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Abstract

In this paper, we use tools of potential theory to study the existence of positive con-
tinuous solutions for some boundary value problems based on the fractional Laplacian
(−∆)α/2 , 0<α< 2, in an exterior domain D in Rn, n≥ 3. Our arguments use properties
of an appropriate Kato class of functions K∞α (D) .
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1 Introduction

For n≥ 2 and 0<α< 2, an n-dimensional α-stable process is a Levy process X = (Xt)t≥0
in Rn whose characteristic function has the form

Ex
(
eiζ(Xt−X0)

)
= e−t|ζ |α for ζ and x ∈ Rn,

where Ex is the expectation with respect to the distribution Px of the process starting from
x ∈ Rn.
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In this paper, we always assume that D is a C1,1 exterior domain in Rn (n ≥ 3) and
we put τD := inf {t > 0 : Xt < D} , the first exit time of X from D. Let XD

t (w) = Xt (w) if
t < τD (w) and set XD

t (w) = ∂ if t ≥ τD (w) , where ∂ is the cemetery point. The process
XD =

(
XD

t

)
t≥0

(i.e. the process X killed upon leaving D) is called the killed symmetric α-

stable process in D. The infinitesimal generator of XD is the fractional power (−∆)
α
2 of the

Laplacian in D, which is a prototype of non-local operator. Considerable progress has been
made recently in extending potential-theoretic properties of Brownian motion to symmetric
α-stable processes on Lipschitz domains (see for instance [3−20, 24−26]).

We collect in this paper some basic facts concerning the process XD, the Green function
Gα

D, the Martin kernel Mα
D and α-harmonic functions which are direct adaptations of well

known results on Brownian motion. These facts will be useful for our study. In particular,
we give precise estimates on Gα

D, which enable us to introduce a functional class K∞α (D)
(see Definition 2.4) characterized by an integral condition involving Gα

D and called frac-
tional Kato class. This class is quite rich (see Proposition 4.1) and it is a key tool in our
study.

On the other hand, unlike Brownian motion, we prove that harmonic functions with
respect to XD blow up at the boundary of D. While the classical formulation of the Dirichlet
problem becomes impossible, we provide an appropriate reformulated Dirichlet problem
associated to (−∆)

α
2 in D (see Remark 2.16). This approach allows us to study two different

nonlinear Dirichlet problems associated to (−∆)
α
2 in D, what generalize some existence

results for nonlinear Dirichlet problems associated to (−∆), obtained in [2] and [23].
Our results follow up those obtained in [9] for the fractional Laplacian in a bounded

domain. Many well known properties of the killed symmetric α-stable process in a bounded
domain are not provided in an exterior domain. This makes one of difficulties in this paper.

The content of the paper is organized as follows. In Section 2, we recapitulate some
tools of potential theory pertaining to the process XD. Namely, we discuss some properties
of harmonic functions with respect to XD and we apply these facts to reformulate Dirichlet
problem associated to XD. Also, we present in this Section our main results (see Theorems
2.17 and 2.18). In Section 3, we establish some estimates on Gα

D and we obtain some
properties of potential functions. We give in Section 4 some interesting properties of the
class K∞α (D) including a careful analysis about continuity of some potential functions. Our
main results are proved in Sections 5 and 6.

2 Preliminaries and Main Results

2.1 Notations and Terminology

In this paper, we always assume that D is a C1,1 exterior domain in Rn (n ≥ 3) such that
D

c
=

⋃
1≤ j≤k

D j, where D j is a bounded C1,1 domain of Rn and Di∩D j = ∅, i , j. We denote

by B+(D) the cone of nonnegative Borel measurable functions defined on D.
It is well known that there is a symmetric function Gα

D(x,y) continuous on D×D except
along the diagonal, called Green function associated to XD. We will denote GD(x,y) for the
Green function associated to Brownian motion in D (i.e. α = 2).

Remark 2.1. Let a ∈ D
c

and r > 0 such that B(a,r) ⊂ D
c
. Then we have from [12] that for
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each x,y ∈ D

Gα
D(x,y) = rα−nGα

D−a
r

(
x−a

r
,
y−a

r
).

Thus, without loss of generality, we may assume throughout this paper that a = 0 and r = 1,
that is B(0,1) ⊂ D

c
.

Let x∗ =
x

|x|2
be the Kelvin transformation from D onto D∗ = {x∗ ∈ B(0,1) : x ∈ D}. Then,

it is easy to see that for x,y ∈ D, we have∣∣∣x∗− y∗
∣∣∣ = |x− y|
|x| |y|

. (2.1)

For f ∈ B+(D), we denote by f ∗ the α-order Kelvin transform of f defined in D∗ by

f ∗(x∗) = |x|n−α f (x).

We note that the 2-order Kelvin transform is the usual Kelvin transform. Our interest in
Kelvin transform comes primarily from the fact that it transfers questions at the point infin-
ity to those at the origin (see [6] for more details).

Throughout the paper δD (x) denotes the Euclidian distance between x and the boundary
∂D. We put for x ∈ D

ρD(x) =
δD(x)

δD (x)+1

and

λD (x) = δD (x) (δD (x)+1) .

