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Abstract

We study in detail main properties of two families of the basic hypergeometric2φ1-polynomials, which are natural
q-extensions of the classical Chebyshev polynomialsTn(x) andUn(x). In particular, we show that they are expressible
as special cases of the bigq-Jacobi polynomialsPn(x;a,b,c;q) with some chosen parametersa, b andc. We derive
quadratic transformations that relate these polynomials to the littleq-Jacobi polynomialspn(x;a,b|q). Explicit forms
of discrete orthogonality relations on a finite interval,q-difference equations and Rodrigues-type difference formulas
for theseq-Chebyshev polynomials are also given.
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1 Introduction

The Chebyshev polynomials find frequent and profound applications in many areas of mathematical analysis such as
approximation, series expansions, interpolation, quadrature and integral equations [1, 2]. Hence it is of considerable
interest to inquire into the defining of explicitq-extensions of the Chebyshev polynomials, which may be similarly
useful in analysis ofq-special functions. The interest in this study is motivated by the following circumstance. It is well
known that the Chebyshev polynomialsTn(x) andUn(x) may be regarded as special cases of the Jacobi polynomials

P(α,β)
n (x) with parametersα = β =−1/2 andα = β = 1/2, respectively. Therefore it appears at first that the continuous

q-Jacobi polynomialsP(α,β)
n (x|q) (which evidently representq-extensions of the Jacobi polynomialsP(α,β)

n (x)) with the
particular values of the parametersα = β = −1/2 andα = β = 1/2 would be naturalq-extensions of the Chebyshev
polynomialsTn(x) andUn(x). Under closer examination however, it turns out that the continuousq-Jacobi polynomials

P(−1/2,−1/2)
n (x|q) andP(1/2,1/2)

n (x|q) are only constant (but q-dependent) multiplesof the Chebyshev polynomialsTn(x)

andUn(x). In other words, the continuousq-Jacobi polynomialsP(−1/2,−1/2)
n (x|q) and P(1/2,1/2)

n (x|q) are, in fact,
rescalings of the Chebyshev polynomialsTn(x) andUn(x); therefore the former two polynomial families are just trivial
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q-extensions of the latter ones. This curious “q-degeneracy” of the continuousq-Jacobi polynomialsP(α,β)
n (x|q) for

the values of the parametersα = β = −1/2 andα = β = 1/2 had been already noticed by R.Askey and J.A.Wilson in
their seminal work [3]. Observe also that nothing essentially changes when one tries to use the connection with the
monic form1 of the continuous Rogersq-ultraspherical polynomialsC(M)

n (x;qλ|q), rather than with the continuousq-

Jacobi polynomialsP(α,β)
n (x|q). Theq-polynomialsC(M)

n (x;1|q) are known to provide aq-extension of the Chebyshev

polynomialsTn(x), whereas theC(M)
n (x;q|q) represent aq-extension of the Chebyshev polynomialsUn(x). But both of

theseq-extensions are trivial in the above-mentioned sense.
This work is an attempt to explore properties ofq-extensions of the Chebyshev polynomialsTn(x) andUn(x) in

terms of the basic hypergeometric2φ1-polynomials, which were introduced in a recent paper [4] devoted to the study of
Fourier integral transforms for theq-Fibonacci andq-Lucas polynomials. We prove that these twoq-Chebyshev families
are expressible as special cases of the bigq-Jacobi polynomialsPn(x;a,b,c;q) with particularly chosen parametersa,
b andc. Thus it becomes apparent that the requiredq-Chebyshev polynomials have been “in hiding” within the Askey
q-scheme at one level higher than the continuousq-Jacobi polynomialsP(α,β)

n (x|q). We use this connection with the big
q-Jacobi polynomialsPn(x;a,b,c;q) in order to establish an explicit form of the discrete orthogonality relation for these
q-Chebyshev polynomials.

The paper is organized as follows. In section 2 we determine three-term recurrence relations for theq-Chebyshev
polynomials under study in order to clarify their connections with the bigq-Jacobi polynomials. Quadratic transforma-
tions, relating them with the littleq-Jacobi polynomials are derived in section 3. In section 4 we present explicit forms
of discrete orthogonality relations on a finite interval,q-difference equations and Rodrigues-type difference formulas
for theseq-Chebyshev polynomials. Some conclusions are offered in section 5. The Appendix contains the derivation
of two transformation formulas between basic hypergeometric2φ1 and3φ2 polynomials, associated withq-extensions
of the Chebyshev polynomialsTn(x) andUn(x).

Throughout this exposition we employ standard notation of the theory of special functions (see, for example,
[5]– [7]).

