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Abstract

We introduce a class of integral operators related to parametric Marcinkiewicz opera-
tors. We present a multiplier formula characterizing the L boundedness of such class
of operators. Also, we prove £ 5 (inhomogeneous Sobolev space)— L estimates pro-

vided that the kernels are in L(log L)(S"~!). In fact, we show that the global parts of
the introduced operators are bounded on the Lebesgue spaces LP(1 < p < o) while the
local parts are bounded on certain Sobolev spaces £ 5
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1 Introduction and Statement of Results

Let R”, n > 2 be the n-dimensional Euclidean space and S"~! be the unit sphere in R”
equipped with the induced Lebesgue measure do. Let A : (0,00) — R be a measurable
function and Q € L'(S"!) be homogeneous of degree zero on R” and satisfies

f Qy)do(y) =0. (1.1)
Sn—1
Define the operatoru by
2\
Q h
W) = f 2 [ =y ar (1.2)
<2

where R(p) > 0. When h = 1, the operator ,ug)) = ,ug(’;)l is the well known parametric

Marcinkiewicz function of higher dimension introduced by Hormander in 1960 ([14]).
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When /=1 and p = 1, the corresponding operator uqg = ug’)] is the classical Marcinkiewicz
integral operator which was introduced by E. M. Stein in ([17]). E. M. Stein proved that
if Qe Lipa(S"_l), (0 <a<1), then ug is bounded on L? for all 1 < p <2 ([17]). Subse-
quently, A. Benedek, A. Calderén, and R. Panzone proved the L? boundedness of pq for all
1 < p < oo provided that Q is continuously differentiable on S"~! ([6]). In 1972, T. Walsh
([19]) showed that uq is bounded on L*(R") provided that Q € L(log* L)%(S"‘l). In the
same paper, Walsh showed the optimality of the condition Q € L(log* L)%(S”‘l). In fact,
he showed that the L? boundedness of o may fail if the condition Q € L(log* L)% (8" 1y is
replaced by Q € L(logL)%‘g(S”‘l) for some € > 0. Later, Al-Salman, et al. ([4]) showed
that the condition Q € L(log* L)%(S”‘l) is also sufficient for the LP boundedness of ugq for
all p € (1,00). For further results concerning the operator ugo we cite, among others, the
articles ([4], [6], [11], [15]).

On the other hand, the L” mapping properties of the parametric operator ,ug,)h have
received a considerable amount of attention during the last few years. When 2 =1 and p > 0,
Hormander proved that yg is bounded on L” for all 1 < p < oo provided that Q € Lip_(S"™1),

. . - .. 2 !
(0 <a <1)[14]. When h satisfies the integrability condition sup jez( fz i [ dT)q <C<oo
for some 1 < g <ooand Q€ L(log* LS, Ding, Lu, and Yabuta ([10]) proved that ,ug)h is

bounded on L2. Subsequently, Al-Salman and Al-Qassem [3] showed that ,ug(‘;)h is bounded
on L? for all 1 < p < oo provided that Q and 4 satisfy the same conditions in ([10]). For
the latest developments concerning the operator ug’)h, we advise readers to consult the very
recent papers [1], [2].

The main aim of this paper is trying to understand the L” mapping properties of the
operators “g(';,)h in (1.2) when the radial functions % satisfy certain point wise size conditions
rather than an integrability condition such as that given in ([10]). We are interested in
considering operators in the form of (1.2) with functions 4 with certain growth conditions.
We shall show that such class of operators is related to various integral operators such as
the operators ,ug,)h in (1.2) and the fractional Marcinkiewicz integral operators in [16]. To
this end, we start by introducing the following class of radial functions A:

Definition 1.1. A function h : (0,00) — R is said to be of order v € R if there exist numbers
0<eg <1,6, > max{0,—v}, Ci, >0, Cp, > 0, and constant A, such that the following
conditions hold:

Ih(t) < Cp ¥ forO<r<1; (1.3)
| -A,| < CoytP for0<r<I; (1.4)
h(t) = O@F®)fort>1. (1.5)

For each real v, we let B, be the class of all functions of order v. We let B(VO) be the class
of functions satisfying the conditions (1.3) and (1.5).

It is clear that 8B, C Bf,o). Moreover, B(VO) C L*®(0,00) for v > 0 while 8, and L*(0, )
are different for v < 0. Model examples of functions in 8B, are #'(v < 0), (1 +1)"*(a > 0), and
t"h(t) where v < 0 and i € L*(0, ) with lil‘(I)l h(r) exists. Another interesting example of a

t—0*
function in the class 8, is the Bessel functions J,. This allows one to consider integral op-
erators with kernels involving Bessel functions (See Section 6 for detailed results). Further
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examples of functions in $, can be constructed. In particular, for any € > 0,v > -1, a,b € R
and ki (1), ky(¢) € L= (0, 00), we have

hy(?) = (at” ki (1) + bt )y o (1) + 1 koD, ., () € By

Now, we introduce the class of operators related to the class B,. For v,a € R, h, € 8B,, and
a suitable function I" : R” — R, we let S, , be the integral operator defined by

1
2 2

d
by 2—5 . (1.6)

Stma()) = f

oo fyl<2t

It is clear that if @ = 0 and I' = Q, then the operator St ¢ is the Marcinkiewicz integral
operator ”g,)hy' Moreover, if @ = -1, h (r) = I(r) = x10,1)(r), and I = Q, then St ;_; is the
classical Marcinkiewicz integral operator uo. Here, xo,1) is the characteristic function of
the interval [0,1). In order to state the results of this paper, we cite the following related
remarks:

