) = Φ(Ψ0,Π0)(λ) := i
∫

k

D̂
((ikv+λ)Ψ̂0+Π̂0)ρ̂dk. (3.11)
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HereK andH(λ) are 3×3-matrices with the matrix elements

Ki j =

∫
kikj |ρ̂(k)|2dk

k2+m2− (|v|k1)2
, Hi j (λ) =

∫
kikj |ρ̂(k)|2dk

k2+m2+ (i|v|k1+λ)2
. (3.12)

The matrixK is diagonal and positive definite since ˆρ(k) is spherically symmetric and not
identically zero by (1.6). The matrixH is well defined for Reλ > 0 since the denominator
does not vanish. The matrixH is diagonal similarly toK. Indeed, ifi , j, then at least one
of these indexes is not equal to one, and the integrand in (3.12) is odd with respect to the
corresponding variable. Finally the 3-rd and the 4-th equations of (3.5) become

M(λ)

(
Q
P

)

=

(
Q0

P0+Φ

)

, whereM(λ) =

(
λE −Bv

K −H(λ) λE

)

. (3.13)

Lemma 3.1. [8] The matrix M(λ) is invertible forReλ > 0.

Then we obtain
(

Q
P

)

= M−1(λ)

(
Q0

P0+Φ

)

, Reλ > 0. (3.14)

Finally, formula (3.14) and formulas (3.7), (3.8) give the expression of the resolventR(λ) =
(A−λ)−1, Reλ > 0, in Fourier space.

3.2 Time decay of the vector components

Let us prove the decay (2.9) for the componentsQ(t) andP(t).

Lemma 3.2. Let X0 ∈ Zv∩Eβ. Then Q(t), P(t) are continuous and

|Q(t)|+ |P(t)| ≤
C(ṽ)

(1+ |t|)3/2
, t ≥ 0. (3.15)

Proof. We split the Fourier integral (3.4) for the vector components into three terms using
the partition of unityζ1(ω)+ ζ2(ω)+ ζ3(ω) = 1,ω ∈ R. By (3.14) we obtain:

(
Q(t)
P(t)

)

=
1
2π

∫
eiωt(ζ1(ω)+ ζ2(ω)+ ζ3(ω))M−1(iω)

(
Q0

P0+Φ(iω)

)

dω

= I1(t)+ I2(t)+ I3(t), (3.16)

where the functionsζk(ω) ∈C∞(R) are supported by

suppζ1 ⊂ {ω ∈ R : ε0/2< |ω| < μ+2}

suppζ2 ⊂ {ω ∈ R : |ω| > μ+1}

suppζ3 ⊂ {ω ∈ R : |ω| < ε0}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.17)

Then i) The functionsI1(t) andI2(t) decay at least like (1+ |t|)−3/2, see [8].

ii) The main contribution of the present paper is providing the direct proof that the
function I3(t) decays liket−∞ if (Ψ0,Π0,Q0,P0) ∈ Zv. The proof can be developed to the
cases of the scalar wave field and of the Maxwell field, [9, 10, 7]. The result follows from
the statement below:
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Proposition 3.3. The vector components

(
Q(iω)
P(iω)

)

= M−1(iω)

(
Q0

P0+Φ(iω)

)

as functions ofω belong to C∞(−ε0;ε0) for sufficiently smallε0 if (Ψ0,Π0,Q0,P0) ∈ Zv.

Proof. i) We compute directly the matrixM := M−1(iω) and obtain forω , 0:

M :=

(
M11 M12

M21 M22

)

,

where

M11 = −




iω
ω2+ ν3 f1(ω)

0 0

0 iω
ω2+ ν f (ω)

0

0 0 iω
ω2+ ν f (ω)




,

M12 = −




ν3

ω2+ ν3 f1(ω)
0 0

0 ν
ω2+ ν f (ω)

0

0 0 ν
ω2+ ν f (ω)




,

M21 = −




f1(ω)
ω2+ ν3 f1(ω)

0 0

0 f (ω)
ω2+ ν f (ω)

0

0 0 f (ω)
ω2+ ν f (ω)




,

M22 = −i




ω
ω2+ ν3 f1(ω)

0 0

0 ω
ω2+ ν f (ω)

0

0 0 ω
ω2+ ν f (ω)




.