2 Connections with Bigq-Jacobi Polynomials

Recall that the Chebyshev polynomials of the first kindTn(x) and of the second kindUn(x) are explicitly given in terms
of the hypergeometric2F1-polynomials as

T0(z) = 1, Tn(z) = 2F1

(
−n,n; 1/2

∣
∣
∣
1−z

2

)
= 2n−1zn

2F1

(

−
n
2

,
1−n

2
;1− n

∣
∣
∣1/z2

)
, n≥ 1, (2.1)

and

Un(z) = (n+1)2F1

(
−n,n+2; 3/2

∣
∣
∣
1−z

2

)
= (2z)n

2F1

(

−
n
2

,
1−n

2
;−n

∣
∣
∣1/z2

)
, n≥ 0, (2.2)

respectively. The Chebyshev polynomialsTn(x) are generated by the three-term recurrence relation

2zTn(z) = Tn+1(z) + Tn−1(z) , n≥ 1, (2.3)

with the initial conditionsT0(z) = 1 andT1(z) = z ; whereas the Chebyshev polynomialsUn(x) are governed by the
same recurrence (2.3) but forn≥ 0 and initial assignmentU−1(z) = 0 andU0(z) = 1.

As was noticed in [4], twoq-polynomial families of degreen in the variablex, defined by

p(T)
n (x|q) = 2n−1xn

2φ1

(
q−n,q1−n; q2(1−n)

∣
∣
∣q2; q2x−2

)
, n≥ 1, p(T)

0 (x|q) = 1, (2.4)

1We recall that an arbitrary polynomialpn(x) = ∑n
k=0cn,k xk of degreen in the variablex can be written in themonic form p(M)

n (x) =
c−1

n,n pn(x) = xn +c−1
n,n ∑n−1

k=0 cn,k xk just by changing its normalization.
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p(U)
n (x|q) = (2x)n

2φ1

(
q−n,q1−n; q−2n

∣
∣
∣q2 ; q2x−2

)
, n≥ 0, 0 < q < 1, (2.5)

represent very naturalq-extensions of the Chebyshev polynomials of the first kindTn(x) and of the second kindUn(x),
respectively. For checking this statement one just has to bear in mind the well-known limit property

lim
q→1

2φ1

(
q−n,qa ; qb

∣
∣
∣q;z

)
= 2F1(−n, a; b|z) (2.6)

of the q-hypergeometric2φ1-polynomials (see, for example, section 1.10, p. 15 in [7]). Then from (2.6) it follows at

once that the polynomialsp(T)
n (x|q) and p(U)

n (x|q) coincide in the limit asq→ 1 with theTn(x) andUn(x), given by the
second lines in (2.1) and (2.2), respectively.

Note that from (2.4) and (2.5) it is evident that both of theseq-polynomials are either reflection symmetric (when
degreen is even) or antisymmetric (when degreen is odd), that is,

p(T)
n (−x|q) = (−1)n p(T)

n (x|q) , p(U)
n (−x|q) = (−1)n p(U)

n (x|q) . (2.7)

The best route to determine whether theseq-polynomials (2.4) and (2.5) are related to some “named” families
of basic hypergeometric orthogonal polynomials from the Askeyq-scheme [7], is first to find three-term recurrence
relations, associated with them.

Let us start with (2.4) and slightly simplify its explicit form,

p(T)
n (x|q) = 2(n−1)xn

bn/2c

∑
k=0

(q−n,q1−n;q2)k

(q2(1−n),q2;q2)k
q2kx−2k = 2(n−1)xn

bn/2c

∑
k=0

(q−n;q)2k q2k

(q2(1−n),q2;q2)k
x−2k

= (q;q)n2(n−1)xn
bn/2c

∑
k=0

qk(2k−2n+1) x−2k

(q;q)n−2k (q2(1−n),q2;q2)k
, (2.8)

by using the relation(z,qz;q2) = (z;q)2n at the first step and the identity

(q−n;q)2k =
(q;q)n

(q;q)n−2k
qk(2k−2n−1) , 0≤ k≤ bn/2c ,

at the second one. Observe that the symbolbxc in (2.8) denotes the greatest integer inx and we have employed the
conventional notation(z1,z2, ...,zk ;q)n := ∏k

j=1(zj ;q)n for products ofq-shifted factorials(zj ;q)n, j = 1,2, ...,k.
Let us assume now thatn is odd,n = 2m+1. Then from (2.8) one obtains that

p(T)
2m+1(x|q) = (q;q)2m+1x(2x)2m

m

∑
k=0

qk(2k−4m−1) x−2k

(q;q)2m+1−2k (q−4m,q2;q2)k

= (q;q)2mx(2x)2m
m

∑
k=0

(1−q2m+1)(1−q2k−4m)
(1−q−4m)(1−q2m−2k+1)

qk(2k−4m−1) x−2k

(q;q)2(m−k) (q2(1−2m),q2;q2)k
, (2.9)

upon employing the relations
(1−z)(zq;q)k = (z;q)k+1 = (1−zqk)(z;q)k . (2.10)

Finally, use a readily verified identity

(1−q2m+1)(1−q2k−4m)
(1−q−4m)(1−q2m−2k+1)

= q2k +
(1−q1−2m)(1−q2k)

