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Abstract

We introduce a class of integral operators related to parametric Marcinkiewicz opera-
tors. We present a multiplier formula characterizing the L2 boundedness of such class
of operators. Also, we proveLp

−β (inhomogeneous Sobolev space)→ Lp estimates pro-
vided that the kernels are in L(log L)(Sn−1). In fact, we show that the global parts of
the introduced operators are bounded on the Lebesgue spaces Lp(1 < p <∞) while the
local parts are bounded on certain Sobolev spaces Lp

−β.
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1 Introduction and Statement of Results

Let Rn, n ≥ 2 be the n-dimensional Euclidean space and Sn−1 be the unit sphere in Rn

equipped with the induced Lebesgue measure dσ. Let h : (0,∞) → R be a measurable
function and Ω ∈ L1(Sn−1) be homogeneous of degree zero on Rn and satisfies∫

Sn−1
Ω(y)dσ(y) = 0. (1.1)

Define the operator µ(ρ)
Ω,h by

µ
(ρ)
Ω,h f (x) =


∞∫
−∞

∣∣∣∣∣∣∣∣∣2−ρt
∫
|y|≤2t

f (x− y)
Ω(y)h(|y|)
|y|n−ρ

dy

∣∣∣∣∣∣∣∣∣
2

dt


1
2

(1.2)

where <(ρ) > 0. When h = 1, the operator µ(ρ)
Ω
= µ

(ρ)
Ω,1 is the well known parametric

Marcinkiewicz function of higher dimension introduced by Hörmander in 1960 ([14]).
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When h = 1 and ρ = 1, the corresponding operator µΩ = µ
(1)
Ω,1 is the classical Marcinkiewicz

integral operator which was introduced by E. M. Stein in ([17]). E. M. Stein proved that
if Ω ∈ Lipα(Sn−1), (0 < α ≤ 1), then µΩ is bounded on Lp for all 1 < p ≤ 2 ([17]). Subse-
quently, A. Benedek, A. Calderón, and R. Panzone proved the Lp boundedness of µΩ for all
1 < p <∞ provided that Ω is continuously differentiable on Sn−1 ([6]). In 1972, T. Walsh
([19]) showed that µΩ is bounded on L2(Rn) provided that Ω ∈ L(log+ L)

1
2 (Sn−1). In the

same paper, Walsh showed the optimality of the condition Ω ∈ L(log+ L)
1
2 (Sn−1). In fact,

he showed that the L2 boundedness of µΩ may fail if the condition Ω ∈ L(log+ L)
1
2 (Sn−1) is

replaced by Ω ∈ L(log L)
1
2−ε(Sn−1) for some ε > 0. Later, Al-Salman, et al. ([4]) showed

that the condition Ω ∈ L(log+ L)
1
2 (Sn−1) is also sufficient for the Lp boundedness of µΩ for

all p ∈ (1,∞). For further results concerning the operator µΩ we cite, among others, the
articles ([4], [6], [11], [15]).

On the other hand, the Lp mapping properties of the parametric operator µ(ρ)
Ω,h have

received a considerable amount of attention during the last few years. When h= 1 and ρ > 0,
Hörmander proved that µρ

Ω
is bounded on Lp for all 1 < p <∞ provided thatΩ ∈ Lipα(Sn−1),

(0<α≤ 1) [14]. When h satisfies the integrability condition sup j∈Z(
∫ 2 j

2 j−1 |h(r)|q dr
r )

1
q <C <∞

for some 1≤ q≤∞ andΩ ∈ L(log+ L)(Sn−1), Ding, Lu, and Yabuta ([10]) proved that µ(ρ)
Ω,h is

bounded on L2. Subsequently, Al-Salman and Al-Qassem [3] showed that µ(ρ)
Ω,h is bounded

on Lp for all 1 < p < ∞ provided that Ω and h satisfy the same conditions in ([10]). For
the latest developments concerning the operator µ(ρ)

Ω,h, we advise readers to consult the very
recent papers [1], [2].

The main aim of this paper is trying to understand the Lp mapping properties of the
operators µ(ρ)

Ω,h in (1.2) when the radial functions h satisfy certain point wise size conditions
rather than an integrability condition such as that given in ([10]). We are interested in
considering operators in the form of (1.2) with functions h with certain growth conditions.
We shall show that such class of operators is related to various integral operators such as
the operators µ(ρ)

Ω,h in (1.2) and the fractional Marcinkiewicz integral operators in [16]. To
this end, we start by introducing the following class of radial functions h:

Definition 1.1. A function h : (0,∞)→R is said to be of order ν ∈R if there exist numbers
0 < εν < 1,βν > max{0,−ν}, C1,ν > 0, C2,ν > 0, and constant Aν such that the following
conditions hold:

|h(t)| ≤ C1,νtν for 0 < t < 1; (1.3)∣∣∣h(t)−Aνtν
∣∣∣ ≤ C2,νtβν for 0 < t < 1; (1.4)

h(t) = O(t−εν) for t ≥ 1. (1.5)

For each real ν, we let Bν be the class of all functions of order ν. We let B(0)
ν be the class

of functions satisfying the conditions (1.3) and (1.5).

It is clear that Bν ⊂ B
(0)
ν . Moreover, B(0)

ν ⊂ L∞(0,∞) for ν ≥ 0 while Bν and L∞(0,∞)
are different for ν < 0. Model examples of functions in Bν are tν(ν < 0), (1+ t)−α(α > 0), and
tνh(t) where ν < 0 and h ∈ L∞(0,∞) with lim

t→0+
h(t) exists. Another interesting example of a

function in the class Bν is the Bessel functions Jν . This allows one to consider integral op-
erators with kernels involving Bessel functions (See Section 6 for detailed results). Further
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examples of functions in Bν can be constructed. In particular, for any ε > 0,ν > −1, a,b ∈R
and k1(t),k2(t) ∈ L∞(0,∞), we have

hν(t) = (atν+1k1(t)+btν)χ(0,1)(t)+ t−εk2(t)χ[1,∞)(t) ∈ Bν.

Now, we introduce the class of operators related to the class Bν. For ν,α ∈ R, hν ∈ Bν, and
a suitable function Γ : Rn→ R, we let S Γ,hν,α be the integral operator defined by

S Γ,hν,α( f )(x) =


∞∫
−∞

∣∣∣∣∣∣∣∣∣
∫
|y|<2t

f (x− y)
Γ(y)

|y|n−1 hν(2
αt |y|)dy

∣∣∣∣∣∣∣∣∣
2

dt
22t


1
2

. (1.6)

It is clear that if α = 0 and Γ = Ω, then the operator S Γ,hν,0 is the Marcinkiewicz integral
operator µ(1)

Ω,hν
. Moreover, if α = −1, hν(r) = I(r) = χ[0,1)(r), and Γ = Ω, then S Γ,I,−1 is the

classical Marcinkiewicz integral operator µΩ. Here, χ[0,1) is the characteristic function of
the interval [0,1). In order to state the results of this paper, we cite the following related
remarks:

(i) In [9], Chen, Fan, and Ying considered the following fractional Marcinkiewicz integral
operator

µΩ,α f (x) =


∞∫
−∞

∣∣∣∣∣∣∣∣∣2−t(1+α)
∫
|y|≤2t

f (x− y)
Ω(y)

|y|n−1 dy

∣∣∣∣∣∣∣∣∣
2

dt


1
2

. (1.7)

A particular result in [9] is the following:

Theorem 1.2([9]). Let Ω ∈ Lr(Sn−1),r > 1 and 1 < p <∞. If |α| < (r− 1)/r max(p, p
p−1 ),

then
∥∥∥µΩ,α f

∥∥∥
p ≤Cp ‖ f ‖Lp

α
.

Here, Lp
α is the inhomogeneous Sobolev space (See Section 2 for definition). It should

be noticed here that when α = 0, the Lp inequality in Theorem 1.2 is simply ‖µΩ f ‖p ≤
Cp ‖ f ‖Lp . This is due to the observation that µΩ,0 = µΩ and Lp

0 = Lp. In light of this result,
it is natural to ask whether similar result exists for the parametric Marcinkiewicz integral
operator µ(ρ)

Ω,h in (1.2). An answer of this problem will follow from our discussion of the
operators S Γ,hν,α. In fact, if −1 < ν < 0,β ∈ R, α = −1 − β/ν, ρ = 1 + ν, hν(t) = tν, and
Γ(y) = Ω(y), then the corresponding operator S Γ,hν,α reduces to the following operator

µ
(ρ)
Ω,β

( f )(x) =


∞∫
−∞

∣∣∣∣∣∣∣∣∣2−βt

 1
2ρt

∫
|y|<2t

f (x− y)
Ω(y)
|y|n−ρ

dy


∣∣∣∣∣∣∣∣∣
2

dt


1
2

(1.8)

which is the parametric analogous of the operator ( 1.7).