By simple calculation, we have for x ∈ D,

1+δD (x) ≈ |x| (2.2)

and

δD∗
(
x∗

)
≈ ρD (x) ≈

δD (x)
|x|
≈
λD (x)

|x|2
. (2.3)

Here for two nonnegative functions f and g defined on a set S, the notation f (x) ≈ g(x),
x ∈ S , means that there exists c > 0 such that 1

c f (x) ≤ g(x) ≤ c f (x) for all x ∈ S . Also, for
s, t ∈ R, we denote by min(s, t) = s∧ t and we remark that for s, t ≥ 0 and p ≥ 0

s∧ t ≈
st

s+ t
, (2.4)

1∧ s(1+ s) ≈ 1∧ s (2.5)

and

(s+ t)p ≈ sp+ tp. (2.6)
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2.2 Potential theory associated to (−∆)
α
2

The following sharp estimates on Gα
D(x,y) are given in a recent paper of Chen and

Tokle (see [14], Corollary 1.5)

Gα
D(x,y) ≈

1
|x− y|n−α

1∧ (δD(y))
α
2

1∧ |x− y|
α
2

1∧ (δD(x))
α
2

1∧ |x− y|
α
2

 . (2.7)

In this paper, we give other estimates on Gα
D(x,y), to be used in our approach. First, we

remark by ([6], Theorem 2) that for x,y ∈ D

Gα
D(x,y) = |x|α−n |y|α−n Gα

D∗(x∗,y∗). (2.8)

Hence, from esimates on the Green function Gα
D∗ of the bounded domain D∗ (see [12],

Corollary 1.3) and using (2.1) and (2.3), we get the following

Gα
D(x,y) ≈

1
|x− y|n−α

(1∧
(λD(x)λD(y))

α
2

|x− y|α
). (2.9)

Remark 2.2. We have obviously by (2.7) and (2.9) that

1∧
(λD(x)λD(y))

α
2

|x− y|α
≈

1∧ (δD(y))
α
2

1∧ |x− y|
α
2

1∧ (δD(x))
α
2

1∧ |x− y|
α
2

 .
Note that the interesting estimates (2.9) extend those for the Green function GD of the

killed Brownian motion in D. In [2], it was shown a 3G-inequality for GD allowing to in-
troduce and study the Kato class of functions K(D). This class was extensively used in the
study of various elliptic differential equations (see [2, 23]).
Analogously, Theorem 2.3 below provides a fundamental 3G-inequality for Gα

D, as a con-
sequence of the estimates (2.9). Its proof is a direct adaptation of the elliptic case (see [2]).
So we omit it.

Theorem 2.3. (3G Theorem) There exists a positive constant C0 such that for all x,y and z
in D we have

Gα
D (x,z)Gα

D(z,y)
Gα

D(x,y)
≤C0

( ρD(z)
ρD(x)

) α
2

Gα
D (x,z)+

(
ρD(z)
ρD(y)

) α
2

Gα
D (y,z)

 . (2.10)

This allows us to introduce a new fractional Kato class of functions in D denoted by
K∞α (D) and defined as follows.

Definition 2.4. A Borel measurable function q in D belongs to the Kato class K∞α (D) if q
satisfies the following conditions

lim
r→0

sup
x∈D

∫
(|x−y|≤r)∩D

(
ρD(y)
ρD(x)

) α
2

Gα
D(x,y) |q(y)|dy

 = 0 (2.11)

and

lim
M→∞

sup
x∈D

∫
(|y|≥M)∩D

(
ρD(y)
ρD(x)

) α
2

Gα
D(x,y) |q(y)|dy

 = 0. (2.12)
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As a typical example of functions in K∞α (D) , we cite q(x) =
1

(1+ |x|)µ−λ (δD (x))λ
,

λ < α < µ.

Remark 2.5. Replacing Gα
D by GD and putting α = 2 in Definition 2.4 above, we find again

the Kato class K(D) introduced in [2].

Let us define the potential kernel Gα
D of XD on B+(D) by

Gα
D f (x) =

∫
D

Gα
D(x,y) f (y)dy.

As in the classical case, we have the following equivalence

Gα
D f ,∞ ⇐⇒

∫
D

(ρD(y))
α
2

(1+ |y|)n−α f (y)dy <∞. (2.13)

On the other hand, for any f ∈ B+(D) such that Gα
D f ,∞ and for any ψ ∈C∞c (D), we have∫

D
f (x)(−∆)

α
2ψ(x)dx =

∫
D

Gα
D f (x)ψ(x)dx.

That is
(−∆)

α
2 Gα

D f = f in D (in the distributional sense). (2.14)

In what follows, we recall the definition of harmonic and superharmonic functions as-
sociated to the process XD (see [13]).

Definition 2.6. A locally integrable function f defined on D taking values in (−∞,∞] and
satisfying the condition

∫
(|x|>1)∩D | f (x)| |x|−(n+α) dx <∞, is said to be

(i) α-harmonic with respect to XD if for each open set S with S ⊂ D,

Ex
[∣∣∣∣ f (XD

τS

)∣∣∣∣] <∞ and f (x) = Ex
[
f
(
XD
τS

)]
, for x ∈ S .

(ii) α-superharmonic with respect to XD if f is lower semicontinuous in D and for each
open set S with S ⊂ D,

Ex
[
f −

(
XD
τS

)]
<∞ and f (x) ≥ Ex

[
f
(
XD
τS

)]
, for x ∈ S .

We will use Hα
D to denote the collection of all nonnegative functions on D which are

α-harmonic with respect to XD and SαD to denote the collection of all nonnegative functions
on D which are α-superharmonic with respect to XD.

Example 2.7. It is well known that for each y ∈ D, the function x 7→Gα
D(x,y) is in SαD and

so it is for the potential function x 7→Gα
D f (x), for any f ∈ B+(D).