(1−q−4m)(1−q2m−2k+1)
, 0≤ k≤ m,

to represent (2.9) as
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p(T)
2m+1(x|q) = (q;q)2mx(2x)2m

m

∑
k=0

qk(2k−4m+1) x−2k

(q;q)2(m−k) (q2(1−2m),q2;q2)k

−
q6m−1(q;q)2m−1

(1+q2m)(1+q2m−1)
x(2x)2m

m

∑
k=1

qk(2k−4m−1) x−2k

(q;q)2(m−k)+1(q4(1−m),q2;q2)k−1

= 2x p(T)
2m(x|q)−

2q2m(q;q)2m−1 (2x)2m−1

(1+q2m)(1+q2m−1)

m−1

∑
l=0

ql [2l−2(2m−1)+1] x−2l

(q;q)2m−1−2l (q2[1−(2m−1)],q2;q2)l

= 2x p(T)
2m(x|q) −

4q2m

(1+q2m)(1+q2m−1)
p(T)

2m−1(x|q) . (2.11)

Similarly, if one assumes that the degreen in (2.8) is even,n = 2m, then by the same reasoning one arrives at the
three-term recurrence relation between the polynomialsp(T)

2m(x|q), p(T)
2m−1(x|q) andp(T)

2m−2(x|q). Thus we conclude that
the general (i.e., valid for both even and odd degreesn) recurrence formula for theq-polynomials (2.4) is

p(T)
n+1(x|q) = 2x p(T)

n (x|q) −
4qn

(1+qn)(1+qn−1)
p(T)

n−1(x|q), n≥ 1. (2.12)

Using the same considerationsmutatis mutandis, one derives the three-term recurrence relation for the second family
of q-polynomials (2.5):

p(U)
n+1(x|q) = 2x p(U)

n (x|q) −
4qn−1

(1+qn)(1+qn+1)
p(U)

n−1(x|q) , n≥ 0, p(U)
−1 (x|q) = 0. (2.13)

Now we are in a position to establish that theq-extensions (2.4) and (2.5) of the Chebyshev polynomialsTn(x) and
Un(x) are in fact connected with the bigq-Jacobi polynomials

Pn(x;a,b,c;q) := 3φ2

(
q−n,abqn+1,x;aq,cq

∣
∣
∣q;q

)
(2.14)

with some particularly chosen parametersa,b andc. Indeed, recall that themonic form

P(M)
n (x;a,a,−a;q) =

(a2q2;q2)n

(a2qn+1;q)n
Pn(x;a,a,−a;q) (2.15)

of the bigq-Jacobi polynomials (2.14) with the parametersa = b = −c satisfies the three-term recurrence relation

P(M)
n+1(x;a,a,−a;q) = xP(M)

n (x;a,a,−a;q)− γn(a;q)P(M)
n−1(x;a,a,−a;q) (2.16)

with the coefficients (see (14.5.4), p. 439 in [7])

γn(a;q) =
a2qn+1(1−qn)(1−a2qn)
(1−a2q2n−1)(1−a2q2n+1)

.

Fora = q−1/2 the recurrence (2.16) clearly reduces to

P(M)
n+1(x;q−1/2,q−1/2,−q−1/2;q) = xP(M)

n (x;q−1/2,q−1/2,−q−1/2;q)

−
qn

(1+qn)(1+qn−1)
P(M)

n−1(x;q−1/2,q−1/2,−q−1/2;q) , (2.17)
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whereas the choice ofa = q1/2 in (2.16) leads to

P(M)
n+1(x;q1/2,q1/2,−q1/2;q) = xP(M)

n (x;q1/2,q1/2,−q1/2;q)

−
qn−1

(1+qn)(1+qn+1)
P(M)

n−1(x;q1/2,q1/2,−q1/2;q) . (2.18)

On comparing (2.17) and (2.18) with (2.12) and (2.13), respectively, one thus concludes that

p(T)
0 (x|q) = 1, p(T)

n (x|q) = 2n−1P(M)
n (x;q−1/2,q−1/2,−q−1/2;q)

= 2n−1 (q;q2)n

(qn;q)n
3φ2

(
q−n, qn,x;q1/2,−q1/2

∣
∣
∣q;q

)
, n≥ 1, (2.19)

and

p(U)
n (x|q) = 2nP(M)

n (x;q1/2,q1/2,−q1/2;q) = 2n (q3;q2)n

(qn+2;q)n
3φ2

(
q−n, qn+2,x;q3/2,−q3/2

∣
∣
∣q;q

)
, n≥ 0. (2.20)

Evidently, these representations (2.19) and (2.20) in terms of the bigq-Jacobi polynomials (2.14) agree with the
initial definitions (2.4) and (2.5) of theq-polynomialsp(T)

n (x|q) andp(U)
n (x|q), only if two transformation formulas

xn
2φ1

(
q−n,q1−n;q2(1−n)

∣
∣
∣q2;q2x−2

)
=

(q;q2)n

(qn;q)n
3φ2

(
q−n,qn,x;q1/2,−q1/2

∣
∣
∣q;q

)
, (2.21)

xn
2φ1

(
q−n,q1−n;q−2n

∣
∣
∣q2;q2x−2

)
=

(q3;q2)n

(qn+2;q)n
3φ2

(
q−n,qn+2,x;q3/2,−q3/2

∣
∣
∣q;q

)
, (2.22)

between2φ1 (with the baseq2) and3φ2 (with the baseq) basic polynomials are valid. Direct proofs of these identities
are given in Appendix.