(i) In [9], Chen, Fan, and Ying considered the following fractional Marcinkiewicz integral
operator

Horaf () = f pH14) (1.7)

yl<2!
A particular result in [9] is the following:
Theorem 1.2([9]). Let Qe L'(S" '), r> 1 and 1 < p < co. If |a| < (r—1)/rmax(p, I%),
then |[ug.o f|], < Cpllfll -

Here, £ is the inhomogeneous Sobolev space (See Section 2 for definition). It should
be noticed here that when @ = 0, the L” inequality in Theorem 1.2 is simply [luafll,
Cp|Ifllz». This is due to the observation that g o = uo and Lp L?. In light of this result
it is natural to ask whether similar result exists for the parametric Marcinkiewicz integral
operator ,u(p) in (1.2). An answer of this problem will follow from our discussion of the
operators Sl",hv,a/- In fact, if -1 <v<0,8eR, a=-1-B/v,p=1+v, h,(t) =1, and
I'(y) = Q(y), then the corresponding operator St s, o reduces to the following operator

1
2 2

Floa] 1 Q)
uone=| [ [ fa=-y By | dr (1.8)
oo pl<2r

which is the parametric analogous of the operator ( 1.7).

(ii) In [16], Si, Wang, and Jiang studied the following fractional Marcinkiewicz integral
operator
1
2
Q(y) dt
Mos(H) = f [ re-n—2 ] | (19)

oo fyl<2t
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They showed that the fractional operator Mg s (0 < § < n) satisfies certain Herz type Hardy
space estimates provided that Q satisfies a logarithmic type Lipschitz condition. However,
when 6 < 0, the L” mapping properties of Mgq s have not discussed in [16]. By specializing
the operator St in (1.6) to the case @ = 0 and hs(r) = %, 6 <0, and I'(y) = Q(y), the
corresponding operator St ;0 reduces to the operator Mqs. Therefore, the problem of
characterizing the L” mapping properties of the class of operators Mq s (0 < 0) is a special
case of the corresponding problem concerning the operators St, o in (1.6).

(iii) By the observation that BSO) C L®(0,00) for v > 0, it can be shown using the same
argument in [4] that the operator St p, . is bounded on L? for 1 < p < co provided that
F=Qe L(log* L)% (S"1y and v > 0. Therefore, it is a natural problem to determine whether
a similar result would hold in the case v < 0. Furthermore, in light of the conditions (1.3)
and (1.5), it can be claimed that weaker conditions on  are needed to guarantee the L’
boundedness of St for the case v > 0. The later is indeed the content of Theorem 1.3
below.

In light of the aforementioned discussion, we will investigate the L” mapping properties
of the class of operators S, . In order to state the results of this paper, we let S%Wd and

S (FOC];) ., be the operators defined by
1 o) 2 1 3
SO f = ( [ re=n=Zne vy —3] (1.10)
o 0 |Jyi<u [yl u
1
2, \2
00 © F( ) du
St o f (0= f fae— =2,y 5| - (1.11)
o 1 Jpiu Il u
It is clear that
1 - N
(STt SEha) fO < Staaf @ < (ST, , +51 ) f ). (1.12)

ForagivenI': R" = R, we letI'*(y") = sup,. o I['(ry")|. Under the sole integrability condition
of I'* on §"~!, we prove the following:

Theorem 1.3. Suppose that T* € L'(S""') and that h, € BE,O). Let a > —1. Then

(a)“Sl(-j)wa(f)”p < CIIF*IILl(Sn-l) ||f||pf0r all 1 < p < oo whenever v > —1.

) ||s ), .« f)”p < Il 1, I, for all 1 < p < o whenever v >0,

(c) ”Sl",hv,a(f)”p < C”F*”L](S"—l) If1l, for all 1 < p < oo whenever v > 0.

It should be remarked here that the assumption I'* € L!(S"~!) in Theorem 1.3 allows the
function I to be very general. In particular, if b € L®(0,00) and Q(y) = Q(y’) € L'(S*1),
then T € L'(S*!) where I'(y) = b(Jy))€2(y). Some applications of Theorem 1.3 shall be
highlighted in Section 6. In particular, we shall present two model results showing the
use of Theorem 1.3 to prove L? estimates of certain operators of Marcinkiewicz type with
oscillating kernels.

By Theorem 1.3(c), the problem of investigating the L” mapping properties of St, o
reduces to the case v < 0. However, when v =0 and I" = Q, it can be shown that the operator
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S .ny.« has LP mapping properties similar to those for the operator ug. In fact, if hg € By,
then hp € L™ (0,00) and thus by the same argument in [4] it follows that S g j, 1S bounded

on L? provided that Q € L(log™ L)% (S*1). Hence, it remains to investigate the L” mapping
properties of St o for —1 <v < 0. We shall start by characterizing the L? boundedness.
First, we shall establish the following L? multiplier theorem:

Theorem 1.4. Suppose that =1 <v <0, h, € B,, and that T = Q€ L'(S*1) is a homogeneous
function of degree zero on R" satisfying (1.1). Let mq,, o be the L* multiplier of the operator

Son.w i-e,

IS e a(HIf; = f 7@ maa(@)dé. (1.13)
Rn

.(1-2v(1+a))sig(t)
-1 ,-i 5

Let E,,(t)=it""e ,t € R\{0}. Then there exists a Hg o € L™ (R") such that

M@ ya(€) = Ho o)+ Cy lE M g, o (€)

where

!y 1—2v(1+(1)Q IQ_/
&) = f f €O Z)y'l |z|)"‘v<“‘”*(y XD g (& (v 2)dydz
<1 Jzi<1

forv(l+a) e (—1,00\{-1/2} and

- (-21Q0N) (-x . . 1
— —ilogt ————
{2 T8 e -2

~ N
mg’ﬁ,a(‘f )=

dydz.
i<l lzl<1 (yllzh)” *

where Cy o =-T(14+2v(1+a))/2v(1 +a) for -1/2<v(1+a)<0and C,, =T(2+2v(1+a))/2v(1 +a)(1 +
2v(l+a)) for -1 <v(l+a)<-1/2.

