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Abstract

We study in detail main properties of two families of the basic hypergeomagripolynomials, which are natural
g-extensions of the classical Chebyshev polynoniiglg) andU,(x). In particular, we show that they are expressible
as special cases of the kiglacobi polynomial®,(x;a, b, ¢;q) with some chosen parametexsb andc. We derive
quadratic transformations that relate these polynomials to thegittecobi polynomialgn(x; a,b|q). Explicit forms

of discrete orthogonality relations on a finite intengtlifference equations and Rodrigues-type difference formulas
for theseg-Chebyshev polynomials are also given.
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1 Introduction

The Chebyshev polynomials find frequent and profound applications in many areas of mathematical analysis such :
approximation, series expansions, interpolation, quadrature and integral equations [1, 2]. Hence it is of considerab
interest to inquire into the defining of expligitextensions of the Chebyshev polynomials, which may be similarly
useful in analysis off-special functions. The interest in this study is motivated by the following circumstance. It is well
known that the Chebyshev polynomidigx) andU,(x) may be regarded as special cases of the Jacobi polynomials
P,SO”B)(X) with parameterst = 3 = —1/2 anda = 3 = 1/2, respectively. Therefore it appears at first that the continuous
g-Jacobi ponnomialﬁ’r(,“’B) (x| q) (which evidently represemfextensions of the Jacobi ponnomiﬂ‘é”B) (x)) with the
particular values of the parametars= 3 = —1/2 anda = 3 = 1/2 would be naturafj-extensions of the Chebyshev
polynomialsT,(x) andU,(x). Under closer examination however, it turns out that the contingelacobi polynomials
P,ﬁ*l/zfl/” (x| Q) andPr(ll/z’l/z) (x| ) are only constant (but g-dependent) multipdéshe Chebyshev polynomialg(x)
andUn(x). In other words, the continuouwgJacobi polynomialsl?’,g_l/z’_l/z)(x| g) and Prgl/z’l/z)(x\ q) are, in fact,
rescalings of the Chebyshev polynomi@i¢x) andUy(x); therefore the former two polynomial families are just trivial
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g-extensions of the latter ones. This curiousdegeneracy” of the continuousJacobi polynomialﬂga’ﬁ) (x|q) for
the values of the parametexs= 3 = —1/2 anda = 3 = 1/2 had been already noticed by R.Askey and J.A.Wilson in
their seminal work [3]. Observe also that nothing essentially changes when one tries to use the connection with th

monic fornt of the continuous Rogerg-ultraspherical ponnomial@,(]M)(x;qA]q), rather than with the continuowg

Jacobi ponnomiaIf’r(,“’B) (x/q). Theq-polynomialscr(,M)(x; 1/ q) are known to provide g-extension of the Chebyshev

polynomialsT,(x), whereas thergM)(x;q\ q) represent g-extension of the Chebyshev polynomiblgx). But both of
theseg-extensions are trivial in the above-mentioned sense.

This work is an attempt to explore propertiesgpéxtensions of the Chebyshev polynomid@lgx) andUp(x) in
terms of the basic hypergeometsig;-polynomials, which were introduced in a recent paper [4] devoted to the study of
Fourier integral transforms for tigeFibonacci andj-Lucas polynomials. We prove that these tyv@hebyshev families
are expressible as special cases of thegaigcobi polynomial$,(x; a, b, c; ) with particularly chosen parametesis
b andc. Thus it becomes apparent that the requiggchebyshev polynomials have been “in hiding” within the Askey
g-scheme at one level higher than the continugpuacobi ponnomialPﬁ“ﬁ) (x| g). We use this connection with the big
g-Jacobi polynomial®,(x; a, b, ¢; q) in order to establish an explicit form of the discrete orthogonality relation for these
g-Chebyshev polynomials.