3 Quadratic Transformations

It turns out that, in addition to (2.19) and (2.20), both symmetric or antisymmetric cases of theq-polynomial families
(2.4) and (2.5) can be separately expressed in terms of the littleq-Jacobi polynomials, defined as (see, for example,
(14.12.1), p. 482 in [7])

pn(x;a,b|q) := 2φ1(q
−n,abqn+1;aq|q;qx) . (3.1)

Indeed, let us apply first the transformation of terminating2φ1 series (see (1.13.15), p. 20 in [7])

2φ1(q
−n,a;b|q;z) =

(a;q)n

(b;q)n
q−n(n+1)/2(−z)n

2φ1

(

q−n,q1−n/b;q1−n/a

∣
∣
∣
∣
∣
q;

bqn+1

az

)

(3.2)

to theq-polynomials of even degreep(T)
2m (x|q), wherem is an arbitrary nonnegative integer. This results in the relation

p(T)
2m (x|q) = x(2x)2m−1

2φ1

(
q−2m,q1−2m; q2(1−2m)

∣
∣
∣q2 ; q2x−2

)

= (−4)mq−m(m−1) (q1−2m;q2)m

2(q2(1−2m);q2)m
2φ1

(
q−2m,q2m; q

∣
∣
∣q2 ;qx2

)

= (−4qm)m (q;q2)m

2(q2m;q2)m
pm

(
q−1x2;q−1,q−1

∣
∣
∣q2
)

, m≥ 1. (3.3)
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Similarly, in the case of theq-polynomials of odd degreep(T)
2m+1(x|q) one obtains, by using (3.2), that

p(T)
2m+1(x|q) = x(2x)2m

2φ1

(
q−2m−1,q−2m; q−4m

∣
∣
∣q2 ; q2x−2

)

= (−4)mq−m(m−1) (q
−1−2m;q2)m

(q−4m;q2)m
x2φ1

(
q−2m,q2m; q

∣
∣
∣q2 ;q2x2

)

= (−4qm)m (q3;q2)m

(q2(m+1);q2)m
x pm

(
q−1x2;q,q−1

∣
∣
∣q2
)

, m≥ 0. (3.4)

Thus,q-extensions (2.4) of the Chebyshev polynomialsTn(x) can be written it terms of the littleq-Jacobi polynomials
(3.1) as

p(T)
2m (x|q) = (−4qm)m (q;q2)m

2(q2m;q2)m
pm

(
q−1x2;q−1,q−1

∣
∣
∣q2
)

,

p(T)
2m+1(x|q) = (−4qm)m (q3;q2)m

(q2(m+1);q2)m
x pm

(
q−1x2;q,q−1

∣
∣
∣q2
)

. (3.5)

Exactly in the same manner one obtains thatq-extensions (2.5) of the Chebyshev polynomialsUn(x) can be represented
as

p(U)
2n (x|q) = (−4)nqn(n+2) (q;q2)n

(q2(n+1);q2)n
pn

(
q−3x2;q−1,q

∣
∣
∣q2
)

,

p(U)
2n+1(x|q) = (−4)nqn(n+2) 2(q3;q2)n

(q2(n+2);q2)n
x pn

(
q−3x2;q,q

∣
∣
∣q2
)

. (3.6)

Notice that from the well-known limit property (cf. (14.12.15) on p. 485 in [7])

lim
q→1

pn

(
x; qa,qb

∣
∣
∣q
)

=
n!

(α+1)n
P(α,β)

n (1−2x) (3.7)

of the littleq-Jacobi polynomials (3.1), it follows that in the limit asq→ 1 the quadratic transformations (3.5) and (3.6)
reduce to the relations

T2m(x) =
m!

(1/2)m
P(−1/2,−1/2)

m (2x2−1) , T2m+1(x) =
m!

(1/2)m
xP(−1/2,1/2)

m (2x2−1) , (3.8)

and

U2m(x) =
m!

(1/2)m
P(1/2,−1/2)

m (2x2−1) , U2m+1(x) =
2(m+1)!
(3/2)m

xP(1/2,1/2)
m (2x2−1) , (3.9)

respectively. It should also be observed that the transformations (3.8) and (3.9) for the Chebyshev polynomialsTn(x)
andUn(x) are special cases of the quadratic transformation (cf. Remarks on p. 224 in [7])

C(λ;M)
2n (x) =

n!
(λ+n)n

P(λ−1/2,−1/2)
n (2x2−1) , C(λ;M)

2n+1 (x) =
n!