Remark 2.8. We have from ([20], Theorem 2) that a function f belongs to SαD (respectively
Hα

D) if and only if the function f ∗ is α-superharmonic (respectively α-harmonic) with re-
spect to XD∗ .
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To characterize functions beloging to Hα
D, we are going to introduce the Martin kernel

associated to XD. Let x0 ∈ D and let for (x,z) ∈ D×∂D∪{∞} ,

Mα
D (x,z) := lim

y→z

Gα
D(x,y)

Gα
D(x0,y)

be the Martin kernel of XD based at x0. We shall denote by MD(x,z) the Martin kernel of
the killed Brownian motion (α = 2). It is well known from the general potential theory that
for each z ∈ ∂D∪ {∞} , the function x 7→ Mα

D(x,z) belongs to Hα
D and for any function u in

Hα
D, there exist a unique constant c ≥ 0 and a unique nonnegative measure ν on ∂D such

that

u(x) =
∫
∂D

Mα
D (x,z)ν(dz)+ cMα

D (x,∞) .

The following relation between functions inHα
D and solutions of the equation

(−∆)
α
2 u = 0 (in the distributional sense) is due to ([8], Theorem 3.9).

Proposition 2.9. A function f ∈ B+(D) belongs to Hα
D if and only if it is continuous in D

and satisfies (−∆)
α
2 f = 0 in D (in the distributional sense).

We provide in what follows estimates on the Martin kernel Mα
D which extend those of

MD. These estimates will play a crucial role in our study.

Remark 2.10. By using estimates on the Green function GD (see [1]), we have for x ∈ D
and z ∈ ∂D∪{∞}

MD(x,z) ≈
λD(x)
|x− z|n

and

MD(x,∞) ≈
δD(x)

δD(x)+1
.

On the other hand, let Mα
D∗ be the Martin kernel of D∗ with reference point x∗0. Thanks

to (2.8), we obtain for x ∈ D and z ∈ ∂D∪{∞}

Mα
D (x,z) =

|x|α−n

|x0|
α−n Mα

D∗
(
x∗,z∗

)
. (2.15)

This leads to the following.

Proposition 2.11. For x ∈ D and z ∈ ∂D, we have

Mα
D (x,z) ≈

(λD(x))
|x− z|n

α
2

(2.16)

and
Mα

D (x,∞) ≈ (ρD (x))
α
2 . (2.17)

In particular, we have for each z ∈ ∂D

lim
|x|→∞

Mα
D(x,z) = 0 and lim

x→z
Mα

D(x,∞) = 0.
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Proof. From ([13], Theorem 3.9), we know that

Mα
D∗(x∗,z∗) ≈

(δD∗(x∗))
α
2

|x∗− z∗|n
. (2.18)

Which together with (2.3) and (2.15) gives (2.16).
From (2.9), we deduce that for x ∈ D,

Mα
D(x,∞) ≈ (1∧λD(x))

α
2 .

Thus (2.17) holds by (2.5) and (2.4). �

Example 2.12. Let D = {x ∈ Rn : |x| > 1} . We have on D×∂D,

Mα
D(x,z) ≈

(
|x|2−1

) α
2

|x− z|n

and

Mα
D(x,∞) ≈

(
1−

1
|x|

) α
2

.

Now, by Martin’s representation theorem (see [1]), there exist a unique positive constant
c0 and a unique finite positive measure σ on ∂D such that

1 = MDσ(x)+ c0MD(x,∞), x ∈ D, (2.19)

where

MDσ(x) =
∫
∂D

MD(x,z)σ(dz).

From Remark 2.10, we note that

lim
x→∂D

MDσ(x) = 1, lim
|x|→∞

MDσ(x) = 0 (2.20)

and
lim

x→∂D
MD(x,∞) = 0, lim

|x|→∞
c0MD(x,∞) = 1. (2.21)

Here the notation x→ ∂D means that x tends to a point ξ ∈ ∂D. For a nonnegative measur-
able function f on ∂D, we put

Mα
D f (x) =

∫
∂D

Mα
D(x,z) f (z)σ(dz), for x ∈ D.

Then it follows from (2.16) and Remark 2.10 that

Mα
D1(x) ≈ (λD(x))

α
2−1 MDσ(x), for x ∈ D. (2.22)

Now, let us define the following function wα on D that will be of great interest in our
study. For x ∈ D, we put

wα(x) = Mα
D1(x)+ c0Mα

D(x,∞). (2.23)
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Proposition 2.13. The function wα belongs toHα
D and satisfies

wα(x) ≈ (ρD(x))
α
2−1 , x ∈ D. (2.24)

Moreover, we have

lim
x→∂D

wα(x)
Mα

D1(x)
= lim
|x|→∞

wα(x)
c0Mα

D(x,∞)
= 1. (2.25)

Proof. Using (2.17) and (2.22), we have for x ∈ D

wα(x) ≈ (δD(x)(δD(x)+1))
α
2−1 MDσ(x)+ (ρD(x))

α
2

= (ρD(x))
α
2−1

[
(δD(x)+1)α−2 MDσ(x)+ρD(x)

]
= : (ρD(x))

α
2−1 mα(x).

Thanks to (2.20), we obtain

lim
x→∂D∪{∞}

mα(x) = 1.

Now, since the function mα is positive and continuous on the compact set D∪ {∞} , we
deduce that mα(x)≈ 1 for x ∈D. This gives (2.24). The assertion (2.25) holds by Proposition
2.11. �

Remark 2.14. Let λ ≥ 0 and f be a nonnegative continuous function on ∂D. Then the func-
tion h defined in D by

h(x) = Mα
D f (x)+λc0Mα

D(x,∞)

belongs toHα
D and satisfies lim

x→z∈∂D

h(x)
wα(x)

= f (z) and lim
|x|→∞

h(x)
wα(x)

= λ.