(ii) In [16], Si, Wang, and Jiang studied the following fractional Marcinkiewicz integral
operator

MΩ,δ( f )(x) =


∞∫
−∞

∣∣∣∣∣∣∣∣∣
∫
|y|<2t

f (x− y)
Ω(y)

|y|n−(1+δ) dy

∣∣∣∣∣∣∣∣∣
2

dt
22t


1
2

. (1.9)
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They showed that the fractional operator MΩ,δ (0 < δ < n) satisfies certain Herz type Hardy
space estimates provided that Ω satisfies a logarithmic type Lipschitz condition. However,
when δ < 0, the Lp mapping properties of MΩ,δ have not discussed in [16]. By specializing
the operator S Γ,hν,α in (1.6) to the case α = 0 and hδ(t) = tδ, δ < 0, and Γ(y) = Ω(y), the
corresponding operator S Γ,hδ,0 reduces to the operator MΩ,δ. Therefore, the problem of
characterizing the Lp mapping properties of the class of operators MΩ,δ (δ < 0) is a special
case of the corresponding problem concerning the operators S Γ,hν,α in (1.6).

(iii) By the observation that B(0)
ν ⊂ L∞(0,∞) for ν ≥ 0, it can be shown using the same

argument in [4] that the operator S Γ,hν,α is bounded on Lp for 1 < p < ∞ provided that
Γ = Ω ∈ L(log+ L)

1
2 (Sn−1) and ν ≥ 0. Therefore, it is a natural problem to determine whether

a similar result would hold in the case ν < 0. Furthermore, in light of the conditions (1.3)
and (1.5), it can be claimed that weaker conditions on Ω are needed to guarantee the Lp

boundedness of S Γ,hν,α for the case ν ≥ 0. The later is indeed the content of Theorem 1.3
below.

In light of the aforementioned discussion, we will investigate the Lp mapping properties
of the class of operators S Γ,hν,α. In order to state the results of this paper, we let S (0)

Γ,hν,α
and

S (∞)
Γ,hν,α

be the operators defined by

S (0)
Γ,hν,α

f (x) =

∫ 1

0

∣∣∣∣∣∣
∫
|y|≤u

f (x− y)
Γ(y)

|y|n−1 hν(uα |y|)dy

∣∣∣∣∣∣2 du
u3


1
2

(1.10)

S (∞)
Γ,hν,α

f (x) =

∫ ∞

1

∣∣∣∣∣∣
∫
|y|≤u

f (x− y)
Γ(y)

|y|n−1 hν(uα |y|)dy

∣∣∣∣∣∣2 du
u3


1
2

. (1.11)

It is clear that

1
2

(
S (0)
Γ,hν,α

+S (∞)
Γ,hν,α

)
f (x) ≤ S Γ,hν,α f (x) ≤

(
S (0)
Γ,hν,α

+S (∞)
Γ,hν,α

)
f (x). (1.12)

For a given Γ : Rn→R, we let Γ∗(y′)= supr>0 |Γ(ry′)|. Under the sole integrability condition
of Γ∗ on Sn−1, we prove the following:

Theorem 1.3. Suppose that Γ∗ ∈ L1(Sn−1) and that hν ∈ B
(0)
ν . Let α > −1. Then

(a)
∥∥∥∥S (∞)
Γ,hν,α

( f )
∥∥∥∥

p
≤C ‖Γ∗‖L1(Sn−1) ‖ f ‖p for all 1 < p <∞ whenever ν > −1.

(b)
∥∥∥∥S (0)
Γ,hν,α

( f )
∥∥∥∥

p
≤C ‖Γ∗‖L1(Sn−1) ‖ f ‖p for all 1 < p <∞ whenever ν > 0.

(c)
∥∥∥S Γ,hν,α( f )

∥∥∥
p ≤C ‖Γ∗‖L1(Sn−1) ‖ f ‖p for all 1 < p <∞ whenever ν > 0.

It should be remarked here that the assumption Γ∗ ∈ L1(Sn−1) in Theorem 1.3 allows the
function Γ to be very general. In particular, if b ∈ L∞(0,∞) and Ω(y) = Ω(y′) ∈ L1(Sn−1),
then Γ∗ ∈ L1(Sn−1) where Γ(y) = b(|y|)Ω(y). Some applications of Theorem 1.3 shall be
highlighted in Section 6. In particular, we shall present two model results showing the
use of Theorem 1.3 to prove Lp estimates of certain operators of Marcinkiewicz type with
oscillating kernels.

By Theorem 1.3(c), the problem of investigating the Lp mapping properties of S Γ,hν,α
reduces to the case ν ≤ 0. However, when ν = 0 and Γ = Ω, it can be shown that the operator
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SΩ,h0,α has Lp mapping properties similar to those for the operator µΩ. In fact, if h0 ∈ B0,
then h0 ∈ L∞(0,∞) and thus by the same argument in [4] it follows that SΩ,h0,αis bounded
on Lp provided that Ω ∈ L(log+ L)

1
2 (Sn−1). Hence, it remains to investigate the Lp mapping

properties of S Γ,hν,α for −1 < ν < 0. We shall start by characterizing the L2 boundedness.
First, we shall establish the following L2 multiplier theorem:

Theorem 1.4. Suppose that −1< ν< 0, hν ∈Bν, and that Γ=Ω ∈ L1(Sn−1) is a homogeneous
function of degree zero on Rn satisfying (1.1). Let mΩ,ν,α be the L2 multiplier of the operator
SΩ,hν,α, i.e., ∥∥∥SΩ,hν,α( f )

∥∥∥2
2 =

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 mΩ,ν,α(ξ)dξ. (1.13)

Let Eν,α(t) = it−1e−i π(1−2ν(1+α))sig(t)
2 , t ∈ R\{0}. Then there exists a HΩ,α ∈ L∞(Rn) such that

mΩ,ν,α(ξ) = HΩ,α(ξ)+Cν |ξ|
−2ν(1+α) m̃Ω,ν,α(ξ′)

where

m̃Ω,ν,α(ξ′) =
∫
|y|<1

∫
|z|<1

|ξ′ · (y− z)|1−2ν(1+α)Ω(y′)Ω(z′)
(|y| |z|)n−ν(1+α)−1 Eν,α(ξ′ · (y− z))dydz

for ν (1+α) ∈ (−1,0)\{−1/2} and

m̃Ω, −1
2(1+α) ,α

(ξ′) =
∫
|y|<1

∫
|z|<1

|ξ′ · (y− z)|Ω(y′)Ω(z′)

(|y| |z|)
n− 1

2

{
−π

2
− i log+

1
|ξ′ · (y− z)|

}
dydz.

where Cν,α =−Γ(1+2ν (1+α))/2ν (1+α) for −1/2< ν (1+α)< 0 and Cν,α =Γ(2+2ν (1+α))/2ν (1+α) (1+
2ν (1+α)) for −1 < ν (1+α) < −1/2.

By observing that sup
ξ∈Rn

∣∣∣m̃Ω,ν,α(ξ′)
∣∣∣ ≤Cν,α ‖Ω‖

2
1, we immediately obtain

∥∥∥SΩ,hν,α( f )
∥∥∥2

2 ≤ 2max(
∥∥∥HΩ,α

∥∥∥
∞
,Cν,α ‖Ω‖

2
1)

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 (1+ |ξ|−2ν(1+α))dξ. (1.14)

Hence,

Corollary 1.5. Suppose that −1 < ν < 0,α > −1, hν ∈ Bν, and that Γ = Ω ∈ L1(Sn−1) is
a homogeneous function of degree zero on Rn satisfying (1.1). Then, SΩ,hν,α is bounded
operator from the inhomogeneous Sobolev space L2

−ν(1+α) into the Lebesgue space L2.