By observing that sup |ﬁzg,m(§’)| <Cyq IIQIﬁ, we immediately obtain
é‘eR)‘l

IS et (D < 2max(|Hoe|., - Cre IR f @ a+1a> e, (1.14)
Rn

Hence,

Corollary 1.5. Suppose that -1 <v <0,a > -1, h, € B,, and that T = Q € L'(S"™") is
a homogeneous function of degree zero on R" satisfying (1.1). Then, Sqp, o is bounded

operator from the inhomogeneous Sobolev space .EEV(I +a) into the Lebesgue space L.

In light of the result of Corollary 1.5, it is natural to conjecture whether the operator
S o, maps L7 J(1+a) INto L under the sole condition Q € LYS™ N for1 <p<oo,v>-1,
and @ > —1. In the following theorem, we give partial answer to this problem:

Theorem 1.6. Suppose that Q € L(log* L)(S"™!) is a homogeneous function of degree zero
on R" satisfying (1.1). Suppose that -1 <v <0, 0<1+a < -1/v, and h, € B,. Then for
2/2+v(l1+a)) < p<=2/v(1+a), there exists a constant C,, > 0 such that

IS an.a (P, < Collfll o (1.15)
L _

v(l+a)
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By Theorem 1.6 and the discussion in Remark (i) above, we immediately obtain the
following analogues of Theorem 1.2 for the parametric operator

Corollary 1.7. Suppose that Q € L(log™ L)(S"™") is a homogeneous function of degree zero
on R" satisfying (1.1). Suppose that 0 <p <1 and 0<B < 1. Then for 2/(2-8) < p <2/B,
there exists a constant Cj, > 0 such that

ey, <ol (116

Another consequence of Theorem 1.6 is the following result concerning the fractional
Marcinkiewicz integral operator Mq s in (1.9):

Corollary 1.8. Suppose that Q € L(log* L)(S™™1) is a homogeneous function of degree zero
on R" satisfying (1.1). Suppose that —1 <6 < 0. Then for 2/(2+0) < p < =2/0, there exists
a constant Cp, > 0 such that

[Mas(H|,, < Cpllfll .- (1.17)

This paper is organized as follows. In Section 2, we shall recall the definition of Sobolev
spaces. In Section 3, we shall prove Theorem 1.3. Section 4 is devoted to the proof of
Theorem 1.4. The proof of Theorem 1.6 will be given in Section 5. Finally, Section 6 is
devoted for further results.

Throughout this paper the letter C will stand for a constant that may vary at each oc-
currence, but it is independent of the essential variables. Also, we shall write do(y’,7’) to
denote do(y')do (7). Finally, we write R(a) to denote the real part of a.

2 Sobolev Spaces

Sobolev spaces have several equivalent definitions. In the following, we present a definition
through Triebel-Lizorkin spaces (a Littlewood-Paly characterization) [13]. Let 8 be a real
number and 1 < p < co. The homogeneous Sobolev space L/ is defined to be the space
of all tempered distributions modulo polynomials in S’(R")/#P for which (|&/° ) € LP(R™)
where S(R") is the class of Schwartz functions. The norm in L’ is defined by

B
iz = [0 &, -

In particular,
1

iy ~| | Iﬁ(f)lzlflzﬂdf] .

The following Littlewood-Paley characterization of Lg which is contained in Theorem 6.2.7
of [13]) will be useful:

Lemma 2.1 Let V¥ be a radial function in S(R") whose Fourier transform is nonnegative
and supported in an annulus. Let B be a real number and 1 < p < co. Then there exists a
constant C depends only on n,B, p, and P such that for all f € L., we have

{5 22ﬂkiwj*f<x>|2] < Clflyg-
JjeZ
p
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We remark here that the space Lg is also known as the homogenous Triebel-Lizorkin space
FOAR?).
The inhomogeneous Sobolev space .Eg is defined to be the set of all functions f satis-
fying
1fil gy = 1lzy + 1Al < oo.

3 The Kernel Sole Integrability Condition

In this section, we shall present a proof of Theorem 1.3. Our argument will be mainly based
on Plancherel’s theorem and duality argument. The detailed proof is as follows:

Proof of Theorem 1.3. We shall start by the proof of (a). Assume that v > —1. Then

(c0) 2 22, (09)
lse ol = [ 1@l me, e G0
RVL
where
P 2
00 —i&- r( )
i @) = f f =W | .
) [Whi<u [yl u
Now we can easily write
00, 0052
me) (@) <m (@) +m (@) 3.2)
where
—l-a 2
[ u d
i, (€)= f f f eIy (! | der () |
1 n—1 0
and
) 1 2
0 i d
i (€)= f f f eI ury (' )| dr(y) | .
1 n—-1 |,-1-a

(c0,1) 2)

The aim is to show that the functions my )
m(r is bounded, we use the local behavior of the functlon hy. In fact, by the condition

(1. 3) we obtain

and m( are essentially bounded. To see that

2

(oo 1)(5) f uf(y(ulﬂzr)vdr d_u - (&)2 3.3)
e ) u V2a+2(v+1)