Indeed, for z ∈ ∂D and x ∈ D, we have∣∣∣∣∣∣ Mα
D f (x)

Mα
D1(x)

− f (z)

∣∣∣∣∣∣ ≤ 1
Mα

D1(x)

∫
∂D

Mα
D(x,y) | f (y)− f (z)|dy.

Then we prove as in the classical case (see [1]) that

lim
x→z

Mα
D f (x)

Mα
D1(x)

= f (z). (2.26)

Using (2.25) and Proposition 2.11, we conclude the result.

Proposition 2.15. Let λ ≥ 0 and let f be a nonnegative continuous function on ∂D. Then
the function h defined in D by

h(x) = Mα
D f (x)+λc0Mα

D(x,∞)

is the unique function inHα
D such that

(i) lim
x→z∈∂D

h(x)
wα(x)

= f (z),

(ii) lim
|x|→∞

h(x)
wα(x)

= λ.
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Proof. By Remark 2.14, the function h belongs toHα
D and satisfies (i) and (ii).

Now, recall that for x ∈ D,

wα(x) =
∫
∂D

Mα
D(x,z)σ(dz)+ c0Mα

D(x,∞),

where c0 and σ are respectively the constant and the measure given by (2.19). Then, by
α-order Kelvin transform with (2.15), we obtain for x ∈ D

w∗α(x∗) = |x0|
n−α

(∫
(∂D)∗

Mα
D∗(x∗, ξ)σ∗(dξ)+ c0Mα

D∗(x∗,0)
)
.

Note that ∂D∗ = (∂D)∗∪{0} and put σ0 = |x0|
n−α (σ∗+ c0δ0) , where δ0 is the Dirac measure

concentrated at 0 and σ∗ is the image measure of σ by the Kelvin transform x 7→ x∗. Thus
we have

w∗α(x∗) =
∫
∂D∗

Mα
D∗(x∗, ξ)σ0(dξ)

= : Mα
D∗1(x∗).

Now, let h ∈ Hα
D satisfying (i) and (ii). We obtain by Kelvin transform that

lim
x∗→ξ∈∂D∗

h∗(x∗)
Mα

D∗1(x∗)
= f̃ (ξ)

where f̃ is the function defined on ∂D∗ by

f̃ (ξ) =
{
|ξ|n−α f ∗(ξ), ξ ∈ (∂D)∗

λ, ξ = 0.

Then using ([9], Theorem 6), we deduce that

h∗(x∗) = Mα
D∗ f̃ (x∗) =

∫
∂D∗

Mα
D∗(x∗, ξ) f̃ (ξ)σ0(dξ).

Hence, using again Kelvin transform, we deduce that

h(x) = Mα
D f (x)+λc0Mα

D(x,∞), x ∈ D.

�

Remark 2.16. Proposition 2.15 provides the solvability of the following reformulated Dirich-
let problem associated to (−∆)

α
2 . Namely, if f is a nonnegative continuous function on ∂D

and λ is a nonnegative constant, then the function defined in D by

h(x) = Mα
D f (x)+λc0Mα

D(x,∞)

is the unique positive continuous solution of
(−∆)

α
2 u = 0 in D (in the distributional sense)

lim
x→z∈∂D

u(x)
wα(x)

= f (z),

lim
|x|→∞

u(x)
wα(x)

= λ.
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2.3 Main results

As it is mentioned above, the main goal of this paper is to prove two existence results
for fractional equations with reformulated Dirichlet boundary conditions stated in Theorems
2.17 and 2.18 below.

Our first purpose is to study the following problem

(P)


(−∆)

α
2 u = ϕ (·,u) in D (in the distributional sense)

lim
x→∂D

(δD(x))1− α2 u(x) = 0,

lim
|x|→∞

u(x) = 0.

In view of (2.24), we remark that the boundary conditions in (P) are equivalent to

lim
x→∂D∪{∞}

u(x)
wα(x)

= 0.

The nonlinearity ϕ is required to satisfy the following assumptions
(H1) ϕ is a non-trivial nonnegative measurable function in D× (0,∞) which is

continuous and nonincreasing with respect to the second variable.
(H2) For all c> 0, the function x 7→ (ρD(x))1− α2 ϕ(x,c (ρD(x))

α
2−1) belongs to K∞α (D).

As a typical example of functions ϕ satisfying (H1) and (H2), we quote ϕ(x, s) = k(x)s−σ,
where σ ≥ 0 and k is a nonnegative measurable function in D such that the function

x 7→ k(x) (ρD(x))(1− α2 )(σ+1)
∈ K∞α (D).

Using a fixed point theorem, we prove in Section 5 the following.

Theorem 2.17. Assume (H1)− (H2). Then problem (P) has a positive continuous solution
u in D satisfying

u(x) =Gα
D(ϕ(·,u))(x), x ∈ D.

This result extends the one of [2] in the elliptic case (α = 2). In fact the authors of [2],
showed that if ϕ satisfies (H1) and ϕ(·,c) ∈ K(D) for each c > 0, then the nonlinear elliptic
equation ∆u+ϕ(·,u) = 0, has a unique positive continuous solution u in D satisfying

lim
x→∂D

u(x) = lim
|x|→∞

u(x) = 0.