In light of the result of Corollary 1.5, it is natural to conjecture whether the operator
SΩ,hν,α maps Lp

−ν(1+α) into Lp under the sole condition Ω ∈ L1(Sn−1) for 1 < p <∞, ν > −1,
and α > −1. In the following theorem, we give partial answer to this problem:

Theorem 1.6. Suppose that Ω ∈ L(log+ L)(Sn−1) is a homogeneous function of degree zero
on Rn satisfying (1.1). Suppose that −1 < ν < 0, 0 < 1+α < −1/ν, and hν ∈ Bν. Then for
2/(2+ ν(1+α)) < p < −2/ν(1+α), there exists a constant Cp > 0 such that∥∥∥SΩ,hν,α( f )

∥∥∥
Lp ≤Cp ‖ f ‖Lp

−ν(1+α)
. (1.15)
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By Theorem 1.6 and the discussion in Remark (i) above, we immediately obtain the
following analogues of Theorem 1.2 for the parametric operator

Corollary 1.7. Suppose that Ω ∈ L(log+ L)(Sn−1) is a homogeneous function of degree zero
on Rn satisfying (1.1). Suppose that 0 < ρ < 1 and 0 < β < 1. Then for 2/(2−β) < p < 2/β,
there exists a constant Cp > 0 such that∥∥∥∥µ(ρ)

Ω,β
( f )

∥∥∥∥
Lp
≤Cp ‖ f ‖Lp

β
. (1.16)

Another consequence of Theorem 1.6 is the following result concerning the fractional
Marcinkiewicz integral operator MΩ,δ in (1.9):

Corollary 1.8. Suppose that Ω ∈ L(log+ L)(Sn−1) is a homogeneous function of degree zero
on Rn satisfying (1.1). Suppose that −1 < δ < 0. Then for 2/(2+δ) < p < −2/δ, there exists
a constant Cp > 0 such that ∥∥∥MΩ,δ( f )

∥∥∥
Lp ≤Cp ‖ f ‖Lp

−δ
. (1.17)

This paper is organized as follows. In Section 2, we shall recall the definition of Sobolev
spaces. In Section 3, we shall prove Theorem 1.3. Section 4 is devoted to the proof of
Theorem 1.4. The proof of Theorem 1.6 will be given in Section 5. Finally, Section 6 is
devoted for further results.

Throughout this paper the letter C will stand for a constant that may vary at each oc-
currence, but it is independent of the essential variables. Also, we shall write dσ(y′,z′) to
denote dσ(y′)dσ(z′). Finally, we write<(a) to denote the real part of a.

2 Sobolev Spaces

Sobolev spaces have several equivalent definitions. In the following, we present a definition
through Triebel-Lizorkin spaces (a Littlewood-Paly characterization) [13]. Let β be a real
number and 1 < p < ∞. The homogeneous Sobolev space Lp

α is defined to be the space
of all tempered distributions modulo polynomials in S′(Rn)/P for which (|ξ|β û)̌ ∈ Lp(Rn)
where S(Rn) is the class of Schwartz functions. The norm in Lp

β is defined by

‖u‖Lp
β
=

∥∥∥(|.|β û)̌
∥∥∥

Lp .

In particular,

‖u‖L2
β
≈


∫
Rn

|û(ξ)|2 |ξ|2β dξ


1
2

.

The following Littlewood-Paley characterization of Lp
β which is contained in Theorem 6.2.7

of [13]) will be useful:

Lemma 2.1 Let Ψ be a radial function in S(Rn) whose Fourier transform is nonnegative
and supported in an annulus. Let β be a real number and 1 < p <∞. Then there exists a
constant C depends only on n,β, p, and Ψ such that for all f ∈ Lp

β , we have∥∥∥∥∥∥∥∥∥
∑

j∈Z

22βk
∣∣∣Ψ j ∗ f (x)

∣∣∣2
1
2

∥∥∥∥∥∥∥∥∥
p

≤C ‖ f ‖Lp
β
.
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We remark here that the space Lp
β is also known as the homogenous Triebel-Lizorkin space

Ḟβ,2
p (Rn).

The inhomogeneous Sobolev space Lp
β is defined to be the set of all functions f satis-

fying
‖ f ‖Lp

β
= ‖ f ‖Lp

β
+ ‖ f ‖Lp <∞.

3 The Kernel Sole Integrability Condition

In this section, we shall present a proof of Theorem 1.3. Our argument will be mainly based
on Plancherel’s theorem and duality argument. The detailed proof is as follows:

Proof of Theorem 1.3. We shall start by the proof of (a). Assume that ν > −1. Then∥∥∥∥S (∞)
Γ,hν,α

( f )
∥∥∥∥2

2
=

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 m(∞)

Γ,ν,α
(ξ)dξ (3.1)

where

m(∞)
Γ,ν,α

(ξ) =

∞∫
1

∣∣∣∣∣∣
∫
|y|<u

e−iξ·y Γ(y)

|y|n−1 hν(uα |y|)dy

∣∣∣∣∣∣2 du
u3 .

Now we can easily write
m(∞)
Γ,ν,α

(ξ) ≤ m(∞,1)
Γ,ν,α

(ξ)+m(∞,2)
Γ,ν,α

(ξ) (3.2)

where

m(∞,1)
Γ,ν,α

(ξ) =

∞∫
1


∫

Sn−1

∣∣∣∣∣∣∣∣∣
u−1−α∫
0

e−iξ·y′urΓ(ury′)hν(u1+αr)dr

∣∣∣∣∣∣∣∣∣dσ(y′)


2

du
u

and

m(∞,2)
Γ,ν,α

(ξ) =

∞∫
1


∫

Sn−1

∣∣∣∣∣∣∣∣∣
1∫

u−1−α

e−iξ·y′urΓ(ury′)hν(u1+αr)dr

∣∣∣∣∣∣∣∣∣dσ(y′)


2

du
u
.

The aim is to show that the functions m(∞,1)
Γ,ν,α

and m(∞,2)
Γ,ν,α

are essentially bounded. To see that

m(∞,1)
Γ,ν,α

is bounded, we use the local behavior of the function hν. In fact, by the condition
(1.3), we obtain

m(∞,1)
Γ,ν,α

(ξ) ≤
∥∥∥Γ∗∥∥∥2

L1

∞∫
1


1

u1+α∫
0

(u1+αr)νdr


2

du
u
=

(
‖Γ∗‖L1

√
2α+2(ν+1)

)2

. (3.3)

On the other hand, to treat the function m(∞,2)
Γ,ν,α

we make use of the asymptotic behavior of
the function hν at∞. In fact, by making use of the condition (1.5), we obtain

m(∞,2)
Γ,ν,α

(ξ) ≤C
∥∥∥Γ∗∥∥∥2

L1

∞∫
1


1∫

u−1−α

(u1+αr)−ενdr


2

du
u
≤

(
‖Γ∗‖L1

√
2εν(1+εν)(1+α)

)2

. (3.4)
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By (3.2), (3.3), and (3.4), we get∥∥∥∥m(∞)
Γ,ν,α

∥∥∥∥
∞
= sup
ξ∈Rn

m(∞)
Γ,ν,α

(ξ) <Cν,α

∥∥∥Γ∗∥∥∥2
L1 <∞ (3.5)

where Cν,α =
(
εν(1+εν)+ (ν+1)2

)
/
(
2(α+1)εν(1+εν)(ν+1)2

)
. Thus, by (3.1) and (3.5),

we get ∥∥∥∥S (∞)
Γ,hν,α

( f )
∥∥∥∥

2
≤

√
Cν,α

∥∥∥Γ∗∥∥∥L1(Sn−1) ‖ f ‖2 . (3.6)

Next, for p > 2, choose a non-negative function g ∈ L( p
2 )′ with ‖g‖( p

2 )′ = 1 such that

∥∥∥∥S (∞)
Γ,hν,α

( f )
∥∥∥∥2

p
=

∫
Rn

∞∫
1

∣∣∣∣∣∣∣∣∣
∫
|y|≤u

f (x− y)
Γ(y)

|y|n−1 hν(uα |y|)dy

∣∣∣∣∣∣∣∣∣
2

g(x)
dudx

u3 .

Thus, ∥∥∥∥S (∞)
Γ,hν,α

( f )
∥∥∥∥2

p

=

∞∫
1

∫
Rn

∣∣∣∣∣∣∣∣∣
∫
|y|≤u

f (x− y)
Γ(y)

|y|n−1 hν(uα |y|)dy

∣∣∣∣∣∣∣∣∣
2

g(x)
dxdu

u3

≤

∞∫
1


∫
|y|≤u


∫
Rn

∣∣∣∣∣∣ f (x− y)
Γ(y)

|y|n−1 hν(uα |y|)

∣∣∣∣∣∣2 g(x)dx


1
2

dy


2

du
u3

=

∞∫
1


∫
|y|≤u

|Γ(y)|
|y|n−1

∣∣∣hν(uα |y|)∣∣∣

∫
Rn

| f (x− y)|2 g(x)dx


1
2

dy


2

du
u3

≤ ‖g‖( p
2 )′ ‖ f ‖

2
p

∞∫
1


∫
|y|≤u

|y|−n+1
∣∣∣Γ(y)hν(uα |y|)

∣∣∣dy


2

du
u3

= ‖ f ‖2p m̃(∞)
Γ,ν,α

(0) ≤Cν,α

∥∥∥Γ∗∥∥∥2
L1 ‖ f ‖

2
p (3.7)

where m̃(∞)
Γ,ν,α

(0) has the same definition as m(∞)
Γ,ν,α

(0) with Γ and hν are replaced by |Γ| and∣∣∣hν

∣∣∣ respectively. Therefore,∥∥∥∥S (∞)
Γ,hν ,α

( f )
∥∥∥∥

p
≤

√
Cν,α

∥∥∥Γ∗∥∥∥L1(Sn−1) ‖ f ‖p . (3.8)

By (3.6), (3.8), and duality, the proof of (a) is complete.
Now, we prove (b). We shall prove (b) for p = 2. The proof for other p′s follows by

similar argument as that used in the proof of (a). However, the case p = 2 follows by similar
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argument as in the corresponding case in (a) and noticing that

1∫
0

∣∣∣∣∣∣
∫
|y|<u

e−iξ·y |y|−n+1Γ(y)hν(u
α |y|)dy

∣∣∣∣∣∣2 du
u3

≤ C
∥∥∥Γ∗∥∥∥2

L1(Sn−1)

1∫
0

u2(1+α)ν−1


1∫

0

r
ν

dr


2

du ≤
C ‖Γ∗‖2L1(Sn−1)

2(1+α)ν(ν+1)2 .