The paper is organized as follows. In section 2 we determine three-term recurrence relationgfGh#ig/shev
polynomials under study in order to clarify their connections with thegbigcobi polynomials. Quadratic transforma-
tions, relating them with the littlg-Jacobi polynomials are derived in section 3. In section 4 we present explicit forms
of discrete orthogonality relations on a finite intervgddifference equations and Rodrigues-type difference formulas
for theseg-Chebyshev polynomials. Some conclusions are offered in section 5. The Appendix contains the derivatior
of two transformation formulas between basic hypergeomegri@ands@, polynomials, associated witpextensions
of the Chebyshev polynomial (x) andU,(x).

Throughout this exposition we employ standard notation of the theory of special functions (see, for example,

[51-[7D).

2 Connections with Bigg-Jacobi Polynomials

Recall that the Chebyshev polynomials of the first Kipk) and of the second kind,(x) are explicitly given in terms
of the hypergeometrigh;-polynomials as

1-z . n1-n ’ )
T2 =1, T2 2F1< n,n,1/2’ 2) 2 22F1< IRCREL n1/z), n>1 (21
and
Un(z):(n+1)2F1(—n,n+2;3/2’1%2>:(22)”2F1<—2,L2n;—n‘1/22), n>o0, (2.2)

respectively. The Chebyshev polynomi&j$x) are generated by the three-term recurrence relation
22T (2) = Thy1(2) + Thoa(2), n>1, (2.3)

with the initial conditionsTy(z) = 1 andTi(z) = z ; whereas the Chebyshev polynomiblgx) are governed by the
same recurrence (2.3) but for> 0 and initial assignmend_;(z) = 0 andUp(z) = 1.
As was noticed in [4], twa-polynomial families of degreer in the variablex, defined by

1—n; q2(1—n)

ph) (x| o) = 2" x"n (4" Fax?),  nx1 pp(xlg) =1, (24

1we recall that an arbitrary polynomigiy(x) = ZE:oCn,ka of degreen in the variablex can be written in thenonic form éM)(x) =
Chh Pn(X) = X"+ ¢y b SR-d ¢ kXX just by changing its normalization.
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ph (x| ) = (2021 (d " q" " g

represent very naturgtextensions of the Chebyshev polynomials of the first Kigick) and of the second kind,(x),
respectively. For checking this statement one just has to bear in mind the well-known limit property

q2;q2x*2>, n>0, 0<qg<l1, (2.5)

im 201 (a7, 4% o |62) =2Fa(—n, a; bJ2) (26)
q—1
of the g-hypergeometric@;-polynomials (see, for example, section 1.10, p. 15 in [7]). Then from (2.6) it follows at
once that the polynomialpg)(x\ q) and pﬁu)(x\ g) coincide in the limit ag] — 1 with theT,(x) andUn(X), given by the
second lines in (2.1) and (2.2), respectively.

Note that from (2.4) and (2.5) it is evident that both of thggmlynomials are either reflection symmetric (when
degreenis even) or antisymmetric (when degnme& odd), that is,

Py (—x|a) = ()" (x|a), Py (—x|q) = (-1)"p{” (x| ). (27)

The best route to determine whether thegeolynomials (2.4) and (2.5) are related to some “named” families
of basic hypergeometric orthogonal polynomials from the Asiresgheme [7], is first to find three-term recurrence
relations, associated with them.

Let us start with (2.4) and slightly simplify its explicit form,

[n/2]

(T)( - (-1 [n/2]
pn ' (X]q) =2V 7X
2,

(@9 " )k sk, 2k on-1)un
T ey, 3 X =20 X
(022", g2; o)k k;a

[n/2] q(2k—2n+1) -2k
k; (0 A)n-2 (P, g% )i
by using the relationiz,qz g?) = (z q)2n at the first step and the identity

(CIYET
(P, 0 )k

= (g;q)n 2" Ix"

(@ "a)x= —(q(.qq’)(l)’;k g1 o<k<|n/2],

at the second one. Observe that the symbo¢lin (2.8) denotes the greatest integerxiand we have employed the

conventional notatiofzy, zy, ..., Z; q)n 1= |‘|'J-‘:1 (zj;q)n for products ofg-shifted factorialz; ;q)n, j = 1,2,....k.
Let us assume now thatis odd,n=2m+- 1. Then from (2.8) one obtains that