On the other hand, to treat the function m{. *2) \we make use of the asymptotic behavior of

the function £, at co. In fact, by making use of the condition (1.5), we obtain

) 1 2
f f(ul+a’r)—£vdr @ <( ”r*“Ll )2. (34)
‘1 u "\ \V2e,(0+e)1+a)

—l-a

(002)@_.) C|F*

Fva
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By (3.2), (3.3), and (3.4), we get

2 <o (3.5)

”mFV(z = sup mrva(f) <Cva/'

where Cyq = (8,(1+&,)+(v+1)2)/(2(@+ D1 +&)(v+ 1)?). Thus, by (3.1) and (3.5),
we get

s ., < VCuallr (3.6)
Next, for p > 2, choose a non-negative function g € LG5 with llg ||<§>, = 1 such that
2
N ()
s f f f Fee= 0w | 5™
1 blgu
Thus,
It (f)||
Th,,«a
2
- f J| [ e
R* y|l<u
o :
2
du
< [1/ [“f D o g(x)dx] a| %
I yl<u \R?
1 2
o " du
= [ [ B2 arnil] [P ewas| av| %
|)’|n u
L yl<u "
s 2
2 —-n+1 @ du
< gl 1A f f oAy |
I Vyl<u
~ (0O 3% 2
= AR (0) < Cog [T IF13 (3.7)

where m(r"‘;)a(O) has the same definition as m(roi)a(O) with I" and £, are replaced by |I' and
|hv| respectively. Therefore,

“S(rf?fv,a(f)Hps Crallr

- AL, - (3.8)

By (3.6), (3.8), and duality, the proof of (a) is complete.
Now, we prove (b). We shall prove (b) for p = 2. The proof for other p’s follows by
similar argument as that used in the proof of (a). However, the case p = 2 follows by similar



64 A. Al-Salman

argument as in the corresponding case in (a) and noticing that

1 2

f f E (), )dy
0 [yl<u

u3

1

2
f2(1+cy)v1 frdr du < clir ”L‘(S” D ‘
T 2(1+a)yv(v+1)2

0

Finally, the L? inequality in Theorem 1.3(c) follows by Theorem 1.3(a), Theorem 1.3(b),
and (1.12). This completes the proof of Theorem 1.3.

4 An L? Characterization

In order to establish the multiplier formula in Theorem 1.4, we start by establishing the
following decomposition:

Proposition 4.1.  Suppose that Q € L'(S"™") that satisfies (1.1) and that —1 <v <0 and
a > —1. Let mq ..o be the L* multiplier of the operator S, o in (1.13). Then

maq,y.o(§) = Hao(§) + Bo,a(£) 4.1

where Hg o is an L*(R") function and Bq, is a function given by

< 2

ey Q07) du
BQ,a(f)ZA%,ff gy 22 2 p IyI dy 1-2v(1+a)
S Wbi<t | u

ly
Proof. We start by writing &, as

R (t)=h,(t)- At

Then
r 2
- QO du
Mol = f f Yy |>d‘ &
J i<t Iyl u
i 2
Q v d
= f f —lLlfyl |(r‘ly 1) ( V’u1+(¥y| +hj(u]+a |y|))dy 7”
0 Pl
00 2
= 2 —iu¢- |y| Q') du
- Avf f - [y|*~ 1 dy ul-2v(1+e) +Hq o(£) 4.2)
0 i<
where

Hoo(é) = Hy) (£) + HY) (&),
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* 2
] d
(1) (-f) f fe—zufyl |(nyl) V( 1+a|y|)dy f, 4.3)
0 <l
Eq,o(&,y,2,u) dydzd
o= | [ [ Bt
0 Jyl<llzl<l

and
Eqya(€.y.2,u) = (e—f"f'm(y’) ju' ] )(e"”f Q) 1dl)).

We show that H,) ,HS) € L®(R"). By (1.5), it follows that

= |hv(”) —Avrv| <Cr®+|A)|r) forr>1. 4.4)

Therefore, for u > 1, we have

fe—iufy ()’) ( 1+a/|y|)dy <I+II

n—-1""v
7 Iyl
where
iuéy (y)
I: f elufylynl V( 1+a||)dy
i<l
and
Il = e—iufyl (r-lyl) V 1+a|y|)dy .
|<u717(y

It is not hard to see that

Q
rse [ B Gy e y)ay

| In l
uml-acyl<1
and O
<c f |||<y>| W 1y,
l<u~t=e Y

Therefore, we immediately obtain

I+11<C( +u Q) .

(1+()

* —iué-y ) 01
oL 007 14 | 2
1 |Jpi<t [yl

oo —2(1+a)e, 2v(1+a) (v—&y)(1+a)
u +u +2u
< ClQ? f -
1

Thus,

du<C|QI3. (4.5)
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On the other hand,
; 2
_ ) du
f f wué-y |(r*lyl V( 1+a |y|)dy 7
0 bl
1 2
S Cvf f |y|—n+,3y+1 |Q(yl)| u(1+a)ﬂvdy
0 VWi
1 1 2
< G QI f u2<1+“)ﬁv—1duJ[ f rﬂvdu] <ClQIF. (4.6)
0 0
By (4.5) and (4.6), we have
sup Hy)) (£) < C, I @7
£eR?
Next, by the observation
Q0N
— S —dy<ClIQl,
<1
and (4.6), it can be shown that
E 9 9
2R( f f f = Zla|(|§|;)n Boral® 2 1o iauy < clic?. 4.8)
u
1 Jyl<llz<1

The verification of (4.8) is straightforward. In fact,

EQva(g y.Z,u
2R ff f d dzd
( u(lyl T e

I yl<1zl<1

(o)

e VQ , 1+a | € AV 1+a Y
fff| OO IQE)! a2 ™ + 1A, '] )dydzdu

w [yl

I yl<1z<1

A

< 2cQllf f A Te i " TR of (o]

Now, we observe that

2%(ff fEQ,V,(t(é:’y:?u) dydzdu)
(yllzD u

0 |y|<1 i<

Q12
< 211917 f ora-lyg, — 71 (4.9)
! v+B)(1+a)

0
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By (4.8) and (4.9), we get
sup Hy,) (£) < C|1Q} (4.10)
£eR”

Hence, by (4.2), (4.7), and (4.10), the proof is complete.