For our second purpose, we are interested in the following problem

(Q)


(−∆)

α
2 u+uϕ (·,u) = 0 in D (in the distributional sense)

lim
x→z∈∂D

u(x)
wα(x)

= f (z),

lim
|x|→∞

u(x)
wα(x)

= λ,

where λ ≥ 0, f is a non-trivial nonnegative continuous function on ∂D and the nonlinear
term is required to satisfy the following assumptions
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(H3) ϕ is a non-trivial nonnegative measurable function in D× (0,∞).

(H4) For all c > 0, there exists a nonnegative function qc ∈ K∞α (D) such that the
function s 7→ s

[
qc(x)−ϕ(x, s (ρD(x))

α
2−1)

]
is continuous and nondecreasing on [0,c] , for

every x ∈ D.

To illustrate, let us present an example. Let p > 0 and k be a nonnegative measurable
function such that the function

x 7→ k(x)(ρD(x))( α2−1)p ∈ K∞α (D).

Then the function ϕ(x,u) = k(x)up satisfies (H3) and (H4).
Using a potential theory approach, we establish in Section 6 the following.

Theorem 2.18. Assume (H3)− (H4). Then problem (Q) has a positive continuous solution
u in D satisfying

c
(
Mα

D f (x)+λc0Mα
D(x,∞)

)
≤ u(x) ≤ Mα

D f (x)+λc0Mα
D(x,∞),

where c ∈ (0,1).

We achieve this section by noting that solutions to problems (P) and (Q) blow up at
the boundary ∂D. On the contrary, for the classical case (i.e. α = 2), solutions of elliptic
nonlinear problems corresponding to (P) and (Q) are bounded (see [2, 23]).

From here on, c denotes a positive constant which may vary from line to line. Also we
refer to C(D) the collection of all continuous functions in D and C0(D) the subclass of C(D)
consisting of functions which vanish continuously on ∂D and at infinity.

3 Estimates and properties of Gα
D

We provide in this section some estimates on the Green function Gα
D(x,y) and some

interesting properties of the potential kernel Gα
D, related to potential theory.

Proposition 3.1. For x,y ∈ D, we have(
ρD(y)
ρD(x)

) α
2

Gα
D(x,y) ≈

1
|x− y|n−α

(
1∧

(δD(y))α

1∧ |x− y|α

)
. (3.1)

In particular (
ρD(y)
ρD(x)

) α
2

Gα
D(x,y) ≤

c
|x− y|n−α

. (3.2)

Proof. It follows from ([22], Proposition 2.4) that(
ρD(y)
ρD(x)

) α
2
1∧ (λD(x)λD(y))

α
2

|x− y|α

 ≈ (
1∧

(δD(y))α

1∧ |x− y|α

)
,

Then using (2.9), we deduce (3.1). �
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Proposition 3.2. For each x, y ∈ D, we have

c
(δD(x)δD(y))

α
2

|x|n−
α
2 |y|n−

α
2
≤Gα

D(x,y). (3.3)

Moreover, if |x− y| ≥ r and |y| ≤ M, then

Gα
D(x,y) ≤ c

(ρD(x)ρD(y))
|x− y|n−α

α
2
. (3.4)

Proof. Let x, y ∈ D, then from ([9], Proposition 1), we have(
δD∗

(
x∗

)
δD∗

(
y∗

)) α
2 ≤ cGα

D∗(x∗,y∗).

Hence by (2.8) and (2.3), we deduce (3.3).
Moreover, let x,y ∈ D such that |x− y| ≥ r and |y| ≤ M. Then, since min(1, |x− y|α) ≈ 1, we
obtain by (3.1) that

Gα
D(x,y) ≤ c

(
ρD(x)
ρD(y)

) α
2 (δD(y))α

|x− y|n−α
.

Then using (2.3), we get

Gα
D(x,y) ≤ c

(ρD(x)ρD(y))
α
2

|x− y|n−α
.

�

It is the same as the case α = 2, the potential kernel Gα
D satisfies some preliminary

potential properties.

Proposition 3.3. If f and g are in B+(D) such that g ≤ f and the potential function Gα
D f is

continuous in D. Then the potential function Gα
Dg is also continuous in D.

Proof. Let θ ∈ B+(D) be such that f = g+ θ. So, we have Gα
D f = Gα

Dg+Gα
Dθ. Now since

Gα
Dg and Gα

Dθ are two lower semi-continuous functions in D, we deduce the result. �

Now, we note that the potential kernel Gα
D satisfies the complete maximum principle,

i.e. for each f ∈ B+(D) and v ∈ SαD such that Gα
D f ≤ v in { f > 0} , we have Gα

D f ≤ v in D (see
[3], Chap. II, Proposition 7.1). Consequently, we deduce the following.

Proposition 3.4. Let h ∈ B+(D) and v ∈ SαD. Let w be a Borel measurable function in D
such that Gα

D (h |w|) <∞ and v = w+Gα
D (hw). Then w satisfies

0 ≤ w ≤ v.

Proof. Since Gα
D (h |w|) <∞, then we have

Gα
D
(
hw+

)
≤ v+Gα

D
(
hw−

)
in {w > 0} =

{
w+ > 0

}
.



Existence of Positive Solutions for Some Dirichlet Problems 39

Now, since the function v+Gα
D
(
hw−

)
is in SαD, then we deduce by the complete maximum

principle that

Gα
D
(
hw+

)
≤ v+Gα

D
(
hw−

)
in D.

That is

Gα
D (hw) ≤ v = w+Gα

D (hw) .

This implies that

0 ≤ w ≤ v.