(T) m qk(2k— 4m-1) X—2k

x|q) = (q X(2x)2m
p2m+1( ‘q) (q q)2m+1 ( ) kZO (q, Q)2m+1—2k (q,4m’ q2’ q2)k

m (1_ q2m+1)<l _ q2kf 4m) qk(Zkf 4m-1) y—2k
= (0 ) 2mX(2%)%™ ( : 2.9
(% Qamx(29 k; (1—g= (1 —?™ %) (q; q)2m-k) (G212, 62 )k 29)
upon employing the relations
(1-2)(zgak = (21 = (1—2zd)(Z ). (2.10)

Finally, use a readily verified identity

1-g*™H(A—g? ™) o (1-g"M(1-0%)

(1—q 4m)(1— g2m 2+1) =q~ + (1—q 4m)(1_ gz 1) 0<k<m,

to represent (2.9) as
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- oy (k- am+1) 2k
Pomi1(X]d) = (0 d)2mX(2X) kZ) qz (1-2m) g2 )¢
9™ (q: @) 2m1 m q(Zk—4m=1) 2k
(1+q2m)(1+q2m ! k; 2(m— k+1 q4(1 m)7q2;q2)k—1
oy (T)(X’q) B 2q2m (q;q)Zm—l (ZX)mel mZ:)L qI[2|72(2m71)+1] x—2
—“Pam (1+a®™(1+a*™ 1) & (6 )am-1-2 (21~ @m-DI g2 q2),

4q2m M
(1_|_q2m)(1_|_q2m 1) Pom- 1(X‘q) (2.11)

Similarly, if one assumes that the degrem (2.8) is evenn = 2m, then by the same reasoning one arrives at the

three-term recurrence relation between the ponnonpng;(x\ Q), p(zTrr),_l(x| q) and p(zTrr),_z(x| g). Thus we conclude that

the generali(e., valid for both even and odd degre®srecurrence formula for thg-polynomials (2.4) is

— 2x ph) (x| Q) —

4q"
(1+9gM(1+gm?)

pir) (x|a) = 2xph ) (x|q) —

py(xla@),  n>1. (2.12)

Using the same consideratiomsitatis mutandisone derives the three-term recurrence relation for the second family
of g-polynomials (2.5):

4qn—1
(1+agM(1+qgntt

i) (x| ) = 2xpi (x| q) —

)pn Lxjg),  n>0, pYx|g =o0. (213)

Now we are in a position to establish that tpextensions (2.4) and (2.5) of the Chebyshev polynoniigls) and
Un(x) are in fact connected with the béggJacobi polynomials

Pa(xa.b,C;) = 5¢2(q ", b x; aq, cq]q: q) (2.14)
with some particularly chosen parametayrb andc. Indeed, recall that thenonic form

(8% &)
(a2q|’1+1; q)n

of the bigg-Jacobi polynomials (2.14) with the parametars b = — c satisfies the three-term recurrence relation

P§,M) (xa,a,—aq) = Pn(x;a,a,—a;q) (2.15)

Pr(1+)1(x a,a,—aq) = xP( )(x; a,a,—a;,q) —Yn(aq) Pn'\f)l(x; a,a,—a;q) (2.16)
with the coefficients (see (14.5.4), p. 439 in [7])

azqn+l(l_ qn)(l_ a2qn)

(&) =

Fora= g /2 the recurrence (2.16) clearly reduces to

~1/2 ~1/2 _ ~-1/2. ~1/2 -1/2 _ ~1/2.

PM (xa Y2,qY2 —q V2 q) =xP (x g2, g2, —q V% q)

_ q"
(1+gM)(1+g™?)