Now, in order to give an explicit expression of the function Bg 4 in terms of the function
Q, we need the following proposition:

Proposition 4.2. Suppose that 1 < @ < 3 and that a € R. Then

2 [e4
o . o —a~+lal*)C,
f sin(af) —asint |- _ ¥,1<a<2. (4.11)
0 / a(l-a)
S Ginar) — asing 2
f sin(a —asint - Ca+af)C 5 5 4.12)
0 / ala—1(a-2)
00 ¢ 1 — ’l» 1
f sm(a)—zaslndt = alog— (4.13)
0 t |a|
“ cos(at)—acost+a—1 (a—|a|“ 1)C3
0 t (I-a)
-1
“ cos(at)—acost+a—1 (a—lal“ )C4
g = T T < 4.15
fo r (@ Da-2 "7 e
® cos(at)—acost+a—1 T
jo‘ Z dt = E(a —lal). (4.16)

where C1 =T'(2—a)cos(5),C2 =I'(3-a)cos(5),C3 =sin(F)[(2~a), and C4 = sin(5)['(3 -
).

In order to verify the formulas (4.11)-(4.16) above, one might be able to use certain
computer algebra system or consult reference tables of integrals such as [12]. However, for
reader’s convenience, an elementary proof is carried out below:

Proof . We start by proving (4.13). By integration by parts, we have

00 N

f sin(at) —asint di = lim f sin(at) —asint dr

tz -0, N>

0 €

— 4 lim f cos(at)t—cost dr

N N
. cos(at COSt
f @, f dt]
e—0", N>oo t t

Il
Q
=
=

[
Q
m
!
o
=
=3
1
g
(@)
O
w
I
(@]
O
w
2
&.

€ Nla|

—dt alog —
e—0t N—)oofv Og| |

I

Q

5

a

-~
|
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where the last limit follows by an application of Lebesgue dominated convergence theorem.
Next, we prove (4.11) and (4.12). Assume that 1 < @ < 2. By integration by parts, we
have

(o) 0o

f sin(at) — asmtdt __a f cos(at) — cost (4.17)

@ a-1

t a-1 {

0
Since the integrals of cos(at)/ " and cos(?)/ " over (0, 00) are finite, the integral in (4.17)
can be written as

o

j“mnan)—asﬁndt_cxmw-z—l) cost

= (4.18)

3 a—1 3
0 0

a-1

By integrating the analytic branch /7%, —7/2 < arg(z) < 37/2 of the multi-valued func-
tion ¢’2/z%~! over the contour consisting of of the horizontal line segment from r to R, the
first quadrant arc of the circle with center at the origin and radius R, the vertical line seg-
ment from iR to ir, and the first quadrant arc of the circle with center at the origin and radius
rwhere 0 < r <R < oo (r » 07,R — o0), we obtain

()

cost an
fﬁdl’ = —COS(T)F(z - CY) (419)
0
and .
sint . oanm
f —-dt = sin 71"(2 - ). (4.20)
0

Thus, by (4.18) and (4.19), we obtain (4.11) for 1 <a < 2.
Next, assume that 2 < @ < 3. By integration by parts twice, we have

(o)

f sin(at) —asint dr - a f asin(at) —sint
t  (@-D2-a) 7
0

0

a(|a|a_2 - 1) r sint

0

Thus by (4.20) with @ — 1 is replaced by a — 2, we obtain (4.12).
Now, we prove (4.14). By integration by parts, we have

(o)

fcos(at)—acosHa—l

dt

(2

t
0

[ee)

- in(at) — sint
_ a f sin(at) — sin dr

l-a I
0

—a a sint
= ( - l)f —dt
- |g@* f’

0
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which by (4.20) implies (4.14).
To prove (4.15), we integrate by parts twice and make use of (4.19). Similarly, we can
prove (4.16). This completes the proof.

Now, we are ready to prove Theorem 1.4:

Proof of Theorem 1.4. By Plancherel’s theorem, Preposition 4.1, and scaling, it follows
that

Maya(€) = Ho o)+ Cy 71 g, o (€) 4.21)
where
o 2
3 . ey Y QO du
masat@)= [ | [ el iR
0 <1

By (1.1), we must have

_ , . Q0N
Mo ye(&) = lim f f v —————I,(&,N,&,y,2)dydz (4.22)
£20%,N—>oo (IvllzD
[yI<Izl<1
where N
: el FL O ) L Vet el
I(I(S’N’é: ’y’Z) Zf ul—2v(1l+a) du
&

Set

sin(Z2ED) - cos(Z(1-2v(1+a)))
+
e-0-al | &0-0

By an application of Proposition 4.2 we obtain

lff(f,,y’z) =

1 (v — AN=2040) (YO
| f € (-2 QO o1 iy

mQ,v,a(é:’) = Cva P
(IyllzD)"™"
[yl<1lzl<1

for v(1 +a) € (-1,0)\{-3} and

g ot o)
i<l 2l<1 (Il lzD)" 4 y-z

Here C) o =-T(1+2v(1+@))/2v(1 +a)for—1/2<v(1+a)<0and C, o, =T'2+2v(1 +@))/2v(1 + @) (1 +
2v(1 +a@)) for —1 < v(1 + @) < —1/2. This completes the proof.