(λ+n+1)n
xP(λ−1/2,1/2)

n (2x2−1) , (3.10)

for themonicGegenbauer (or ultraspherical) polynomialsC(λ;M)
n (x), defined as (see (9.8.19) and (9.8.22) on p. 222 in

[7])

C(λ;M)
n (x) :=

n!
2n(λ)n

C(λ)
n (x) =

(λ+n)λ

22λ+n−1(1/2)λ
2F1

(

−n,n+2λ;λ+1/2

∣
∣
∣
∣
∣
1−x

2

)

. (3.11)

Indeed, taking into account thatC(0;M)
n (x) = 21−nTn(x) andC(1;M)

n (x) = 2−nUn(x) by the defintion (3.11), it is readily
checked that (3.8) is a special case of (3.10) withλ = 0 and (3.9) is a special case of (3.10) withλ = 1.

It should also be noted that the quadratic transformations (3.5) and (3.6) in terms of the littleq-Jacobi polynomials
were already mentioned in [4], but without proofs and their limits (3.8) and (3.9) asq→ 1; a brief proof of (3.5) and
(3.6) is given above for the sake of completeness.
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4 Main Characteristics of q-Chebyshev Polynomials

A benefit from establishing the representations (2.19) and (2.20) for theq-Chebyshev polynomialsp(T)
n (x|q) and

p(U)
n (x|q) in terms of the bigq-Jacobi polynomials (2.14) is that these connections enable one to deduce their main

properties from the well-known properties of the latter ones,Pn(x;a,b,c;q). To illustrate this point, we touch on here

only three important characteristics of theq-Chebyshev polynomialsp(T)
n (x|q) and p(U)

n (x|q): explicit forms of q-
difference equations, discrete orthogonality relations and Rodrigues-type formulas.

It is known that the bigq-Jacobi polynomialsPn(x;a,b,c;q) with the parametersa = b = −c are solutions of a
q-difference equation:

[(
a2qn+1 +q−n

)
x2−a2q(1+q)

]
pn(x) = a2q(x2−1)pn(qx)+(x2−a2q2)pn(q

−1x) , (4.1)

wherepn(x) = Pn(x;a,b,c;q) (see (14.5.5) on p. 439 in [7]). Henceq-difference equations for theq-Chebyshev poly-

nomialsp(T)
n (x|q) andp(U)

n (x|q) are special cases of (4.1) with the parametera = q−1/2 anda = q1/2, respectively; that
is, [

(qn +q−n)x2− (1+q)
]
p(T)

n (x|q) = (x2−1)p(T)
n (qx|q)+(x2−q)p(T)

n (q−1x|q) ,

[
(qn+2 +q−n)x2−q2(1+q)

]
p(U)

n (x|q) = q2(x2−1)p(U)
n (qx|q)+(x2−q3)p(U)

n (q−1x|q). (4.2)

Recall also that the bigq-Jacobi polynomialsPn(x;a,b,c;q) with the parametersa = b = −c satisfy the discrete
orthogonality relation

∫ aq

−aq

(x2/a2;q2)∞

(x2;q2)∞
Pm(x;a,a,−a;q)Pn(x;a,a,−a;q)dqx

= 2(1−q2)q(n+1)(n+2)/2 (q2;q2)∞

(a2q2;q2)2
∞

(a2q2,−q2;q)∞
a2n+1(1−a2q)(q;q)n

(1−a2q2n+1)(a2q;q)n
δmn, (4.3)

where theq-integral is defined as (see (14.5.2) and (1.15.7) in [7])

∫ a

−a
f (x)dqx := a(1−q)

∞

∑
n=0

[
f (aqn)+ f (−aqn)

]
qn .

Fora = q−1/2 from (4.3) one now gets at once, by employing (2.19) and (2.15), that

∫ q1/2

−q1/2

(qx2;q2)∞

(x2;q2)∞
p(T)

m (x|q) p(T)
n (x|q)dqx = 2q1/2 (−q;q)∞

(q3;q2)∞
(q2;q2)2

∞ cn δmn, (4.4)

where

c0 = 1, cn = 4n−1qn(n+1)/2(1−qn)(q;q2)2
n

(1+qn)(qn;q)2
n
, n≥ 1.

In a like manner, whena = q1/2 one finds from (4.3), by employing (2.20) and (2.15), that

∫ q3/2

−q3/2

(q−1x2;q2)∞

(x2;q2)∞
p(U)

m (x|q) p(U)
n (x|q)dqx = 2q3/2 (−q;q)∞

(q3;q2)∞
(q2;q2)2

∞ cn δmn, (4.5)

where

cn = 4nqn(n+5)/2 (q;q2)2
n+1

(1+qn+1)(qn+1;q)2
n+1

, n≥ 0.
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Another important property of the bigq-Jacobi polynomialsPn(x;a,b,c;q) is described by the Rodrigues-type for-
mula

Pn(x;a,b,c;q)w(x;a,b,c;q) =
[ac(1−q)]n

(aq,cq;q)n
qn(n+1)