P a2 g Y2 —q Y2 ), (217)
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whereas the choice af= /2 in (2.16) leads to

Py (% 026", — q¥/%;q) = xP" (x. g/, g%/, — q¥/2;q)
gt M) (x: /2. /2, — /2

- (1+qn)(1+qn+1) Pn 1( q75,q —q ,Q) : (218)

On comparing (2.17) and (2.18) with (2.12) and (2.13), respectively, one thus concludes that

b (xla) =1, ph (x|g) = 2" 1P (x g7V, q 2, —q % q)
2
=2 ((gnqq;: 302 (07", a2 — 02 |gq) n>1, (219)
and
3. ~2
Y (xlg) = 2°PI" (. q¥/2,qY/2, — q¥/2%; ) = ”%sw(q”, ¢ 602, —¥2|qa), n>0. (220)
) n

Evidently, these representations (2.19) and (2. 20) in terms of thq—na'ag:obi polynomials (2.14) agree with the
initial definitions (2.4) and (2.5) of th(a;LponnomlaIspn (x| Q) andp,(1 (x| g), only if two transformation formulas

1-n)

2. 22 — (GG)n
aax >‘<qn;q>n

X1 (d7", g " 32 (a7 q"x: 0%, - g2 q). (2.21)

3. 2
ancm(q—n,ql—n;q—Zn 2. 2 —2> o ((q ,q%)n

_ _f?

g% q°x qn+2;q)n3<pz(q A2 xq \q q) (2.22)
betweerp@, (with the basey?) ands@, (with the baseg) basic polynomials are valid. Direct proofs of these identities
are given in Appendix.

3 Quadratic Transformations

It turns out that, in addition to (2.19) and (2.20), both symmetric or antisymmetric cases@gptiignomial families
(2.4) and (2.5) can be separately expressed in terms of thedifteecobi polynomials, defined as (see, for example,
(14.12.1), p. 482in [7])

pn(x;a,b|q) := g1 (g ", abd"* ;20| q;0%). (3.1)
Indeed, let us apply first the transformation of terminatipgseries (see (1.13.15), p. 20 in [7])

+1
0. ) (32)

to theg-polynomials of even degrqagq) (x| q), wheremis an arbitrary nonnegative integer. This results in the relation

a,
2([)1( a b‘q Z) ( q)n q—n(rH—l)/Z( Z)n2(P1< —n’ql n/b ql n/a

b! q)n

—

P (x10) = X(29 2™ 250 (42", 2™, g22 | 2 6P ?)

— (_4)mq_m(m 1)& (pl(q 2m 2m q’q q)@)
2(q2(1-2m); g )m2 ’

= (—4qm)m% pm(q‘lxz; q‘l,q‘l\ qz) ,  m>1 (33)
] m
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Similarly, in the case of thg-polynomials of odd degrep(z;{rl(x\ g) one obtains, by using (3.2), that

Pl (XI@) = (2921 (a7 2" q 2" a7 "% o )

1-2m.
_ (_4)mqf m(m-1) (((:Iq4m (’;24)) X201 (qum 2m1 q ) q q )
= (—4gm™m (@ d)m X 124 gl o? m> 0 (3.4)
- q (qz(ml);q2>m Pm q 0.9 a ), - Y- .

Thus,g-extensions (2.4) of the Chebyshev polynomiRj&) can be written it terms of the littlg-Jacobi polynomials
(3.1) as

() — (_Aqmm (0,F)m —1,2. ~1| 42
p2m (X|q) - ( 4q ) 2(q2m;q2) pm(q X q 7q ‘q >7
() (oMM (4% 0%)m “12. o 1| 42
P2 (X[ Q) = (—4g™) —(qz(mﬂ);qz)mxr)m(q X0, o). (35)

Exactly in the same manner one obtains traktensions (2.5) of the Chebyshev polynomiiéx) can be represented
as

N2
Py (x|q) = (—4)“q”(”+2)M pn(a7 350" ,q]qz) ,

3. ~2
) N An(n+2) 2(9%,9%)n —3,2 2
Plna(X1) = (=42 g xmn( ). (36)
Notice that from the well-known limit propertef, (14.12.15) on p. 485 in [7])
: @ plg) - M p@p
lim pn (% .| ) = gy A (129 (37)

of the little g-Jacobi polynomials (3.1), it follows that in the limit gs— 1 the quadratic transformations (3.5) and (3.6)
reduce to the relations