Recall thatf1(ω) = F11(ω), f (ω) = F22(ω) = F33(ω), where

F j j (ω) =
∫

dk|ρ̂|2k2
j

(
1

m2+k2− (vk1+ω)2
−

1
m2+k2− (vk1)2

)

= ω2I j(ω)

with I j(ω) ∈C∞(−ε0;ε0), since

I j(ω) =
∫

dk
|ρ̂|2k2

j (2ωvk1+n2+4(vk1)2)

n4(n2− δ)
, n2 := m2+k2− (vk1)2, δ :=ω(ω+2vk1). (3.18)

Further,

Φ(iω) = i
∫

dk
i(k1v+ω)Ψ̂0(k)+Π̂0(k)

m2+k2− (vk1+ω)2
kρ̂.
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Lemma 3.4. The symplectic orthogonality conditions (2.8) (or (2.12)) for the initial data
read

P0+Φ(0)= 0, (3.19)

ζ(0)+B−1
v Q0 = 0, (3.20)

whereζ is defined below by (3.22).

Proof. The orthogonality conditions (2.8) (or (2.12)) for the initial dataX0 readΩ(X0, τ j) =
Ω(X0, τ j+3) = 0, j = 1,2,3, where

τ j = (−∂ jψv(y),−∂ jπv(y),ej ,0), τ j+3 = (∂vjψv(y),∂vjπv(y),0,∂vj pv), (3.21)

ψv andπv are given by (3.10), for details see [8].
First let us check that the conditionsΩ(X0, τ j) = 0 readP0+Φ(0)= 0. One has

Φ(0)= i
∫

dk
ikvΨ̂0+Π0

D̂
kρ̂, D̂ = k2+m2− (kv)2.

For j = 1,2,3 we have

0= Ω(X0, τ j) = −〈Ψ0,∂ jπv〉+ 〈Π0,∂ jψv〉−P0 ∙ej = −
∫

dkΨ̂0−ik j i(kv)
−ρ̂

D̂

+

∫
dkΠ̂0−ik j

−ρ̂

D̂
−P0 ∙ej =

∫
dk

Ψ̂0(kv)ρ̂kj

D̂
− i

∫
dk

Π̂0ρ̂kj

D̂
− (P0) j = −(Φ(0)+P0) j

and the statement is checked. Further,

0= Ω(X0, τ j+3) =
∫

dkΨ̂0 ∙ ik j
k2+m2+ (kv)2

D̂

−ρ̂

D̂
−

∫
dkΠ̂0 ∙

2(kv)kj

D̂

−ρ̂

D̂
+Q0 ∙∂vj pv =

i
∫

dk
Ψ̂0kj(k2+m2+ (kv)2)ρ̂

D̂2
+

∫
dk

Π̂02(kv)kj ρ̂

D̂2
+Q0 ∙∂vj pv.

Note thatQ0 ∙∂vj pv = Q0 ∙B−1
v ej = B−1

v Q0 ∙ej . Then these symplectic orthogonality condi-
tionsΩ(X0, τ j+3) = 0, j = 1,2,3 coincide with

ζ(0)+B−1
v Q0 = 0,

whereζ(ω) is defined by (3.22).
�

By (3.19)P0+Φ(iω) = Φ(iω)−Φ(0)= iωζ(ω), whereζ(ω) ∈C∞(−ε0;ε0) because

ζ(ω) =
∫

dk
ω(ik1vΨ̂0(k)+Π̂0(k))+ i(m2+k2+ (k1v)2)Ψ̂0(k)+2vk1Π̂0(k)

(m2+k2− (vk1+ω)2)(m2+k2− (vk1)2)
kρ̂. (3.22)

ii) Let us start with the componentP(iω).