Finally, the Lp inequality in Theorem 1.3(c) follows by Theorem 1.3(a), Theorem 1.3(b),
and (1.12). This completes the proof of Theorem 1.3.

4 An L2 Characterization

In order to establish the multiplier formula in Theorem 1.4, we start by establishing the
following decomposition:

Proposition 4.1. Suppose that Ω ∈ L1(Sn−1) that satisfies (1.1) and that −1 < ν < 0 and
α > −1. Let mΩ,ν,α be the L2 multiplier of the operator SΩ,hν,α in (1.13). Then

mΩ,ν,α(ξ) = HΩ,α(ξ)+BΩ,α(ξ) (4.1)

where HΩ,α is an L∞(Rn) function and BΩ,α is a function given by

BΩ,α(ξ) = A2
ν

∞∫
0

∣∣∣∣∣∣
∫
|y|<1

e−iuξ·yΩ(y′)

|y|n−1 |y|
ν

dy

∣∣∣∣∣∣2 du
u1−2ν(1+α) .

Proof. We start by writing hν as

h∗
ν
(t) = hν(t)−Aνtν.

Then

mΩ,ν,α(ξ) =

∞∫
0

∣∣∣∣∣∣
∫
|y|<1

e−iuξ·yΩ(y′)

|y|n−1 hν(u
1+α |y|)dy

∣∣∣∣∣∣2 du
u

=

∞∫
0

∣∣∣∣∣∣∣∣∣
∫
|y|<1

e−iuξ·yΩ(y′)

|y|n−1

(
Aν

∣∣∣u1+αy
∣∣∣ν +h∗

ν
(u1+α |y|)

)
dy

∣∣∣∣∣∣∣∣∣
2

du
u

= A2
ν

∞∫
0

∣∣∣∣∣∣∣∣∣
∫
|y|<1

e−iuξ·y |y|
ν
Ω(y′)

|y|n−1 dy

∣∣∣∣∣∣∣∣∣
2

du
u1−2ν(1+α) +HΩ,α(ξ) (4.2)

where
HΩ,α(ξ) = H(1)

Ω,α
(ξ)+H(2)

Ω,α
(ξ),
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H(1)
Ω,α

(ξ) =

∞∫
0

∣∣∣∣∣∣∣∣∣
∫
|y|<1

e−iuξ·yΩ(y′)

|y|n−1 h∗
ν
(u1+α |y|)dy

∣∣∣∣∣∣∣∣∣
2

du
u

, (4.3)

H(2)
Ω,α

(ξ) = 2Aν<(

∞∫
0

∫
|y|<1

∫
|z|<1

EΩ,ν,α(ξ,y,z,u)
(|y| |z|)n−1

dydzdu
u

),

and
EΩ,ν,α(ξ,y,z,u) =

(
e−iuξ·yΩ(y′)

∣∣∣u1+αy
∣∣∣ν) (eiuξ·zΩ(z′)h∗

ν
(u1+α |z|)

)
.

We show that H(1)
Ω,α
,H(2)
Ω,α
∈ L∞(Rn). By (1.5), it follows that∣∣∣h∗

ν
(r)

∣∣∣ = ∣∣∣hν(r)−Aνrν
∣∣∣ ≤C(r−εν + |Aν|rν) for r ≥ 1. (4.4)

Therefore, for u ≥ 1, we have∣∣∣∣∣∣∣∣∣
∫
|y|<1

e−iuξ·yΩ(y′)

|y|n−1 h∗
ν
(u1+α |y|)dy

∣∣∣∣∣∣∣∣∣ ≤ I+ II

where

I =

∣∣∣∣∣∣∣∣∣∣
∫

u−1−α<|y|<1

e−iuξ·yΩ(y′)

|y|n−1 h∗
ν
(u1+α |y|)dy

∣∣∣∣∣∣∣∣∣∣
and

II =

∣∣∣∣∣∣∣∣∣∣
∫

|y|<u−1−α

e−iuξ·yΩ(y′)

|y|n−1 h∗
ν
(u1+α |y|)dy

∣∣∣∣∣∣∣∣∣∣ .
It is not hard to see that

I ≤C
∫

u−1−α<|y|<1

|Ω(y′)|
|y|n−1

(
(u1+α |y|)−εν + |Aν| (u1+α |y|)ν

)
dy

and
II ≤C

∫
|y|<u−1−α

|Ω(y′)|
|y|n−1 (u1+α |y|)βνdy.

Therefore, we immediately obtain

I+ II ≤C(
1

u(1+α)εν
+uν(1+α))‖Ω‖1 .

Thus, ∫ ∞

1

∣∣∣∣∣∣
∫
|y|<1

e−iuξ·yΩ(y′)

|y|n−1 h∗
ν
(u1+α |y|)dy

∣∣∣∣∣∣2 du
u

≤ C ‖Ω‖21

∫ ∞

1

u−2(1+α)εν +u2ν(1+α)+2u(ν−εν)(1+α)

u
du ≤C ‖Ω‖21 . (4.5)
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On the other hand,

1∫
0

∣∣∣∣∣∣∣∣∣
∫
|y|<1

e−iuξ·yΩ(y′)

|y|n−1 h∗
ν
(u1+α |y|)dy

∣∣∣∣∣∣∣∣∣
2

du
u

≤ Cν

1∫
0


∫
|y|<1

|y|−n+βν+1
∣∣∣Ω(y′)

∣∣∣u(1+α)βνdy


2

du
u

≤ Cν ‖Ω‖
2
1


1∫

0

u2(1+α)βν−1du




1∫
0

rβνdu


2

≤C ‖Ω‖21 . (4.6)

By (4.5) and (4.6), we have
sup
ξ∈Rn

H(1)
Ω,α

(ξ) ≤Cν ‖Ω‖
2
1 . (4.7)

Next, by the observation ∫
|y|<1

|Ω(y′)| |y|
ν

|y|n−1 dy ≤C ‖Ω‖1

and (4.6), it can be shown that

2<(

∞∫
1

∫
|y|<1

∫
|z|<1

EΩ,ν,α(ξ,y,z,u)
u(|y| |z|)n−1 dydzdu) ≤C ‖Ω‖21 . (4.8)

The verification of (4.8) is straightforward. In fact,

2<(

∞∫
1

∫
|y|<1

∫
|z|<1

EΩ,ν,α(ξ,y,z,u)
u(|y| |z|)n−1 dydzdu)

≤

∞∫
1

∫
|y|<1

∫
|z|<1

|Ω(y′)| | y|
ν
|Ω(z′)| (

∣∣∣u1+αz
∣∣∣−εν + |Aν| ∣∣∣u1+αz

∣∣∣ν )

u−ν(1+α)( |y| |z| )n−1 dydzdu

≤ 2C ‖Ω‖21

∞∫
1

(u(ν−εν)(1+α)−1+u2ν(1+α)−1)du ≤C ‖Ω‖21 .

Now, we observe that

2<(

1∫
0

∫
|y|<1

∫
|z|<1

EΩ,ν,α(ξ,y,z,u)
(|y| |z|)n−1

dydzdu
u

)

≤ 2‖Ω‖21

1∫
0

u(ν+βν)(1+α)−1du =
‖Ω‖21

(ν+βν) (1+α)
. (4.9)
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By (4.8) and (4.9), we get
sup
ξ∈Rn

H(2)
Ω,α

(ξ) ≤C ‖Ω‖21 . (4.10)

Hence, by (4.2), (4.7), and (4.10), the proof is complete.