_oom 1212 50 _m (~1/2.1/2) .2
TZm(X) - (1/2)m Pm (2X 1) ) T2m+1(x) - (1/2)m XPm (ZX 1) ) (38)
and
Upm(x) = — - R2-Y2(02 1) Upna(x) = 2MEDE pa212 52 g (3.9)
" 1/2)m " ’ m B/2)m " ’ '

respectively. It should also be observed that the transformations (3.8) and (3.9) for the Chebyshev polyirotials
andUp(x) are special cases of the quadratic transformat@rRemarks on p. 224 in [7])

(AM) N o-12-1/2) 5,2 (AM) n! (A-1/2.1/2) 1 2
- _— P 2 -1 = —— xR 22 —1 1
C2n (X) ()\+n) n ( X )7 C2n+1 (X) ()\+n+1)nx n ( X )7 (3 O)
for the monicGegenbauer (or ultraspherical) polynomlﬁ% ), defined as (see (9.8.19) and (9.8.22) on p. 222 in
[71)
M) oy N )y (A B 1-x

Ch 7 (x) = 0 Ch'(x)= B0 1(1/2), oF | —n,n+2\0+1/2 — (3.11)

Indeed, taking into account th@ﬁo'\’I = 21"Th(x) andc.ﬁl;'v')(x) = 27"Up(x) by the defintion (3.11), it is readily

checked that (3.8) is a special case of (3.10) with 0 and (3.9) is a special case of (3.10) with- 1.

It should also be noted that the quadratic transformations (3.5) and (3.6) in terms of thepJattebi polynomials
were already mentioned in [4], but without proofs and their limits (3.8) and (3.9)-asl; a brief proof of (3.5) and
(3.6) is given above for the sake of completeness.
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4 Main Characteristics of g-Chebyshev Polynomials

A benefit from establishing the representations (2.19) and (2.20) fog-tBbebyshev polynomialsp,q)(x\ g) and
pﬁu)(x| q) in terms of the bigg-Jacobi polynomials (2.14) is that these connections enable one to deduce their main
properties from the well-known properties of the latter origéx; a, b, c; q) To iIIustrate this point, we touch on here
only three important characteristics of theChebyshev polynomlalsn (x| g) and pn ( |q): explicit forms of g-
difference equations, discrete orthogonality relations and Rodrigues-type formulas.

It is known that the bigg-Jacobi polynomial$,(x;a,b, c;q) with the parametera = b = —c are solutions of a
g-difference equation:

[(azq”+1 +q° ”) X2 —a?q(1+ q)} pn(X) = @2q(x* — 1) pn(ax) + (X2 — @%0%) pn(q~2x) (4.1)

wherepn( ) Pa(X;a,b,c;q) (see (14.5.5) on p. 439 in [7]). Hengedifference equations for theg Chebyshev poly-

nomlalspn (x| g) and pﬁ] (x| q) are special cases of (4.1) with the paramaterq—Y/2 anda = g%/?, respectively; that
is,

(T)

(@ +q )@= (1+a)] i (xla) = (@~ 1P (ax| @) + (¢ — ) ph” (] ),

(@24 ") - 1+ )| ph” (x| 6) = ¢ — 1)ph” (x| o) + (@ — &) pi” (a X ). (42)

Recall also that the big-Jacobi polynomial$,(x; a, b, c;q) with the parametera = b = — ¢ satisfy the discrete
orthogonality relation

2 /2. 2
/ Mpm(x;a,a,—a;q)Pn(Xiaaafa?Q)qu
—aq

(X2, 0?) oo
2n+1 2 .
— 901 _ o2\ q("+1)(n+2)/2 (%P 22 2. a""*(1—-ag)(g;9)n
2Amaa @ & T e e, ™ 43

where theg-integral is defined as (see (14.5.2) and (1.15.7) in [7])