�

4 The Kato class K∞α (D)

We look in this section at some interesting properties of functions belonging to the
Kato class K∞α (D) (see Definition 2.4). In particular, a careful analysis about equicontinuity
of a family of functions is performed. First to illustrate the class K∞α (D), let us present the
following.

4.1 A subclass in K∞α (D)

By (3.1), one can see that a function q in D belongs to the class K∞α (D) if q satisfies

lim
r→0

(
sup
x∈D

∫
B(x,r)∩D

1
|x− y|n−α

(
1∧

(δD(y))α

1∧ |x− y|α

)
|q(y)|dy

)
= 0 (4.1)

and

lim
M→∞

(
sup
x∈D

∫
(|y|≥M)∩D

1
|x− y|n−α

(
1∧

(δD(y))α

1∧ |x− y|α

)
|q(y)|dy

)
= 0. (4.2)

Proposition 4.1. Let p > n
α , then for each λ < α− n

p < µ and f ∈ Lp(D), the function defined
in D by

ϕ(y) =
f (y)

(1+ |y|)µ−λ (δD(y))λ

belongs to K∞α (D).

Proof. We aim to show that ϕ satisfies (4.1). Let x ∈ D, 0 < r < 1
2 and λ+ =max(λ,0).

Put

I(x,r) :=
∫

B(x,r)∩D

|ϕ(y)|
|x− y|n−α

(1∧
(δD(y))α

1∧ |x− y|α
)dy.

Applying the following inequality

aα+bα ≥ aα−λ
+

bλ
+

,
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with a = δD(x) and b = |x− y| , we deduce by (2.4) and (2.2) that for y ∈ D such that
|x− y| ≤ r < 1, we have

|ϕ(y)|
|x− y|n−α

(1∧
(δD(y))α

1∧ |x− y|α
) ≤ c

(δD(y))α−λ

(|x− y|α+ (δD(y))α)
| f (y)|

(1+ |y|)µ−λ |x− y|n−α

≤ c
(δD(y))λ

+−λ | f (y)|
(1+ |y|)µ−λ |x− y|n+λ

+−α

≤ c
| f (y)|

|x− y|n+λ
+−α

.

Let p > n
α and q ≥ 1 such that 1

p +
1
q = 1. Using Hölder inequality, we obtain∫

B(x,r)∩D

|ϕ(y)|
|x− y|n−α

(1∧
(δD(y))α

1∧ |x− y|α
)dy ≤ c‖ f ‖p

(∫
B(x,r)∩D

dy

|x− y|(n+λ
+−α)q

) 1
q

≤ c‖ f ‖p

(∫ r

0
t
(
α− n

p−λ
+
)
q−1dt

) 1
q

≤ c‖ f ‖p r
(
α− n

p−λ
+
)
.

Which implies that I(x,r) tends to zero as r→ 0, uniformly in x. This proves that ϕ satisfies
(4.1).
Now, we intend to prove that ϕ satisfies (4.2). Let x ∈ D and M > 1. We put

J(x,M) :=
∫
{|y|≥M}∩D

|ϕ(y)|
|x− y|n−α

(1∧
(δD(y))α

1∧ |x− y|α
)dy.

For y ∈D such that |y| ≥M,we have δD(y)≈ |y| . Then using the Hölder inequality, we obtain

J(x,M) ≤ c‖ f ‖p

(∫
{|y|≥M}∩D

1

|x− y|(n−α)q

1
|y|µq dy

) 1
q

= : c‖ f ‖p (A(x,M))
1
q .

Also, we have

A(x,M) ≤ c
(∫

(M≤|y|≤|x−y|)∩D

1

|x− y|(n−α)q

1
|y|µq dy+

∫
{|y|≥M}∩(|x−y|≤|y|)∩D

1

|x− y|(n−α)q

1
|y|µq dy

)
≤ c

(∫
(M≤|y|≤|x−y|)∩D

1

|y|(µ+n−α)q dy+
∫
{|y|≥M}∩(|x−y|≤|y|)∩D

1

|x− y|(n−α)q

1
|y|µq dy

)
≤ c

(
1

M(µ+ n
p−α)q

+

∫
(M≤|x−y|≤|y|)∩D

1

|x− y|(n−α)q

1
|y|µq dy+

∫
(|x−y|≤M≤|y|)∩D

1

|x− y|(n−α)q

1
|y|µq dy

)
≤ c

(
1

M(µ+ n
p−α)q

+

∫
(M≤|x−y|≤|y|)∩D

1

|x− y|(n+µ−α)q dy+
1

Mµq

∫
(|x−y|≤M≤|y|)∩D

1

|x− y|(n−α)q dy
)

≤ c
(

1

M(µ+ n
p−α)q

+

∫ ∞

M

1

t(µ+ n
p−α)q+1

dt+
1

Mµq

∫ M

0
t
(
α− n

p

)
q−1dt

)
≤

c

M(µ+ n
p−α)q

.

Hence, ϕ satisfies (4.2) and the proof is achieved. �
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4.2 Properties of functions in K∞α (D)

Proposition 4.2. Let q be a function satisfying (2.11). Then for M > 0, we have∫
(|y|≤M)∩D

(δD(y))α |q(y)|dy <∞.

Proof. Since q satisfies (2.11), there exists r > 0 such that for each x ∈ D, we have∫
B(x,r)∩D

(
ρD(y)
ρD(x)

) α
2

Gα
D(x,y) |q(y)|dy ≤ 1.