Now, in order to give an explicit expression of the function BΩ,α in terms of the function
Ω, we need the following proposition:

Proposition 4.2. Suppose that 1 < α < 3 and that a ∈ R. Then∫ ∞

0

sin(at)−asin t
tα

dt =

(
−a2+ |a|α

)
C1

a(1−α)
,1 < α < 2. (4.11)∫ ∞

0

sin(at)−asin t
tα

dt =
(−a2+ |a|α)C2

a(α−1)(α−2)
,2 < α < 3. (4.12)∫ ∞

0

sin(at)−asin t
t2 dt = a log

1
|a|
. (4.13)∫ ∞

0

cos(at)−acos t+a−1
tα

dt =

(
a− |a|α−1

)
C3

(1−α)
,1 < α < 2. (4.14)∫ ∞

0

cos(at)−acos t+a−1
tα

dt =

(
a−|a|α−1

)
C4

(α−1)(α−2)
, 2 < α < 3. (4.15)∫ ∞

0

cos(at)−acos t+a−1
t2 dt =

π

2
(a− |a|). (4.16)

where C1 =Γ(2−α)cos(πα2 ),C2 =Γ(3−α)cos(πα2 ),C3 = sin(πα2 )Γ(2−α), and C4 = sin(πα2 )Γ(3−
α).

In order to verify the formulas (4.11)-(4.16) above, one might be able to use certain
computer algebra system or consult reference tables of integrals such as [12]. However, for
reader’s convenience, an elementary proof is carried out below:
Proof . We start by proving (4.13). By integration by parts, we have

∞∫
0

sin(at)−asin t
t2 dt = lim

ε→0+, N→∞

N∫
ε

sin(at)−asin t
t2 dt

= a lim
ε→0+, N→∞

N∫
ε

cos(at)− cos t
t

dt

= a lim
ε→0+, N→∞


N∫
ε

cos(at)
t

dt−

N∫
ε

cos t
t

dt


= a lim

ε→0+, N→∞


N|a|∫
ε|a|

cos t
t

dt−

N∫
ε

cos t
t

dt


= a lim

ε→0+

ε∫
ε|a|

cos t
t

dt− lim
N→∞

N |a|∫
N

cos t
t

dt = a log
1
|a|
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where the last limit follows by an application of Lebesgue dominated convergence theorem.
Next, we prove (4.11) and (4.12). Assume that 1 < α < 2. By integration by parts, we

have
∞∫

0

sin(at)−asin t
tα

dt =
a

α−1

∞∫
0

cos(at)− cos t
tα−1 . (4.17)

Since the integrals of cos(at)/t
α−1

and cos(t)/t
α−1

over (0,∞) are finite, the integral in (4.17)
can be written as

∞∫
0

sin(at)−asin t
tα

dt =
a(|a|α−2−1)

α−1

∞∫
0

cos t
tα−1 dt. (4.18)

By integrating the analytic branch eiz/zα−1,−π/2 < arg(z) < 3π/2 of the multi-valued func-
tion eiz/zα−1 over the contour consisting of of the horizontal line segment from r to R, the
first quadrant arc of the circle with center at the origin and radius R, the vertical line seg-
ment from iR to ir, and the first quadrant arc of the circle with center at the origin and radius
r where 0 < r < R <∞ (r→ 0+,R→∞), we obtain

∞∫
0

cos t
tα−1 dt = −cos(

απ

2
)Γ(2−α) (4.19)

and
∞∫

0

sin t
tα−1 dt = sin

απ

2
Γ(2−α). (4.20)

Thus, by (4.18) and (4.19), we obtain (4.11) for 1 < α < 2.
Next, assume that 2 < α < 3. By integration by parts twice, we have

∞∫
0

sin(at)−asin t
tα

dt =
a

(α−1)(2−α)

∞∫
0

asin(at)− sin t
tα−2

=
a
(
|a|α−2−1

)
(α−1)(2−α)

∞∫
0

sin t
tα−2 dt.

Thus by (4.20) with α−1 is replaced by α−2, we obtain (4.12).
Now, we prove (4.14). By integration by parts, we have

∞∫
0

cos(at)−acos t+a−1
tα

dt

=
−a

1−α

∞∫
0

sin(at)− sin t
tα−1 dt

=
−a

1−α
(

a

|a|−α+3 −1)

∞∫
0

sin t
tα−1 dt
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which by (4.20) implies (4.14).
To prove (4.15), we integrate by parts twice and make use of (4.19). Similarly, we can

prove (4.16). This completes the proof.

Now, we are ready to prove Theorem 1.4:

Proof of Theorem 1.4. By Plancherel’s theorem, Preposition 4.1, and scaling, it follows
that

mΩ,ν,α(ξ) = HΩ,α(ξ)+Cν |ξ|
−2ν(1+α) m̃Ω,ν,α(ξ′) (4.21)

where

m̃Ω,ν,α(ξ′) =

∞∫
0

∣∣∣∣∣∣∣∣∣
∫
|y|<1

e−iuξ′·y |y|
ν
Ω(y′)

|y|n−1 dy

∣∣∣∣∣∣∣∣∣
2

du
u1−2ν(1+α) .

By (1.1), we must have

m̃Ω,ν,α(ξ′) = lim
ε→0+,N→∞

∫
|y|<1

∫
|z|<1

Ω(y′)Ω(z′)
(|y| |z|)n−ν−1 Iα(ε,N, ξ′,y,z)dydz (4.22)

where

Iα(ε,N, ξ′,y,z) =

N∫
ε

e−iuξ′·(y−z)− ξ′ · (y− z)e−iu+ ξ′ · (y− z)−1
u1−2ν(1+α) du.

Set

lαν (ξ′,y,z) =
sin(π(1−2ν(1+α))

2 )
|ξ′ · (y− z)|

+ i
cos(π2 (1−2ν (1+α)))

ξ′ · (y− z)
.

By an application of Proposition 4.2 we obtain

m̃Ω,ν,α(ξ′) =Cν,α

∫
|y|<1

∫
|z|<1

|ξ′ · (y− z)|1−2ν(1+α)Ω(y′)Ω(z′)
(|y| |z|)n−ν−1 lαν (ξ′,y,z)dydz

for ν (1+α) ∈ (−1,0)\{−1
2 } and

m̃Ω,− 1
2(1+α) ,α

(ξ′)

=

∫
|y|<1

∫
|z|<1

|ξ′ · (y− z)|Ω(y′)Ω(z′)

(|y| |z|)
n− 1

2

{
−π

2
− i log

1
|ξ′ · (y− z)|

}
dydz.

Here Cν,α =−Γ(1+2ν (1+α))/2ν (1+α)for−1/2< ν (1+α)< 0 and Cν,α =Γ(2+2ν (1+α))/2ν (1+α) (1+
2ν (1+α)) for −1 < ν (1+α) < −1/2. This completes the proof.

5 Sobolev Space Estimates

This section is devoted to the proof of Theorem 1.6. The proof involves very delicate
argument which is based on good L2 estimates and crude Lp estimates. The difficulty that
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arises here is that the Fourier transform estimates are not good enough to imply sufficient
decay of the L2 norm of the particular operators involved. Therefore, we have to work a
bit harder on the corresponding crude Lp estimates (below see (5.23)-(5.30) for p > 2 and
(5.32)-(5.36) for p < 2). The detailed proof is below:

Proof of Theorem 1.6. By Theorem 1.3(a), (1.12), and the definition of Lp
−ν, it suffices

to show that (1.15) holds for the operator

S (0)
Ω,hν,α

f (x) =

∫ 1

0

∣∣∣∣∣∣
∫
|y|≤t

f (x− y)
Ω(y)

|y|n−1 hν(t
α |y|)dy

∣∣∣∣∣∣2 du
t3


1
2

. (5.1)

We start by decomposing the function Ω. As in [5], it is not hard to show that there exist
a subset A(Ω ) ⊂ N, a sequence of numbers {bm : m ∈ A(Ω)}, and a sequence of functions
{Λm : m ∈ A(Ω)} with the following properties∫

Sn−1
Λm(y′)dσ(y′) = 0; (5.2)

‖Λm‖1 ≤ C, ‖Λm‖2 ≤C24(m+2) (5.3)

Ω(x′) =
∑

m∈A(Ω)

bmΛm(x′) (5.4)∑
m∈A(Ω)

(m+2)bm ≈ ‖Ω‖L log L . (5.5)

Therefore, by definition of S (0)
Ω,hν,α

and (5.4), it follows

S (0)
Ω,hν,α

( f )(x) ≤
∑

m∈A(Ω)

bmS (0)
Λm,hν,α

( f )(x) (5.6)

where S (0)
Λm,hν,α

has the same definition as S (0)
Ω,hν,α

with Ω is replaced by Λm. Let σm,ν,α,t be
the measure defined by∫

f dσm,ν,α,t =
1
t

∫
|y|≤t

f (x− y)
Λm(y)

|y|n−1 hν(t
α |y|)dy. (5.7)

Then, we have

S (0)
Λm,hν,α

( f )(x) =
(∫ 1

0

∣∣∣σm,ν,α,t ∗ f (x)
∣∣∣2 dt

t

) 1
2

. (5.8)

Now, as in [8] we choose a C∞ function ϕ on R which is supported in [ 1
2 ,2], 0 ≤ ϕ ≤ 1,

and ϕ(x) ≥ c > 0 if 3/5 ≤ x ≤ 5/3. Notice that ϕ(2 jx) is supported in (2− j−1,2− j+1) and that
c ≤