5 Sobolev Space Estimates

This section is devoted to the proof of Theorem 1.6. The proof involves very delicate
argument which is based on good L? estimates and crude L estimates. The difficulty that
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arises here is that the Fourier transform estimates are not good enough to imply sufficient
decay of the L? norm of the particular operators involved. Therefore, we have to work a
bit harder on the corresponding crude L? estimates (below see (5.23)-(5.30) for p > 2 and
(5.32)-(5.36) for p < 2). The detailed proof is below:

Proof of Theorem 1.6. By Theorem 1.3(a), (1.12), and the definition of £7 , it suffices
to show that (1.15) holds for the operator

Q)

n—-1"

s©

1
Q.h, af(x):(f
0

We start by decomposing the function Q. As in [5], it is not hard to show that there exist
a subset A(Q2 ) € N, a sequence of numbers {b,, : m € A(Q)}, and a sequence of functions
{A, : m € A(Q)} with the following properties

1
2 2
du
t3] . (5.1

lyl<t

L_lAm@’)dG@’):O; (5.2)
ALl < C, IAll, < €242 (5.3)
Q) = D bpAn() (5.4)
meA(Q)
D by~ QL1 (5.5)

meA(Q)

Therefore, by definition of S, (0) ,and (5.4), it follows

S(f(z))h JNE DT baSY (NG (5.6)

meA(Q)

where Sf?) Ia has the same definition as S 2(2))11 »

the measure defined by

with Q is replaced by A,,. Let 0,y be

1 m
ffdamm—— S |°’)h(r by, 5.7)
Vi<t
Then, we have
d
R OOE ( f e t) (5.8)

Now, as in [8] we choose a C™ function ¢ on R which is supported in [%,2], 0<p<l,
and ¢(x) > ¢ > 0if 3/5 < x < 5/3. Notice that ¢(2/x) is supported in (27/-!,27/*!) and that

c< Y 0(2/x) < 3. Set
JjeZ

»(x)

[ 2 ¢(2ix)
jezZ

Y(x) = and ¥ ;(x) = Y(2/x).
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Then, {y;} is a smooth partition of unity adapted to the intervals (27771, 277*1) with

D i =1. (5.9)

JjezZ

Let @; be defined on R” by & (¢) = y;(|£%). Then by (5.9) and the definition of S’

Ay hy,a’
we get
S oD <Y S () (5.10)
jez
where
2k+l %
2 dt
SE?)h a](f)(x) Z f|®j+k*0_mvat*f(x)| (5.11)
Now, we claim the following:
”(Tm,v,oz,t” < Ctv(H—a); (512)
2k+l
2 dt 2 20/(14+a)+ 1k
T m,v,a,t < ; .
( ) (€) Clél°2 (5.13)
2k+l
2dt W(l+)k [k £~ 2
Om,yv,a,t < " .
( ) () — 2 2%l ™2 C (5.14)

for some 0 < 8, which will be suitably chosen. The verification of (5.12) is straightforward.
In fact,

“O—m,v,a,t ||

] f IA
t Iyt Iy

t

1
= - m
tHA ||1f

0

IA

h,(“ yD| dy

V(1+0() “Am”l S C[V(Hﬂ).

Next, by (5.2) and (5.3), we have

2k+| 2k+1 )
2 dt IHENARD) dt
f (@nran @S < € f ( f ”lelt“ylvdy) i
bt [yl r-
2k 2k
S C |§|2 22(V(1 +a)+1)k

which proves (5.13).
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Now, we prove (5.14). Notice that

2k+l
2dt
f|(0'mvat) (f)|
2k+1 5 1
) f f e 20y oy &
| |n 1 "
2k i<t
1 2k+1 ) %
&y dt
< f f fe—lfytrAm(y)do_(y/) , 1+(Yr)|2_ -
0 2k n—1
1 2k+1 ) %
) ZVGWI f f N e
0 2k n—1
‘ :
< 2V(]+a)kf ff|Am(y’)Am(Z')|Ik(l"é—"y”zl)do_do_ dr (515)
0 \§n-18§n-1
where
2
L.y, 7, = f im0 2k dt|
t

1
By integration by parts and making use of the estimate I;(r€,y’,7") < 1, we get

’ 7 ’ ’ _61/,&
R(éy . 2) < |é- 6 —2)2%] (5.16)
for some positive 0,4 < mln{ ,2(1+v(1 + @))}. Thus, by (5.15) and (5.16), we get

2k+]

d
f |(0-m V,a, t) (§)|2 !

8=

2vk(1+a)+l |2k§'— §5v,w

2V =G0 +2 f f [AnOOAR| [0 = doy.2)

n—1 gn—-1

1

IA

_l(;v,a 26,0
27K ok 2 A sgp f f &/ =) dodo
Snflsnl

By observing that

Sllp f f |§l . ()}l _Z/)|_2(Sy.af do_(y/’z/) S C < 0o,
&

Sn—1.§n-1
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the last inequality implies

2k+ 1

f (@) @ & 2V<‘+“>"|2"§| " | Al Co. (5.17)

By (5.12) and (5.17), we have

2k+l

d
f (@ @ <

e I L R TN e

IA

2v(l+a)k |2k§|—ﬁ C.

IA

Then, by Plancherel’s theorem, we have

522

k+1
1 2

d
Z f f |q)j+k *Omv,ant *f(x)|2 %dx

k:—ooRn ok

k+1
1 2

. dt A
3o [ [ msaay @F 1P (w0060 e (5.18)

k:—ooR,, ok

IA

Thus, we consider three cases.