Let x1, x2, ...., xp in D∩ B(0,M) be such that D∩ B(0,M) ⊂
p⋃

i=1
B(xi,r), then by (3.3) and

(2.3), there exists c > 0 such that for each y ∈ D∩B(0,M) and i ∈ {1,2, ..., p} , we have

(δD(y))α ≤ c
(
ρD(y)
ρD(xi)

) α
2

Gα
D(xi,y).

Hence, we have∫
(|y|≤M)∩D

(δD(y))α |q(y)|dy ≤ c
p∑

i=1

∫
B(xi,r)∩D

(
ρD(y)
ρD(xi)

) α
2

Gα
D(xi,y) |q(y)|dy

≤ pc <∞.

This completes the proof. �

In the sequel, we use the notations

‖q‖D := sup
x∈D

∫
D

(
ρD(y)
ρD(x)

) α
2

Gα
D(x,y) |q(y)|dy

and

aα(q) := sup
x,z∈D

∫
D

Gα
D(x,y)Gα

D(y,z)
Gα

D(x,z)
|q(y)|dy. (4.3)

Proposition 4.3. Let q be a function in K∞α (D) . Then

aα(q) ≤ 2C0 ‖q‖D <∞,

where C0 is the constant given in Theorem 2.3.

Proof. By using Theorem 2.3, we have immediately that

aα(q) ≤ 2C0 ‖q‖D .

Next, we will prove that ‖q‖D is finite. By (4.1) and (4.2), there exist r ∈ (0,1) and M > 1
such that for each x ∈ D, we have∫

B(x,r)∩D

1
|x− y|n−α

(1∧
(δD(y))α

1∧ |x− y|α
) |q(y)|dy ≤ 1
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and ∫
(|y|≥M)∩D

1
|x− y|n−α

(1∧
(δD(y))α

1∧ |x− y|α
) |q(y)|dy ≤ 1.

On the other hand, put Ω = Bc(x,r)∩ (|y| ≤ M)∩D. Then by (3.1), we have for x ∈ D

∫
D

(
ρD(y)
ρD(x)

) α
2

Gα
D(x,y) |q(y)|dy ≤ c

∫
D

1
|x− y|n−α

(1∧
(δD(y))α

1∧ |x− y|α
) |q(y)|dy

≤ c(2+
∫
Ω

1
|x− y|n−α

(1∧
(δD(y))α

1∧ |x− y|α
) |q(y)|dy),

≤ c(2+
1
rn

∫
(|y|≤M)∩D

(δD (y))α |q (y)|dy).

Thus the result follows by Proposition 4.2. �

Corollary 4.4. Let q be a function in K∞α (D) . Then the function

y 7→
(ρD(y))α

|y|n−α
q(y)

is in L1(D).

Proof. Let x0 ∈ D. Using (3.3), we have for y ∈ D

(ρD(y))α

|y|n−α
≤ c

(
ρD (y)
ρD (x0)

) α
2

|x0|
n−αGα

D(x0,y).

Hence, the result follows from Proposition 4.3. �

Proposition 4.5. Let q be a function in K∞α (D) . Then for any h in SαD and x ∈ D, we have∫
D

Gα
D(x,y)h(y) |q(y)|dy ≤ aα (q)h(x). (4.4)

Moreover, we have for x0 ∈ D

lim
r→0

sup
x∈D

1
h(x)

∫
B(x0,r)∩D

Gα
D(x,y)h(y) |q(y)|dy

 = 0 (4.5)

and

lim
M→∞

sup
x∈D

1
h(x)

∫
(|y|≥M)∩D

Gα
D(x,y)h(y) |q(y)|dy

 = 0. (4.6)
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Proof. Let h be a function in SαD. Then by ([3], Chap. II, Proposition 3.11), there exists a
sequence ( fk)k ⊂ B+(D) such that for all y ∈ D

h(y) = sup
k

∫
D

Gα
D(y,z) fk(z)dz.

Hence, it is enough to prove (4.4), (4.5) and (4.6) for h(y) =Gα
D(y,z) uniformly in z ∈ D.

For each x,z ∈ D, we have∫
D

Gα
D(x,y)Gα

D(y,z) |q(y)|dy ≤ Gα
D(x,z)

∫
D

Gα
D(x,y)Gα

D(y,z)
Gα

D(x,z)
|q(y)|dy

≤ aα(q)Gα
D(x,z).

Then (4.4) holds. Now, we shall prove (4.5). Let ε > 0, then by (2.11) and (2.12), there
exist r1 ∈ (0,1) and M > 1 such that

sup
ξ∈D

∫
(|ξ−y|≤r1)∩D

(
ρD(y)
ρD(ξ)

) α
2

Gα
D(ξ,y) |q(y)|dy ≤

ε

2
(4.7)

and

sup
ξ∈D

∫
(|y|≥M)∩D

(
ρD(y)
ρD(ξ)

) α
2

Gα
D(ξ,y) |q(y)|dy ≤

ε

2
. (4.8)

Let r > 0. Then using Theorem 2.3, we have for all x,z ∈ D

1
Gα

D(x,z)

∫
D∩B(x0,r)

Gα
D(x,y)Gα

D(y,z) |q(y)|dy ≤ C0

∫
D∩B(x0,r)

(ρD(y)
ρD(x)

) α
2

Gα
D(x,y)+

(
ρD(y)
ρD(z)

) α
2

Gα
D(z,y)

 |q(y)|dy

≤ 2C0sup
ξ∈D

∫
D∩B(x0,r)

(
ρD(y)
ρD(ξ)

) α
2

Gα
D(ξ,y) |q(y)|dy.