∑
j∈Z
ϕ(2 jx) ≤ 3. Set

ψ(x) =
ϕ(x)√∑

j∈Z
ϕ(2 jx)

and ψ j(x) = ψ(2 jx).
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Then, {ψ j} is a smooth partition of unity adapted to the intervals (2− j−1,2− j+1) with∑
j∈Z

ψ j(x) = 1. (5.9)

Let Φ j be defined on Rn by Φ̂ j(ξ) = ψ j(|ξ|2). Then by (5.9) and the definition of S (0)
Λm,hν,α

,
we get

S (0)
Λm,hν,α

( f )(x) ≤
∑
j∈Z

S (0)
Λm,hν,α, j

( f )(x) (5.10)

where

S (0)
Λm,hν,α, j

( f )(x) =


−1∑

k=−∞

2k+1∫
2k

∣∣∣Φ j+k ∗σm,ν,α,t ∗ f (x)
∣∣∣2 dt

t


1
2

. (5.11)

Now, we claim the following: ∥∥∥σm,ν,α,t
∥∥∥ ≤ Ctν(1+α); (5.12)

2k+1∫
2k

∣∣∣(σm,ν,α,t)ˆ(ξ)
∣∣∣2 dt

t
≤ C |ξ|2 22(ν(1+α)+1)k; (5.13)

2k+1∫
2k

∣∣∣(σm,ν,α,t)ˆ(ξ)
∣∣∣2 dt

t
≤ 22ν(1+α)k

∣∣∣2kξ
∣∣∣− δν

m+2 C (5.14)

for some 0 < δν which will be suitably chosen. The verification of (5.12) is straightforward.
In fact, ∥∥∥σm,ν,α,t

∥∥∥
≤

1
t

∫
|y|≤t

|Λm(y)|
|y|n−1

∣∣∣hν(t
α |y|)

∣∣∣dy

=
1
t
‖Λm‖1

t∫
0

∣∣∣hν(t
αr)

∣∣∣dr ≤Ctν(1+α) ‖Λm‖1 ≤Ctν(1+α).

Next, by (5.2) and (5.3), we have

2k+1∫
2k

∣∣∣(σm,ν,α,t)ˆ(ξ)
∣∣∣2 dt

t
≤ C

2k+1∫
2k

(∫
|y|≤t

|y| |ξ| |Λm(y)|
|y|n−1

∣∣∣tαy
∣∣∣ν dy

)2 dt
t3

≤ C |ξ|2 22(ν(1+α)+1)k

which proves (5.13).
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Now, we prove (5.14). Notice that
2k+1∫
2k

∣∣∣(σm,ν,α,t)ˆ(ξ)
∣∣∣2 dt

t


1
2

=


2k+1∫
2k

∣∣∣∣∣∣∣∣∣
∫
|y|≤1

e−iξ·ytΛm(y)

|y|n−1 hν(t
1+α |y|)dy

∣∣∣∣∣∣∣∣∣
2

dt
t


1
2

≤

1∫
0


2k+1∫
2k

∣∣∣∣∣∣∣∣∣
∫

Sn−1

e−iξ·y′trΛm(y)dσ(y′)

∣∣∣∣∣∣∣∣∣
2 ∣∣∣hν(t

1+αr)
∣∣∣2 dt

t


1
2

dr

≤ 2ν(1+α)k

1∫
0


2k+1∫
2k

∣∣∣∣∣∣∣∣∣
∫

Sn−1

e−iξ·y′trΛm(y)dσ(y′)

∣∣∣∣∣∣∣∣∣
2

dt
t


1
2

rνdr

≤ 2ν(1+α)k

1∫
0


∫

Sn−1

∫
Sn−1

∣∣∣Λm(y′)Λm(z′)
∣∣∣ Ik(rξ,y′,z′)dσdσ


1
2

rνdr (5.15)

where

Ik(η,y′,z′,r) =

∣∣∣∣∣∣∣∣∣
2∫

1

e−iη·(y′−z′)2kt dt
t

∣∣∣∣∣∣∣∣∣ .
By integration by parts and making use of the estimate Ik(rξ,y′,z′) ≤ 1, we get

Ik(rξ,y′,z′) ≤
∣∣∣ξ · (y′− z′)2kr

∣∣∣−δν,α (5.16)

for some positive δν,α < min{18 ,2(1+ ν(1+α))}. Thus, by (5.15) and (5.16), we get
2k+1∫
2k

∣∣∣(σm,ν,α,t)ˆ(ξ)
∣∣∣2 dt

t


1
2

≤
2νk(1+α)+1

∣∣∣2kξ
∣∣∣− 1

2 δν,α

2ν−δν,α+2


∫

Sn−1

∫
Sn−1

∣∣∣Λm(y′)Λm(z′)
∣∣∣ ∣∣∣ξ′ · (y′− z′)

∣∣∣−δν,α dσ(y′,z′)


1
2

≤ 2ν(1+α)k
∣∣∣2kξ

∣∣∣− 1
2 δν,α ‖Λm‖2

sup
ξ′

∫
Sn−1

∫
Sn−1

∣∣∣ξ′ · (y′− z′)
∣∣∣−2δν,α dσdσ


1
4

.

By observing that

sup
ξ′

∫
Sn−1

∫
Sn−1

∣∣∣ξ′ · (y′− z′)
∣∣∣−2δν,α dσ(y′,z′) ≤C <∞,
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the last inequality implies
2k+1∫
2k

∣∣∣(σm,ν,α,t)ˆ(ξ)
∣∣∣2 dt

t


1
2

≤ 2ν(1+α)k
∣∣∣2kξ

∣∣∣− 1
2 δν,α ‖Λm‖2 Cν. (5.17)

By (5.12) and (5.17), we have

2k+1∫
2k

∣∣∣(σm,ν,α,t)ˆ(ξ)
∣∣∣2 dt

t

≤
(
22ν(1+α)k

)1− 1
m+2

(
22ν(1+α)k

∣∣∣2kξ
∣∣∣−δν,α ‖Λm‖2

) 1
m+2

C

≤ 22ν(1+α)k
∣∣∣2kξ

∣∣∣− δν,αm+2 C.

Then, by Plancherel’s theorem, we have∥∥∥∥S (0)
Λm,ν,α, j

( f )
∥∥∥∥2

2

=

−1∑
k=−∞

∫
Rn

2k+1∫
2k

∣∣∣Φ j+k ∗σm,ν,α,t ∗ f (x)
∣∣∣2 dt

t
dx

≤

−1∑
k=−∞

∫
Rn

2k+1∫
2k

∣∣∣(σm,ν,α,t)ˆ(ξ)
∣∣∣2 dt

t

∣∣∣ f̂ (ξ)
∣∣∣2 (ψ j+k(|ξ|2)

)2
dξ. (5.18)

Thus, we consider three cases.

Case 1. j ≤ −2. By (5.18), (5.14), and making use of the support of the function ψ j+k, we
have ∥∥∥∥S (0)

Λm,ν,α, j
( f )

∥∥∥∥2

2

≤

−1∑
k=−∞

∫
Rn

22ν(1+α)k
∣∣∣2kξ

∣∣∣− δν,αm+2
∣∣∣ f̂ (ξ)

∣∣∣2 (ψ j+k(|ξ|2)
)2

dξ

≤ C2
δν,α
m+2 ( j+1)

−1∑
k=−∞

∫
Rn

22ν(1+α)k
∣∣∣ f̂ (ξ)

∣∣∣2 (ψ j+k(|ξ|2)
)2

dξ

≤ C2
δν,α
m+2 ( j+1)2−2ν(1+α)( j+1)

−1∑
k=−∞

∫
Rn

|ξ|−2ν(1+α)
∣∣∣ f̂ (ξ)

∣∣∣2 (ψ j+k(|ξ|2)
)2

dξ

≤ C2
δν,α
m+2 ( j+1)2−2ν(1+α)( j+1) ‖ f ‖2L2

−ν(1+α)
.

Thus, ∥∥∥∥S (0)
Λm,hν,α, j

( f )
∥∥∥∥

2
≤C2

δν,α
2(m+2) ( j+1)2−ν(1+α)( j+1) ‖ f ‖L2

−ν(1+α)
. (5.19)
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Case 2. j ≥ 2. By (5.18), (5.13), and similar argument as in Case 1, we have

∥∥∥∥S (0)
Λm,hν,α, j

( f )
∥∥∥∥2

2

≤

−1∑
k=−∞

∫
Rn

|ξ|2 22(ν(1+α)+1)k
∣∣∣ f̂ (ξ)

∣∣∣2 (ψ j+k(|ξ|2)
)2

dξ

≤ C2−2(1+ν(1+α))( j−1)
−1∑

k=−∞

∫
Rn

|ξ|−2ν(1+α)
∣∣∣ f̂ (ξ)

∣∣∣2 (ψ j+k(|ξ|2)
)2

dξ

≤ C2−2(1+ν(1+α))( j−1) ‖ f ‖2L2
−ν(1+α)

.