00

> [fad) + f(—ad)| "

n=

/_Z f(X)dgx:=a(l—q)

Fora= q~1/2 from (4.3) one now gets at once, by employing (2.19) and (2.15), that

T @¢d). 2 (~a0)
T /2_°° 2. 212
/ql/z (XZ;qZ) pm (X|q) (X|q) qu 2q (q g )oo (q 'q )oocnémn, (44)
where .
n .
=1, cy=algmn21=d)(G ) -

; n->
(1+q") (oM a)3
In a like manner, whea = %2 one finds from (4.3), by employing (2.20) and (2.15), that

o¥/2 (qflx2.q2> ( 5 ( a; q)
= 2 %p /2 ® 2. 2\2
/qs/z (X2, 02)eo (X|q) (X|q) dgx =29 (0 )on (9% 9%)% Cn Omn, (4.5)
where
Cn = 4nqn(n+5)/2 (q q )n+1 n>o.

(1491 (g g)2, -
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Another important property of the biggJacobi polynomial®,(x; a, b, c;q) is described by the Rodrigues-type for-
mula

Pa(x;a b,c;q)w(x;a,b,c;q) = %qn(nﬂ) (@q) nW(X; ad",bq",cd;q), (4.6)

whereD is theg-derivative operator (see (1.15.1) on p. 24 in [7]) and the orthogonality weight funetiqa, b, c; q)
is defined as ((14.5.10), p. 440in [7])

(@8 P)eo
O 0%)e
Hence, from (4.6) and (4.7) it follows, upon using (2.19) and (2.20), that the Rodrigues-type formulas fpr the

Chebyshev ponnomiaI|s§,T> (x|q) and pﬁu) (x]q) are

w(x;a,b,c;q) := (4.7)

(M (x ) DD _ (-2 n)”ﬂ@q)” @)

PR (0" q)n P
—1 2’ s n(1—q)" n(a—1-2n 2; 2 w
V(xjg G2 (gqez)” L0 (O g 48)

In closing this section, we remark of the following. First, note that it is not difficult to determine also forward and

backward shift operators and generating functions fogtebyshev polynomialpn (xi q) and pn (xi g) in exactly

the same way as above, but this task is left to the reader. Second, since the classical Chebyshev polyfaraiads

Un(X) satisfy the same three-term recurrence relation (2.3) but with different initial assignments, they are known to be
interconnected by the relation

2Tn(X) = Un(Xx) —Un_2(x), n>1, U_1(x) =0. (4.9)

Hence one may wonder whether #p€hebyshev polynomial|s;n (xi q) and pn (xi q) also enjoy the similar property
of type (4.9), although they are governed by two distinct three-term recurrence relations (2.12) and (2.13), respectivel

A link in question between thg-Chebyshev ponnomiaIpﬁT)(xi q) and pﬁu)(xi q) turns out to be of the form

4q
Trq+qe

)pE:J_)z(xiq), n>1, pYxg)=0. (4.10)

2ph ) (x]q) = pi (x|q) —

This g- extension of the classical relation (4.9) is not difficult to derive by using the explicit forms (2.4) and (2.5) of the
g- polynomialspn (x| Q) andp (xi g), and the identities

(1701 ()0 )0 "),
(026, (-0 2) (- ) 0 )

for theg-shifted factorial(z Q).

5 Concluding Remarks

We have studied in detail the main properties of two families of the basic hypergeopggtpolynomials, defined by
(2.4) and (2.5), which represent compact formg-efktensions of the classical Chebyshev polynomig() andU,(x).