Case 1. j < -2. By (5.18), (5.14), and making use of the support of the function ¢, we
have

I52. i1,

-1

v o 2
< ) f D250k ok | Fe) [ (i) dé
k:—ooR,,
-1

Sva /- 2 2

< comun 3 (wjoetleP))’ de
k:—ooRn
) -1
< Cz%(j+l)2—2v(l+a)(j+l) Z f|§|_ZV(l+a) |f(é‘:)|2 (¢j+k(|§|2))2d§
k=—copn
S C2"’+2 (j+1)2—2V(1+a/)([+1) ”f”2
—v(l+(Y)
Thus,
|S(0) (f)” < CZQ(,,,+2)(J+1)2 V(1+a/)(j+l)||f|| ) (5 19)
Apmshya,j )

“Hl+a)
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Case 2. j>2. By (5.18), (5.13), and similar argument as in Case 1, we have

530 a0,

IA

5 [1ep 200 e P (006 e

=—ocopn

-1
cratetenin §1 [ e (g, e de

k=—00

k

IA

R)‘l

IA

C2 2(1+V(1+a))(] 1) ”f”

—v( 1+a@)

Thus,

‘Sggih a}(f)H <~ (+v(+a)(i- 1)||f|| 2 (5.20)

Case 3. —-1<j<1. Since 0 <-v(1+a)<1and v(1+a)k(1+v(l+a)+1+v(l+
a))k(=v(1 +@)) = 0, the estimates (5.12) and (5.13) imply that

2k+1
~ g2 dt ov(l4a
f (@) @) — <l (lte) (5.21)

2k

Thus, by (5.18) and (5.21), we obtain

Is2 0D, < Cuallfliz, - (5.22)
Now, we consider the L” estimates of S (Ok) . Forr>2, let s=(r/2) > 1. Choose a

nonnegative function g € L® with ||g||; = 1 such that

2k+1

| ES)hvot](f)H folq)l+k*o—mvat*f(x)| g(X) dx- (5.23)

k=— CORn Sk
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For every real t and integer [, we let tI; = [12~ —I=1 2711 c R. Notice that

Thus,

IA

IA

IA

IA

2k+l
2a’t
f|®]+k*0'mvat*f(x)|
2k+| 2
1 "h, (1 IyI) dt
B f?fq)"*"*f(x_ )MIT e
2k | yl<t
2k+1 |
IAm ()] IvD
= f f|q)j+k*f(x_ )| |nl dy t3
2k \yl<t
2k+1 ’
2 1A IYD|  dydt
< f f @i fr=yf — o e
2k |yl<t
2k+1 |
2 IA LAY dydt
= CZ[ f |(D_]+k*f(-x_y)| |y|n_1 t2—1/(1+(l)
0 [ylet];
2k+1
(1+a)(l+1) 2 |Am()|  dydt
< sz v(1+a)(l+ f f |(Dj+k*f(-x_ )’ |" 1 —t2—v(1+w)'
2k |ylet];

2
IS a0l

oo 2k+1

Z Z fff|®j+k*f(x— )|2 IA”;()?ldyg(x)wv,a,l(t)dtdx

[=0 k=—copn 2k |yletl; |

o 2k+l

D Z f i FOO f o [ e >' ’"(y)'dy Wy (Odrdx
1=0 k=—oo

[ylett;

Z Z f22V(l+a’)k2—v(1+a)(l+l)—l |q)j+k *f(x)'zR;;(g)(x)dx

[=0 k=—c0

-1
2—V(1+(1/) Zz—l(V(l+(l)+l)f Z 22V(1+(Y)k ’(Dj+k *f(x)|2R;;,(g)(x)dx

Ry k=m0
—1+j
C2—2v(1+a')jf Z 22K |« ()1 R} (9)(x)dx
R” k=—00

1 2
2
Co-2(1+a)j [Z 22Ok @, f(x)lz] |
,

keZ



76 A. Al-Salman

where

IAm()
"

Ru(8)() = sup f g(x+y) dy (5.24)
Jje

2i<|y|<2/*1

and
Z‘2\/(1+a)2—v(1+oz)(l+1)

Wv,a,l(t) = 2

By Holder’s inequality and the boundedness of Hardy-Littlewood maximal function, we
have

along with Lemma 2.1 imply that

R;,(9)||, < Csllgll < Cy: (5.25)

ls© .ol sczt=iia,, . (5.26)
Now, for j < -2, by interpolation between (5.19) and (5.26), we get
0 95v,a _ 1 .
“S E\,z,,hv,a,j(f)Hp < 20Uy vra)j o Hf”Lfy(lm) (5.27)
for all p > 2.
For j > 2, we choose r > p and we interpolate between (5.26) and (5.20) to get
[ 10D, = a2 D1l (5.28)
where
1_1
_p_ T
0, = I
2 r

Clearly, if r — oo, we have 6, — % and thus -6, —v(1 +a) — —% —v(1+a) which is negative
provided that p < =2/v(1 + @). Thus, for 2 < p < =2/v(1 + @), there exists r(p) > 2 such that

8% 40|, < Coa2 O =g (5:29)

Am’hvaaaj —v(l+a)
with —(6,p) +v(1 +@)) <O0.
On the other hand, by interpolation between (5.22) and (5.26), we get

0 _ .
s 0P < Cort o oiypy (5.30)

for 2 < p < oco.
By (5.10), and (5.27), (5.29), (5.30), we get

IA

s, ¢ f)“p Cra(S1+S2+83) e

m+2)Crollfllr (5.31)