(
Dq

)n
w(x;aqn,bqn,cqn;q) , (4.6)

whereDq is theq-derivative operator (see (1.15.1) on p. 24 in [7]) and the orthogonality weight functionw(x;a,b,c;q)
is defined as ((14.5.10), p. 440 in [7])

w(x;a,b,c;q) :=
(qx2;q2)∞

(x2;q2)∞
. (4.7)

Hence, from (4.6) and (4.7) it follows, upon using (2.19) and (2.20), that the Rodrigues-type formulas for theq-
Chebyshev polynomialsp(T)

n (x|q) andp(U)
n (x|q) are

p(T)
n (x|q)

(qx2;q2)∞

(x2;q2)∞
=
(
−2qn

)n (1−q)n

2(qn;q)n

(
Dq

)n (q1−2nx2;q2)∞

(x2;q2)∞
, n≥ 1,

p(U)
n (x|q)

(q−1x2;q2)∞

(x2;q2)∞
=
(
−2qn+2

)n (1−q)n

(qn+2;q)n

(
Dq

)n(q−1−2nx2;q2)∞

(x2;q2)∞
, n≥ 0. (4.8)

In closing this section, we remark of the following. First, note that it is not difficult to determine also forward and
backward shift operators and generating functions for theq-Chebyshev polynomialsp(T)

n (x|q) andp(U)
n (x|q) in exactly

the same way as above, but this task is left to the reader. Second, since the classical Chebyshev polynomialsTn(x) and
Un(x) satisfy the same three-term recurrence relation (2.3) but with different initial assignments, they are known to be
interconnected by the relation

2Tn(x) = Un(x)−Un−2(x) , n≥ 1, U−1(x) = 0. (4.9)

Hence one may wonder whether theq-Chebyshev polynomialsp(T)
n (x|q) andp(U)

n (x|q) also enjoy the similar property
of type (4.9), although they are governed by two distinct three-term recurrence relations (2.12) and (2.13), respectively.
A link in question between theq-Chebyshev polynomialsp(T)

n (x|q) andp(U)
n (x|q) turns out to be of the form

2p(T)
n (x|q) = p(U)

n (x|q) −
4q

(1+qn)(1+qn−1)
p(U)

n−2(x|q) , n≥ 1, p(U)
−1 (x|q) = 0. (4.10)

This q-extension of the classical relation (4.9) is not difficult to derive by using the explicit forms (2.4) and (2.5) of the
q-polynomialsp(T)

n (x|q) andp(U)
n (x|q), and the identities
(

q−n;q
)

2l+2
=
(

1−q−n
)(

1−q1−n
)(

q2−n;q
)

2l
,

(
q−2n;q2

)

l+2
=
(

1−q−2n
)(

1−q2(1−n)
)(

q2(2−n);q2
)

l
,

for theq-shifted factorial(z;q)n.

5 Concluding Remarks

We have studied in detail the main properties of two families of the basic hypergeometric2φ1-polynomials, defined by
(2.4) and (2.5), which represent compact forms ofq-extensions of the classical Chebyshev polynomialsTn(x) andUn(x).
They are shown to satisfy the discrete orthogonality relations (4.4) and (4.5) on a finite interval. It should be noted that
although these discreteq-Chebyshev polynomialsp(T)

n (x|q) andp(U)
n (x|q) are of clear interest on their own, there is an

additional motivation to study them. As we have already remarked, theq-polynomialsp(T)
n (x|q) and p(U)

n (x|q) were
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first arisen in a paper [4], devoted mainly to the evaluation of Fourier integral transforms forq-Fibonacci andq-Lucas
polynomials. It is worthwhile to emphasize that theq-Chebyshev polynomialsp(T)

n (x|q) andp(U)
n (x|q) had emerged in

[4] only because they are intimately associated with the very natural extensions of the Fibonacci and Lucas polynomials
p(F)

n (x) andp(L)
n (x), defined as

p(F)
n (x|q) = i−n p(U)

n (i x|q) , p(L)
n (x|q) = i−n p(T)

n (i x|q) , (5.1)

respectively. Theseq-extensions of the Fibonacci and Lucas polynomials are different from and simpler than those
q-families, introduced and studied recently by Cigler and Zeng in [8]-[10]. Obviously, the present results also provide
us with an insight into corresponding properties of theq-Fibonacci andq-Lucas polynomialsp(F)

n (x|q) andp(L)
n (x|q),

which are direct consequences of the links (5.1).