They are shown to satisfy the discrete orthogonality relations (4.4) and (4.5) on a finite interval. It should be noted tha

although these discreteChebyshev polynomial|sn (x| g) and pﬁ (x| q) are of clear interest on their own, there is an

additional motivation to study them. As we have already remarkedy tiitriiynomlalspn (x| q) and p,(1 (x| q) were
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first arisen in a paper [4], devoted mainly to the evaluation of Fourier integral transforrqd:fbonacci andj-Lucas
polynomials. It is worthwhile to emphasize that gp€hebyshev ponnomlaI|s:n (x| g) and pn (x\ g) had emerged in

[4] only because they are intimately associated with the very natural extensions of the Fibonacci and Lucas polynomial
p(nF)(x) and p(nL) (x), defined as

oy (x|q) =i"phix|q),  ph(x|a)=i"pY (ix|q), (5.1)

respectively. Thesg-extensions of the Fibonacci and Lucas polynomials are different from and simpler than those
g-families, introduced and studied recently by Cigler and Zeng in [8]-[10]. Obviously, the present results also provide
us with an insight into corresponding properties of theibonacci andj-Lucas ponnomials)(r]F)(x\ q) and p(nL) (x|a),

which are direct consequences of the links (5.1).

6 Appendix
I. In order to give a direct proof of a transformation formula

1-n. 42(1-1) | 42. 42 72> _ CHR

,d°X
44 (9™ q)n

betweernp; (with the base?) andz@, (with the basey) basic polynomials, which was stated in section 2, we start with
the defining relation for the hypergeometsig-polynomial on the right-hand side of (6.1) and represent it first as

X2(P1(q 94" 5q

302 (a7 ¢ x 02—~ 62|qq) (6.1)

n —N AN - n n -
q/2 @A XDk ko k[N @Dk kr1-2m)/2
3(p2<q o ’q q) Z)(ql/z,—ql/z,q;wkq _k;f Uk q (@) a (62

where||] o Stands for they-binomial coefficient,

Nl ___ @
[k] T NCT I (6.3)

and we have employed the identitigs—z q)n = (z%;¢°)n and

(q__";Q)k () [n} o122 (6.4)
q

The next step is to use the expansion

X Q)k = Ii ql(l—l)/Z [ﬂq(_x)l (6.5)

on the right-hand side of (6.2) and then to reverse the order of summation in it with respect to thekiraaidésThis
results in the relation

n K (—x) q1-D/2
1/2’q q) @@y (—D*(g"; a)x et i—2n)/2 (=x)'q" /=

, X,
3(p2(q qxa "2 (@ Dn k(0 Pk pA QQI(qCIkl

0172 = (DX (AN Qg2
Z (0 A)n—k (0 A1 (0 02k

q|| L (gl ez gy
=N (H)] ,; (0:); (0 A)n-1—; (A )1+

(6.6)

n

TR 354:
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The last sum over the indgxin (6.6) can be simplified by use of the identity (see, for example, (1.8.10) on p. 12 in [7])
(Z,D)ntk = (zd)n (zd"; q)x in order to represent facto(g"; q)4; and(q; q2)|+j as

2+1. 2

@)+ = @San @ ha)y, (e = (@) (@)

Consequently,

n n. n—I1 N+l Al=n.~). A
ZH (9" a) (Xd,ny (@, 7"a);

—n AN . ~1/2  A1/2| . _
3(P2(q 4,X977,—q ‘q-q>* 2 (q|+1/2,_q|+1/2,q;Q)j

L] @ @nk () "K S (@ *qa%q);d
= ——F— (X
kZO |:k:|q(q’q2)n_k ( q ) J; (qn—k+1/27_qn—k+1/2’q;q)j

_ (9", q)n iqk(k+12n)/2[n] (ql_zn?qz)kxnfk a (CREN R (6.7)
(0:9%)n & klq (a2 a)x Z)(q”—k“/z,—q“—k”/z,q:q)j’

where at the last step we have employed the identity
ZQnk = (—1)Kgkkt1l-2n/2 M
The sum over the indeiin (6.7) can be now evaluated by an Andrew’s terminatiranalogue ogF, sum (see (11.17),
p. 355in[5])
m (g o
K 2.k <_a2qm+l) %’ k=2m,

302 (0% %2, 0,20, ~aq| ) = o+ m (6:8)