Thus,

∥∥∥∥S (0)
Λm,hν,α, j

( f )
∥∥∥∥

2
≤C2−(1+ν(1+α))( j−1) ‖ f ‖L2

−ν(1+α)
. (5.20)

Case 3. −1 ≤ j ≤ 1. Since 0 < −ν(1 + α) < 1 and ν(1 + α)k(1 + ν(1 + α)) + (1 + ν(1 +
α))k(−ν(1+α)) = 0, the estimates (5.12) and (5.13) imply that

2k+1∫
2k

∣∣∣(σm,ν,α,t)ˆ(ξ)
∣∣∣2 dt

t
≤ |ξ|−2ν(1+α) . (5.21)

Thus, by (5.18) and (5.21), we obtain

∥∥∥∥S (0)
Λm,hν,α, j

( f )
∥∥∥∥

2
≤Cν,α ‖ f ‖L2

−ν(1+α)
. (5.22)

Now, we consider the Lp estimates of S (0)
Λk ,hν,α, j

. For r > 2, let s = (r/2)′ > 1. Choose a
nonnegative function g ∈ Ls with ‖g‖s = 1 such that

∥∥∥∥S (0)
Λm,hν,α, j

( f )
∥∥∥∥2

r
=

−1∑
k=−∞

∫
Rn

2k+1∫
2k

∣∣∣Φ j+k ∗σm,ν,α,t ∗ f (x)
∣∣∣2 g(x)

dt
t

dx. (5.23)
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For every real t and integer l, we let tIl = [t2−l−1, t2−l] ⊂ R. Notice that

2k+1∫
2k

∣∣∣Φ j+k ∗σm,ν,α,t ∗ f (x)
∣∣∣2 dt

t

=

2k+1∫
2k

∣∣∣∣∣∣∣∣∣
1
t

∫
|y|<t

Φ j+k ∗ f (x− y)
Λm(y)hν(t

α |y|)

|y|n−1 dy

∣∣∣∣∣∣∣∣∣
2

dt
t

≤ C

2k+1∫
2k


∫
|y|<t

∣∣∣Φ j+k ∗ f (x− y)
∣∣∣ |Λm(y)|

∣∣∣hν(t
α |y|)

∣∣∣
|y|n−1 dy


2

dt
t3

≤ C

2k+1∫
2k

∫
|y|<t

∣∣∣Φ j+k ∗ f (x− y)
∣∣∣2 |Λm(y)|

∣∣∣hν(t
α |y|)

∣∣∣
|y|n−1

dydt
t2−ν(1+α)

= C
∞∑

l=0

2k+1∫
2k

∫
|y|∈tIl

∣∣∣Φ j+k ∗ f (x− y)
∣∣∣2 |Λm(y)|

∣∣∣hν(t
α |y|)

∣∣∣
|y|n−1

dydt
t2−ν(1+α)

≤ C
∞∑

l=0

2−ν(1+α)(l+1)

2k+1∫
2k

∫
|y|∈tIl

∣∣∣Φ j+k ∗ f (x− y)
∣∣∣2 |Λm(y)|
|y|n−1

dydt
t2−ν(1+α) .

Thus, ∥∥∥∥S (0)
Λm,hν,α, j

( f )
∥∥∥∥2

r

≤

∞∑
l=0

−1∑
k=−∞

∫
Rn

2k+1∫
2k

∫
|y|∈tIl

∣∣∣Φ j+k ∗ f (x− y)
∣∣∣2 |Λm(y)|
|y|n−1 dyg(x)wν,α,l(t)dtdx

≤

∞∑
l=0

−1∑
k=−∞

∫
Rn

∣∣∣Φ j+k ∗ f (x)
∣∣∣2 2k+1∫

2k

 1
t2−l

∫
|y|∈tIl

g(x+ y)
|Λm(y)|
|y|n−1 dy

wν,α,l(t)dtdx

≤

∞∑
l=0

−1∑
k=−∞

∫
Rn

22ν(1+α)k2−ν(1+α)(l+1)−l
∣∣∣Φ j+k ∗ f (x)

∣∣∣2 R∗m(g)(x)dx

= 2−ν(1+α)
∞∑

l=0

2−l(ν(1+α)+1)
∫
Rn

−1∑
k=−∞

22ν(1+α)k
∣∣∣Φ j+k ∗ f (x)

∣∣∣2 R∗m(g)(x)dx

= C2−2ν(1+α) j
∫
Rn

−1+ j∑
k=−∞

22ν(1+α)k |Φk ∗ f (x)|2 R∗k(g)(x)dx

≤ C2−2ν(1+α)) j

∥∥∥∥∥∥∥∥∥
∑

k∈Z

22ν(1+α)k |Φk ∗ f (x)|2


1
2

∥∥∥∥∥∥∥∥∥
2

r

∥∥∥R∗m(g)
∥∥∥

s
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where

R∗m(g)(x) = sup
j∈Z

∫
2 j<|y|<2 j+1

g(x+ y)
|Λm(y)|
|y|n

dy (5.24)

and

wν,α,l(t) =
t2ν(1+α)2−ν(1+α)(l+1)

t2

By Hölder’s inequality and the boundedness of Hardy-Littlewood maximal function, we
have ∥∥∥R∗m(g)

∥∥∥
s ≤Cs ‖g‖s ≤Cs; (5.25)

along with Lemma 2.1 imply that∥∥∥∥S (0)
Λm,ν,α, j

( f )
∥∥∥∥

r
≤C2−ν(1+α) j ‖ f ‖Lr

−ν(1+α)
. (5.26)

Now, for j ≤ −2, by interpolation between (5.19) and (5.26), we get∥∥∥∥S (0)
Λm,hν,α, j

( f )
∥∥∥∥

p
≤ 2( θδν,α

2(m+2)−ν(1+α)) jC ‖ f ‖Lp
−ν(1+α)

(5.27)

for all p > 2.
For j ≥ 2, we choose r > p and we interpolate between (5.26) and (5.20) to get∥∥∥∥S (0)

Λm,hν,α, j
( f )

∥∥∥∥
p
≤Cν,α2−(θr+ν(1+α)) j ‖ f ‖Lp

−ν(1+α)
(5.28)

where

θr =

1
p −

1
r

1
2 −

1
r

.

Clearly, if r→∞, we have θr→
2
p and thus −θr−ν(1+α)→− 2

p −ν(1+α) which is negative
provided that p < −2/ν(1+α). Thus, for 2 < p < −2/ν(1+α), there exists r(p) > 2 such that∥∥∥∥S (0)

Λm,hν,α, j
( f )

∥∥∥∥
p
≤Cν,α2−(θr+ν(1+α)) j ‖ f ‖Lp

−ν(1+α)
(5.29)

with −(θr(p)+ ν(1+α)) < 0.
On the other hand, by interpolation between (5.22) and (5.26), we get∥∥∥∥S (0)

Λm,hν,α, j
( f )

∥∥∥∥
p
≤Cν,ν2(1−θ)ν(1+α) j ‖ f ‖Lp

−ν(1+α)
(5.30)

for 2 < p <∞.
By (5.10), and (5.27), (5.29), (5.30), we get∥∥∥∥S (0)

Λk ,hν,α
( f )

∥∥∥∥
p
≤ Cν,α {S 1+S 2+S 3} ‖ f ‖Lp

−ν(1+α)

≤ (m+2)Cν,α ‖ f ‖Lp
−ν(1+α)

(5.31)
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where

S 1 =

−2∑
j=−∞

2( θδν,α
2(m+2)−ν(1+α)) j

S 2 =

∞∑
j=2

2−(θr+ν(1+α)) j

S 3 =

1∑
j=−1

2(1−θ)ν(1+α) j.

Now, we consider the case (−2/ν(1+α))′ < p < 2. For (−2/ν(1+α))′ < r < 2, we have
r′ > 2. We choose a sequence of functions gk(x, t) on Rn×R+ with∥∥∥∥∥∥∥∥∥∥∥

∑
k∈Z

2k+1∫
2k

|gk(x, t)|2
dt
t


1
2
∥∥∥∥∥∥∥∥∥∥∥

r′

≤ 1 (5.32)

such that ∥∥∥∥S (0)
Λm,hν,α, j

( f )
∥∥∥∥

r
=

∫
Rn

−1∑
k=−∞

2k+1∫
2k

(
Φ j+k ∗σm,ν,α,t ∗ f (x)

)
gk(x, t)

dt
t

dx.