6 Appendix

I. In order to give a direct proof of a transformation formula

xn
2φ1

(
q−n,q1−n;q2(1−n)

∣
∣
∣q2;q2x−2

)
=

(q;q2)n

(qn;q)n
3φ2

(
q−n,qn,x;q1/2,−q1/2

∣
∣
∣q;q

)
(6.1)

between2φ1 (with the baseq2) and3φ2 (with the baseq) basic polynomials, which was stated in section 2, we start with
the defining relation for the hypergeometric3φ2-polynomial on the right-hand side of (6.1) and represent it first as

3φ2

(
q−n,qn,x;q1/2,−q1/2

∣
∣
∣q;q

)
:=

n

∑
k=0

(q−n,qn,x;q)k

(q1/2,−q1/2,q;q)k
qk =

n

∑
k=0

(−1)k
[

n
k

]

q

(qn,x;q)k

(q;q2)k
qk(k+1−2n)/2 , (6.2)

where
[n

k

]
q stands for theq-binomial coefficient,

[
n
k

]

q
:=

(q;q)n

(q;q)k(q;q)n−k
, (6.3)

and we have employed the identities(z,−z;q)n = (z2;q2)n and

(q−n;q)k

(q;q)k
= (−1)k

[
n
k

]

q
qk(k−1−2n)/2 . (6.4)

The next step is to use the expansion

(x;q)k =
k

∑
l=0

ql(l−1)/2
[

k
l

]

q
(−x)l (6.5)

on the right-hand side of (6.2) and then to reverse the order of summation in it with respect to the indicesk andl . This
results in the relation

3φ2

(
q−n,qn,x;q1/2,−q1/2

∣
∣
∣q;q

)
= (q;q)n

n

∑
k=0

(−1)k (qn;q)k

(q;q)n−k (q;q2)k
qk(k+1−2n)/2

k

∑
l=0

(−x)l ql(l−1)/2

(q;q)l (q;q)k−l

= (q;q)n

n

∑
l=0

(−x)l

(q;q)l
ql(l−1)/2

n

∑
k=l

(−1)k (qn;q)k qk(k+1−2n)/2

(q;q)n−k (q;q)k−l (q;q2)k

= (q;q)n

n

∑
l=0

ql(l−n)

(q;q)l
xl

n− l

∑
j=0

(−1) j qj[ j+1−2(n−l)]/2 (qn;q)l+ j

(q;q) j (q;q)n−l− j (q;q2)l+ j
. (6.6)
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The last sum over the indexj in (6.6) can be simplified by use of the identity (see, for example, (1.8.10) on p. 12 in [7])
(z;q)n+k = (z;q)n(zqn;q)k in order to represent factors(qn;q)l+ j and(q;q2)l+ j as

(qn;q)l+ j = (qn;q)l (q
n+l ;q) j , (q;q2)l+ j = (q;q2)l (q

2l+1;q2) j .

Consequently,

3φ2

(
q−n,qn,x;q1/2,−q1/2

∣
∣
∣q;q

)
=

n

∑
l=0

[
n
l

]

q

(qn;q)l

(q;q2)l

(
xql−n

)l n− l

∑
j=0

(qn+l ,ql−n;q) j qj

(ql+1/2,−ql+1/2,q;q) j

=
n

∑
k=0

[
n
k

]

q

(qn;q)n−k

(q;q2)n−k

(
xq−k

)n−k k

∑
j=0

(q2n−k,q−k;q) j qj

(qn−k+1/2,−qn−k+1/2,q;q) j

=
(qn;q)n

(q;q2)n

n

∑
k=0

qk(k+1−2n)/2
[

n
k

]

q

(q1−2n;q2)k

(q1−2n;q)k
xn−k

k

∑
j=0

(q2n−k,q−k;q) j qj

(qn−k+1/2,−qn−k+1/2,q;q) j
, (6.7)

where at the last step we have employed the identity

(z;q)n−k = (−1)k qk(k+1−2n)/2 (z;q)nz−k

(q1−n/z;q)k
.

The sum over the indexj in (6.7) can be now evaluated by an Andrew’s terminatingq-analogue of3F2 sum (see (II.17),
p. 355 in [5])

3φ2

(
q−k, a2qk+1, 0; aq,−aq

∣
∣
∣q;q

)
=






(
−a2qm+1

)m (q;q2)m

(a2q2;q2)m
, k = 2m,

0, k = 2m+1,

(6.8)

with a = qn−k−1/2 in the case of (6.7). Thus in the sum over the indexk on the right-hand side of (6.7) only terms with
the evenk = 2m, 0≤ m≤ bn/2c, do give nonzero contributions and therefore

3φ2

(
q−n,qn,x;q1/2,−q1/2

∣
∣
∣q;q

)
=

(qn;q)n

(q;q2)n

bn/2c

∑
m=0

(−1)mqm(1−m)
[

n
2m

]

q

(q1−2n;q2)2m

(q1−2n;q)2m

(q;q2)mxn−2m

(q2n−4m+1;q2)m

=
(qn;q)n

(q;q2)n
xn

bn/2c

∑
m=0

(−1)mqm(2n−3m) (q2(m−n)+1;q2)m

(q2n−4m+1;q2)m

(q−n,q1−n;q2)m

(q2(1−n),q2;q2)m

(
q2

x2

)m

=
(qn;q)n

(q;q2)n
xn

bn/2c

∑
m=0

(q−n,q1−n;q2)m

(q2(1−n),q2;q2)m

(
q2

x2

)m

=
(qn;q)n

(q;q2)n
xn

2φ1

(
q−n,q1−n;q2(1−n)