P(iω) =M21Q0+M22(P0+Φ(iω)) =
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−




I1(ω)
1+ ν3I1(ω)

0 0

0 I (ω)
1+ νI (ω) 0

0 0 I (ω)
1+ νI (ω)




Q0+




1
1+ ν3I1(ω)

0 0

0 1
1+ νI (ω) 0

0 0 1
1+ νI (ω)




ζ(ω),

whereI (ω) := I2(ω) = I3(ω). SinceI1(0) > 0 andI (0) > 0 by (3.18), one can observe that
P(iω) ∈C∞(−ε0;ε0).

iii) Now let us proceed toQ(iω):

Q(iω) =M11Q0+M12(P0+Φ(iω)).

By (3.20) one has

P0+Φ(iω) = iωζ(ω) = iω(ζ(ω)− ζ(0)−B−1
v Q0) = iω(ωJ(ω)−B−1

v Q0),

where

J(ω) =
∫

dk
in2(ω+3vk1)Ψ̂0(k)+ (n2+2vk1(ω+2vk1))Π̂0(k)

n4(n2− δ)
kρ̂ ∈ C∞(−ε0;ε0).

Finally, sinceM11 = iωM12B−1
v , one has

Q(iω) =M11Q0− iωM12B−1
v Q0+ iωM12ωJ(ω) =

iω2M12J(ω) =




ν3

1+ ν3I1(ω)
0 0

0 ν
1+ νI (ω) 0

0 0 ν
1+ νI (ω)




J(ω)

and, similarly,Q(iω) ∈C∞(−ε0;ε0). The proposition is proved. �

This completes the proof of Lemma 3.2 and Proposition 2.4. �

Remarks3.5. i) Note that

Φ(Ψ0,Π0)(λ) = F̃t→λ〈W
1(t)(Ψ0,Π0),∇ρ〉,

whereF̃t→λ is Laplace transform int, W1(t) is the first component of the dynamical group
W(t) of the free Klein-Gordon equation.

ii) Let f (t) = 〈W1(t)(Ψ0,Π0),∇ρ〉. Then

Φ(iω) = F̃t→ω f (t) =

∞∫

0

e−iωt f (t)dt, Φ(0)=

∞∫

0

f (t)dt= −P0

by (3.19). Set

g(t) = −

∞∫

t

f (s)ds, theng′(t) = f (t), g(0)= −

∞∫

0

f (s)ds= P0.
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We have
P0+Φ(iω) = P0+ f̃ (ω) = P0+ωg̃(ω)−g(0)= ωg̃(ω),

thus,g̃(ω) = iξ(ω). Further,P(iω) =M21Q0+M22(P0+Φ(iω)) =M21Q0+M22ωg̃(ω), the
last combination being smooth inω.

iii) For g̃(ω), whereg(t) is introduced in the previous remark, we have

g̃(0)=

∞∫

0

g(t)dt= −iB−1
v Q0

by (3.20). Set

h(t) = −

∞∫

t

g(s)ds, thenh′(t) = g(t), h(0)= −

∞∫

0

g(t)dt= iB−1
v Q0.

Note thath̃(ω) = iJ(ω) ∈C∞(−ε0, ε0). Further,

Q(iω) =M11Q0+ωM12g̃(ω) =M11Q0+ωM12(ωh̃(ω)−h(0))= ω2M12h̃(ω)

and the last term is again smooth inω.

These observations are optional in our case of Klein-Gordon equation, whereQ(iω) and
P(iω) happen to be infinitely smooth, but this approach becomes crucial in the cases of the
wave and Maxwell equations, where the smoothness is of a finite order, [10, 7]. It is worth
to note that similar technique can be applied also for the four-wave solitons case (see e.g.
[12]-[14])
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