IA
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where

-2
S, = Zz(%—v(lmm

j=—00

S, = Zz—(9r+v(1+a))j

1
Sy = Z H(1-O)v(1+a)j.
j=—1
Now, we consider the case (—2/v(1 +@))’ < p <2. For (-2/v(1 +@))’ <r <2, we have

r’ > 2. We choose a sequence of functions gx(x,f) on R” xR, with
1

2k+] 2
> f 1gk(x, r>|2 <1 (5.32)
keZ
p
such that
21<+I
Is®, ..ol f Z f ® oty 00) 8D .
Rn — —00
Now,
1 2k+l
fo J+k*0-mvat*f(x))gk(x t) dx
k_—oo
| 2k+l |
- IAm) ) d
< Zfo f|®]+k*f(x V)| 2 I"l ay gk(x,t)Ttdx
FORn k==co i\ gy
2k+l
< ZB,V f Z f 20 1, (000 )
R k==
2k+1 %
< ZB,V f k_z_]m (2040 1) f Fnsrr il | dx
1 2k+l
< ZB;V f (Z 22k g fF | D f |61 g, t)| —
R” k=—00 k_—oo
o . 1 1 2k+1 1
< ZBLV (Z 22V(1+Q)k|q)j+k*f’2] Z f’o—mlt*gk(x t)’ -
=0 k= k_—oo

7

(5.33)
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where By, o = 2~*+D/=” and

Jraonii= g [ o

Iyleth;

By observing that
sup |G|+ f)| = Ry ()
t,

where R;, is given by (5.24), it follows by (5.25), (5.32), and duality argument that

l
2k+ 1

Z f|0-mlt*gk(x t)| - <Cp. (5.34)

k_—oo

7

Therefore, by (5.33), (5.34), and Lemma 2.1, we get

Is,s00|| <c2 . (5.35)

Now, by repeating the steps (5.27) to (5.31) with (5.26) is replaced by (5.35) ( here r is
close to 1), we obtain

[0, < 2l - (5.36)

v(1+a)

the case (—2/v(1 +@))’ < p < 2. Hence, the proof is concluded by (5.31), (5.36), and (5.5).

6 Further Results

As pointed out in the introduction section, Theorem 1.3 can be used to consider operators
with oscillating kernels. This is due to the observation that the Bessel function J, is in the
class B(VO). A particular result in this direction is the following:

Corollary 6.1. Suppose that T* € L'(S"™1). Let V = (v1, ..., vip) € (—=1,00))™,d = (a1, ...,am) €
R, @ > -1, and y € R be such that
(i) y+ 2721 ajvj>0and (i) y - % 27:1 a;j < 0. Then the operator
2z
dt
| 2=
s 22000, <A1, 6.1)

Sy () = [ |

satisfies

fx- y)[]_[f @l |“f)J| oy

Iyl<2f

forall 1 < p < oo,

Proof of Corollary 6.1. The main idea of the proof is applying Theorem 1.1 (c) with
V= ’y—}— ZT:I Vjaj,s,, =y- % Z;n:l a.,-, and

ho=r] 17, 6.

J=1
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In fact, using the local behavior of the Bessel function, we obtain

m
|n, o] <[ [ @riys = vt (6.2)
j=1
for t < 1. On the other hand, by the asymptotic behavior of the Bessel function at infinity,
we obtain

m
| <[ | @) 2 = o2 2 6.3)
j=1
for t > 1. In conclusion, we get h, € B(VO) with v > 0. Hence, the proof is concluded by
Theorem 1.3 (c).

We remark here that L estimates of the operators S - , in Corollary 6.1 imply simi-
lar estimates for operators with general oscillatory factors As a model result, we prove the
following:

Theorem 6.2. Suppose that G : R" — R is a suitable mapping such that ( 6.1) holds provided
that (i)-(iii) hold. Let v > 0, a = (a,....an) € RY, and let u(t) = 3", &t%,t > 0 where
gj = x1. Then the operator

2 3
(J’) dt

SN = f [ s-pemon WD) 35

oo fy|<2

satisfies ||S G.yu( f)||p <C|Ifll, forall 1 < p < oo.

The proof of Theorem 6.2 is based on the representation of the Bessel functions Jj /2
and J_i,2 in terms of the trigonometric functions sint and cost respectively. The detailed
proof is as follows:

Proof of Theorem 6.2. Without loose of generality, we may assume that &; = 1 for all j,
ie., u(t) = ;.":1 t%i. Then by using the identities

2 sint 2 cost
Ji2(0) = e and J_p(t) = \/j_

oAt
we obtain
. m o . m
S B CE C LN [ (CRVICIDRNAE M)
j=1 j=1
T . m
= 3? chk]_[J_I/Z(M“f)]_[Juzqyr*f) (6.4)

k=0 jeAg JEB
where Ay UBy = (1,2,...,m},AyN By = @, and y = 5 3" a;. Therefore,

om

SGour () < (5)E Y letl S 65a( ) (6.5)
k=0
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where
2 N3
G(@y) dt

o1 2

[

S 600 = f f Fr—yP()

— o0 |<2t

P = []_[ Tap@n ] |4 /2<|y|“f>] I

JEAL JEBk

where

Now, notice that for 0 < k < 2™, we have

y—%Zaﬂ-%Zaﬂ-v > 0,

JEAL JjEBk
1 m 1 < 0
_Z ai— = )
=529

Thus, by assumption it follows that ||S G, x(f)||, < CIIfll, for all 1 < p < co and 0 <k <
2™. And hence the boundedness of Sg,,, follows by (6.5) and the aid of Minkowski’s
inequality. This completes the proof.
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