0, k=2m+1,

with a= q"¥~%/2 in the case of (6.7). Thus in the sum over the ind@n the right-hand side of (6.7) only terms with
the everk =2m, 0 <m< | n/2 ], do give nonzero contributions and therefore

n. [n/2] 1-2n. c2)  yN—2m
. x; 1/2 (q Q)n _1)m m(lm)[ n ] (q 9 ) (q’q )mX
3(p2<q gl )q q> (0:0%)n n;)( ) 2m|, (at=20q)om (@241 %),
m
( n/2 m m(2n 3m) (qz(mfn)+l;q2)m (qfn’qlfn;qZ)m CI_2
n- [n/2] (y—n ql-n. 2 2\ "
_ (q_,g)nxn 3 <q21,q 2,qz)m @
(@0)n o (P, 0% 0)m \ X
n.
Z—Eg;('qg;:X”chl(q‘”,ql‘”;q 2, (6.9)

where we have repeatedly used the relaton).m = (z,9z g°)m at the second step and a readily verified identity

(_1)mqm(2nf3m) <q2(mfn)+1;q2)m _ (q2nf4m+1;q2)m (6.10)

at the third one. This completes the proof of required transformation formula (6.1).
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II. In a similar vein, to prove a second transformation formula

1-n. 2n

2. 22\ _ (9% 0?)n -n n+2 P2
@17 ?) = (qizrg 30(a Ao 0% ga). (6.11)
we start with the defining relation for the basic hypergeometric polynoggabn the right-hand side of (6.11) and
evaluate first that

X"a0n (a0

n

— 2 .
n+2 — P2 C )
302 (a7, o2 x aa) = S - qan

n n n+2’X; B

by using the relations (6.3) and (6.4). So the next step is to employ the expansion (6.5) on the right-hand side of (6.12
and then to reverse the order of summation in it with respect to the inklimedl|. This gives

B n 71)k(qn+2 CI) 7X ' q' (1-1)/
n g2 x: 3/2 ( ’ Kkt 1-2n)/
02(a7". 4250 %a) = @a "2 (D (B Zo CLVICTIS

(_x)l q(' 1)/2 n (_1)k(qn+2;q)qu(k+172n)/2
a, )i k; (0 Dn—k (G Akt (63 0%)k

ql ) qj[1+1 2(n— I)]/Z(qn+2 Q)
(a; 09 (A Dn1—j (635021

=(q; Q)n

n—I

(—
2
n n+2 | n—I n+1+-2 i
o)) n (@™ 2,d"™q);q
xq
Z>H G2l ( >,;(q'+3/2, q+%/2,0,9);
" ] (g"3q nk(x _k)n*k £ (2R ga);d
% k q3 q2 q (qn*k+3/27_qn*k+3/2,q;q)j
k

_ ﬂ (k+1—2n)/2 CR (q2”+2—k,q—k;q)jqj
(@) qu k q (A2 10k X %(qn—k+3/27_qn—k+3/27q;q)j' (6.13)

The last sum over the indgxrepresents

I+

Ms> M=

= (g;9)n )) X

=0

20 (q‘ k7 q2n+2—k’ 0: qn—k+3/2’ _ qn—k+3/2

and can be therefore evaluated by (6.8), but with the pararaetay"*+1/2. Hence only terms with the evdn= 2m
do contribute into the second sum over the inkéx (6.13) and it thus reduces to the expression

n+2. [n/2] 1.2 5 om
3/2‘q q> (q :Q)n z (_1)m m(3_m)|: n:| (q 1q )2m (q1q )mX

-n
) X 30N
SQ(Q T xa (@%0)n & q m|q (@2 Y a)om (P 4M302)m

m
(@) n“%” (- riz-om)" (™2 % ) (4", P )i (q2>

= X —
(00 & (P43, 02)m (072, 0% 0%)m \ X2
m
@ o @ P (R @D n [ noan |2 2 2
~ (9%09)n X rTZO (@ 2,%)m \ ¥ )  (a%6)n X chl(q SR L ) (619

where at the penultimate step we have used the same identity (6.10), butnejilaced byn+ 1. This completes the
proof of the transformation formula (6.11).
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