∣
∣
∣q2;q2x−2

)
, (6.9)

where we have repeatedly used the relation(z;q)2m = (z,qz;q2)m at the second step and a readily verified identity

(−1)mqm(2n−3m) (q2(m−n)+1;q2)m = (q2n−4m+1;q2)m (6.10)

at the third one. This completes the proof of required transformation formula (6.1).
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II. In a similar vein, to prove a second transformation formula

xn
2φ1

(
q−n,q1−n;q−2n

∣
∣
∣q2;q2x−2

)
=

(q3;q2)n

(qn+2;q)n
3φ2

(
q−n,qn+2,x;q3/2,−q3/2

∣
∣
∣q;q

)
, (6.11)

we start with the defining relation for the basic hypergeometric polynomial3φ2 on the right-hand side of (6.11) and
evaluate first that

3φ2

(
q−n,qn+2,x;q3/2,−q3/2

∣
∣
∣q;q

)
:=

n

∑
k=0

(q−n,qn+2,x;q)k

(q3/2,−q3/2,q;q)k
qk

=
n

∑
k=0

(−1)k
[

n
k

]

q

(qn+2,x;q)k

(q3;q2)k
qk(k+1−2n)/2 , (6.12)

by using the relations (6.3) and (6.4). So the next step is to employ the expansion (6.5) on the right-hand side of (6.12)
and then to reverse the order of summation in it with respect to the indicesk andl . This gives

3φ2

(
q−n,qn+2,x;q3/2,−q3/2

∣
∣
∣q;q

)
= (q;q)n

n

∑
k=0

(−1)k (qn+2;q)k

(q;q)n−k (q3;q2)k
qk(k+1−2n)/2

k

∑
l=0

(−x)l ql(l−1)/2

(q;q)l (q;q)k−l

= (q;q)n

n

∑
l=0

(−x)l

(q;q)l
ql(l−1)/2

n

∑
k=l

(−1)k (qn+2;q)k qk(k+1−2n)/2

(q;q)n−k (q;q)k−l (q3;q2)k

= (q;q)n

n

∑
l=0

ql(l−n)

(q;q)l
xl

n− l

∑
j=0

(−1) j qj[ j+1−2(n−l)]/2 (qn+2;q)l+ j

(q;q) j (q;q)n−l− j (q3;q2)l+ j

=
n

∑
l=0

[
n
l

]

q

(qn+2;q)l

(q3;q2)l

(
xql−n

)l n− l

∑
j=0

(qn+l+2,ql−n;q) j qj

(ql+3/2,−ql+3/2,q;q) j

=
n

∑
k=0

[
n
k

]

q

(qn+2;q)n−k

(q3;q2)n−k

(
xq−k

)n−k k

∑
j=0

(q2n+2−k,q−k;q) j qj

(qn−k+3/2,−qn−k+3/2,q;q) j

=
(qn+2;q)n

(q3;q2)n

n

∑
k=0

qk(k+1−2n)/2
[

n
k

]

q

(q−2n−1;q2)k

(q−2n−1;q)k
xn−k

k

∑
j=0

(q2n+2−k,q−k;q) j qj

(qn−k+3/2,−qn−k+3/2,q;q) j
. (6.13)

The last sum over the indexj represents

3φ2

(
q−k, q2n+2−k, 0; qn−k+3/2,−qn−k+3/2

∣
∣
∣q;q

)

and can be therefore evaluated by (6.8), but with the parametera = qn−k+1/2. Hence only terms with the evenk = 2m
do contribute into the second sum over the indexk in (6.13) and it thus reduces to the expression

3φ2

(
q−n,qn+2,x;q3/2,−q3/2

∣
∣
∣q;q

)
=

(qn+2;q)n

(q3;q2)n

bn/2c

∑
m=0

(−1)mqm(3−m)
[

n
2m

]

q

(q−2n−1;q2)2m

(q−2n−1;q)2m

(q;q2)mxn−2m

(q2n−4m+3;q2)m

=
(qn+2;q)n

(q3;q2)n
xn

bn/2c

∑
m=0

(
−q2n+2−3m

)m (q2m−2n−1;q2)m

(q2n−4m+3;q2)m

(q−n,q1−n;q2)m

(q−2n,q2;q2)m

(
q2

x2

)m

=
(qn+2;q)n

(q3;q2)n
xn

bn/2c

∑
m=0

(q−n,q1−n;q2)m

(q−2n,q2;q2)m

(
q2

x2

)m

=
(qn+2;q)n

(q3;q2)n
xn

2φ1

(
q−n,q1−n;q−2n

∣
∣
∣q2;q2x−2

)
, (6.14)

where at the penultimate step we have used the same identity (6.10), but withn replaced byn+1. This completes the
proof of the transformation formula (6.11).
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