Now, ∫
Rn

−1∑
k=−∞

2k+1∫
2k

(
Φ j+k ∗σm,ν,α,t ∗ f (x)

)
gk(x, t)

dt
t

dx

≤

∞∑
l=0

∫
Rn

−1∑
k=−∞

2k+1∫
2k

1
t

∫
|y|∈tIl

∣∣∣Φ j+k ∗ f (x− y)
∣∣∣ |Λm(y)|

∣∣∣hν(t
α |y|)

∣∣∣
|y|n−1 dy

gk(x, t)
dt
t

dx

≤

∞∑
l=0

Bl,ν

∫
Rn

−1∑
k=−∞

2k+1∫
2k

2ν(1+α)k
∣∣∣Φ j+k ∗ f

∣∣∣∗ σ̃m,l,t(x)gk(x, t)
dt
t

dx

≤

∞∑
l=0

Bl,ν

∫
Rn

−1∑
k=−∞

(
2ν(1+α)k

∣∣∣Φ j+k ∗ f
∣∣∣)


2k+1∫
2k

∣∣∣σ̃m,l,t ∗gk(x, t)
∣∣∣2 dt

t


1
2

dx

≤

∞∑
l=0

Bl,ν

∫
Rn

 −1∑
k=−∞

22ν(1+α)k
∣∣∣Φ j+k ∗ f

∣∣∣2

−1∑

k=−∞

2k+1∫
2k

∣∣∣σ̃m,l,t ∗gk(x, t)
∣∣∣2 dt

t


1
2

dx

≤

∞∑
l=0

Bl,ν

∥∥∥∥∥∥∥∥∥
 −1∑

k=−∞

22ν(1+α)k
∣∣∣Φ j+k ∗ f

∣∣∣2
1
2

∥∥∥∥∥∥∥∥∥
r

∥∥∥∥∥∥∥∥∥∥∥

−1∑

k=−∞

2k+1∫
2k

∣∣∣σ̃m,l,t ∗gk(x, t)
∣∣∣2 dt

t


1
2
∥∥∥∥∥∥∥∥∥∥∥

r′

(5.33)
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where Bl,ν,α = 2−(ν+1)l−ν and∫
f dσ̃m,l,t =

1
t2−l

∫
|y|∈tIl

f (y)
|Λm(y′)|
|y|n−1 dy.

By observing that
sup

t,l

∣∣∣∣∣∣σ̃m,l,t
∣∣∣∗ f (x)

∣∣∣ = R∗m( f )

where R∗m is given by (5.24), it follows by (5.25), (5.32), and duality argument that∥∥∥∥∥∥∥∥∥∥∥

−1∑

k=−∞

2k+1∫
2k

∣∣∣σ̃m,l,t ∗gk(x, t)
∣∣∣2 dt

t


1
2
∥∥∥∥∥∥∥∥∥∥∥

r′

≤Cr′ . (5.34)

Therefore, by (5.33), (5.34), and Lemma 2.1, we get∥∥∥∥S (0)
Λm,hν,α, j

( f )
∥∥∥∥

r
≤C2−ν(1+α) j ‖ f ‖Lr

−ν(1+α)
. (5.35)

Now, by repeating the steps (5.27) to (5.31) with (5.26) is replaced by (5.35) ( here r is
close to 1), we obtain ∥∥∥∥S (0)

Λk ,hν,α
( f )

∥∥∥∥
p
≤ (m+2)Cν,α ‖ f ‖Lp

−ν(1+α)
. (5.36)

the case (−2/ν(1+α))′ < p < 2. Hence, the proof is concluded by (5.31), (5.36), and (5.5).

6 Further Results

As pointed out in the introduction section, Theorem 1.3 can be used to consider operators
with oscillating kernels. This is due to the observation that the Bessel function Jν is in the
class B(0)

ν . A particular result in this direction is the following:

Corollary 6.1. Suppose that Γ∗ ∈ L1(Sn−1). Let −→ν = (ν1, ..., νm) ∈ ((−1,∞))m, −→a = (a1, ...,am) ∈
Rm
+ , α > −1, and γ ∈ R be such that

(i) γ+
∑m

j=1 a jν j > 0 and (ii) γ− 1
2
∑m

j=1 a j < 0. Then the operator

S Γ,−→ν ,−→a ,α,γ( f )(x) =


∫ ∞

−∞

∣∣∣∣∣∣∣∣
∫
|y|<2t

f (x− y)

 m∏
j=1

Jν j
(2αt |y|a j)

 Γ(y)

|y|n−γ−1 dy

∣∣∣∣∣∣∣∣
2

dt
22t


1
2

satisfies ∥∥∥∥S Γ,−→ν ,−→a ,α,γ( f )
∥∥∥∥

p
≤C ‖ f ‖p (6.1)

for all 1 < p <∞.

Proof of Corollary 6.1. The main idea of the proof is applying Theorem 1.1 (c) with
ν = γ+

∑m
j=1 ν ja j, εν = γ−

1
2
∑m

j=1 a j, and

hν(t) = tγ
m∏

j=1

Jν j
(ta j).
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In fact, using the local behavior of the Bessel function, we obtain

∣∣∣hν(t)
∣∣∣ ≤ tγ

m∏
j=1

(
2πta j

)ν j =Ctγ+
∑m

j=1 ν ja j (6.2)

for t ≤ 1. On the other hand, by the asymptotic behavior of the Bessel function at infinity,
we obtain ∣∣∣hν(t)

∣∣∣ ≤ tγ
m∏

j=1

(
2πta j

)− 1
2 =Ctγ−

1
2
∑m

j=1 a j (6.3)

for t > 1. In conclusion, we get hν ∈ B
(0)
ν with ν > 0. Hence, the proof is concluded by

Theorem 1.3 (c).

We remark here that Lp estimates of the operators S Γ,−→ν ,−→a ,α in Corollary 6.1 imply simi-
lar estimates for operators with general oscillatory factors. As a model result, we prove the
following:

Theorem 6.2. Suppose that G : Rn→R is a suitable mapping such that (6.1) holds provided
that (i)-(iii) hold. Let ν > 0, −→a = (a1, ...,am) ∈ Rm

+ , and let µ(t) =
∑m

j=1 ε jta j , t ≥ 0 where
ε j = ±1. Then the operator

S G,ν,µ( f )(x) =


∞∫
−∞

∣∣∣∣∣∣∣∣∣
∫
|y|<2t

f (x− y)eiµ(|y|)Jν(|y|)
G(y)

|y|n−1 dy

∣∣∣∣∣∣∣∣∣
2

dt
22t


1
2

satisfies
∥∥∥S G,ν,µ( f )

∥∥∥
p ≤C ‖ f ‖p for all 1 < p <∞.

The proof of Theorem 6.2 is based on the representation of the Bessel functions J1/2
and J−1/2 in terms of the trigonometric functions sin t and cos t respectively. The detailed
proof is as follows:

Proof of Theorem 6.2. Without loose of generality, we may assume that ε j = 1 for all j,
i.e., µ(t) =

∑m
j=1 ta j . Then by using the identities

J1/2(t) =

√
2
π

sin t
√

t
and J−1/2(t) =

√
2
π

cos t
√

t
,

we obtain

eiµ(|y|) =

m∏
j=1

ei|y|a j
= (

π

2
)

m
2 |y|γ

m∏
j=1

(J−1/2(|y|a j)+ iJ1/2(|y|a j))

= (
π

2
)

m
2 |y|γ

2m∑
k=0

ck

∏
j∈Ak

J−1/2(|y|a j)
∏
j∈Bk

J1/2(|y|a j) (6.4)

where Ak ∪Bk = {1,2, ...,m},Ak ∩Bk = ∅, and γ = 1
2
∑m

j=1 a j. Therefore,

S G,ν,µ,γ( f )(x) ≤ (
π

2
)

m
2

2m∑
k=0

|ck|S G,γ,k( f )(x) (6.5)
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where

S G,γ,k( f )(x) =


∞∫
−∞

∣∣∣∣∣∣∣∣∣
∫
|y|<2t

f (x− y)P(t)
G(y)

|y|n−γ−1 dy

∣∣∣∣∣∣∣∣∣
2

dt
22t


1
2

where

P(t) =

∏
j∈Ak

J−1/2(|y|a j)
∏
j∈Bk

J1/2(|y|a j)

 Jν(|y|).

Now, notice that for 0 ≤ k ≤ 2m, we have

γ−
1
2

∑
j∈Ak

a j+
1
2

∑
j∈Bk

a j+ ν > 0,

γ−
1
2

∑m

j=1
a j−

1
2

< 0.

Thus, by assumption it follows that
∥∥∥S G,γ,k( f )

∥∥∥
p ≤ C ‖ f ‖p for all 1 < p < ∞ and 0 ≤ k ≤

2m. And hence the boundedness of S G,ν,µ follows by (6.5) and the aid of Minkowski’s
inequality. This completes the proof.
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