On the other hand, it follows from (4.7) and (4.8) that∫
D∩B(x0,r)

(
ρD(y)
ρD(ξ)

) α
2

Gα
D(ξ,y) |q(y)|dy ≤ ε+

∫
Ω

(
ρD(y)
ρD(ξ)

) α
2

Gα
D(ξ,y) |q(y)|dy,

where Ω = B(x0,r)∩Bc(ξ,r1)∩ (1 ≤ |y| ≤ M)∩D. So, we obtain by (3.1) that∫
D∩B(x0,r)

(
ρD(y)
ρD(ξ)

) α
2

Gα
D(ξ,y) |q(y)|dy ≤ ε+ c

∫
Ω

1
|ξ− y|n−α

(1∧
(δD(y))α

1∧ |ξ− y|α
) |q(y)|dy

≤ ε+
c
rn

1

∫
D∩B(x0,r)∩(1≤|y|≤M)

(δD (y))α |q(y)|dy.

Hence, by letting r→ 0, we reach (4.5) from Proposition 4.2.
The assertion (4.6) follows immediately from Theorem 2.3 and (4.8). �

Corollary 4.6. Let q be a nonnegative function in K∞α (D). Then we have∥∥∥Gα
D(q)

∥∥∥
∞
= sup

x∈D

∫
D

Gα
D(x,y)q(y)dy <∞.
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Proof. Put h = 1 in (4.4) and using Proposition 4.3, we obtain the result. �

Corollary 4.7. There exists c > 0 such that for each q ∈ K∞α (D),

sup
x∈D

∫
D

(
ρD(y)
ρD(x)

) α
2−1

Gα
D(x,y) |q(y)|dy ≤ caα (q) . (4.9)

Moreover, if x0 ∈ D we have

lim
r→0

sup
x∈D

∫
B(x0,r)∩D

(
ρD(y)
ρD(x)

) α
2−1

Gα
D(x,y) |q(y)|dy

 = 0 (4.10)

and

lim
M→∞

sup
x∈D

∫
(|y|≥M)∩D

(
ρD(y)
ρD(x)

) α
2−1

Gα
D(x,y) |q(y)|dy

 = 0. (4.11)

Proof. By Proposition 2.13, the function wα is inHα
D and satisfies wα(x) ≈ (ρD(x))

α
2−1 .

Hence, we deduce the result by applying Proposition 4.5 for h = wα. �

Corollary 4.8. Let q be a function in K∞α (D). Then the function

y 7→
(ρD(y))α−1

|y|n−α
q(y) ∈ L1(D).

In particular, the function y 7→ (δD(y))α−1 q(y) is in L1
loc(D).

Proof. Let x0 ∈ D, we have by (3.3) that for y ∈ D

(ρD(y))α−1

|y|n−α
≤ c
|x0|

n−α

ρD(x0)
Gα

D(x0,y)
(
ρD(y)
ρD(x0)

) α
2−1

.

Hence the result follows by (4.9). �

4.3 Modulus of continuity

In order to prove our existence results, we need the following theorem. The idea of the
proof follows closely from the properties of functions in K∞α (D).

Theorem 4.9. Let q be a nonnegative function in K∞α (D). Then the family of functions
defined in D by

Λq =

x 7→ J ( f ) (x) :=
∫

D

(
ρD (y)
ρD (x)

) α
2−1

Gα
D (x,y) f (y)dy : f ∈ K∞α (D) , | f | ≤ q


is uniformly bounded and equicontinuous in D∪{∞} .ConsequentlyΛq is relatively compact
in C0(D).
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Proof. Let q be a nonnegative function in K∞α (D) and f be a function in K∞α (D) such that
| f | ≤ q in D. By (4.9), we have

sup
x∈D
|J ( f ) (x)| ≤ sup

x∈D

∫
D

(
ρD (y)
ρD (x)

) α
2−1

Gα
D (x,y)q (y)dy <∞.

Hence Λq is uniformly bounded. Let us prove the equicontinuity. Let x0 ∈ D and ε > 0.
Then by (4.10) and (4.11), there exist r > 0 and M > 1 such that

sup
z∈D

∫
D∩B(x0,2r)

(
ρD(y)
ρD(z)

) α
2−1

Gα
D (z,y)q(y)dy ≤

ε

2
(4.12)

and

sup
z∈D

∫
(|y|≥M)∩D

(
ρD(y)
ρD(z)

) α
2−1

Gα
D (z,y)q(y)dy ≤

ε

2
. (4.13)

Now, if x0 ∈ D and x, x′ ∈ B(x0,r)∩D, we have

∣∣∣J ( f ) (x)− J ( f ) (x′)
∣∣∣ ≤ ε+

∫
Ω

∣∣∣∣∣∣∣
(
ρD(y)
ρD(x)

) α
2−1

Gα
D (x,y)

(
ρD(y)
ρD(x′)

) α
2−1

Gα
D
(
x′,y

)∣∣∣∣∣∣∣q(y)dy

= : ε+ I(x, x′)

where Ω = Bc(x0,2r)∩ (|y| ≤ M)∩D.
On the other hand, since |x− x0| ≤ r and |x′− x0| ≤ r, then for y ∈ Bc(x0,2r), we have
|x− y| ≥ r and |x′− y| ≥ r. Hence, it follows from (3.4) that∣∣∣∣∣∣ Gα

D (x,y)

(ρD(x))
α
2−1
−

Gα
D (x′,y)

(ρD(x′))
α
2−1

∣∣∣∣∣∣ (ρD(y))
α
2−1 ≤ c (δD(y))α−1 .

Now, since for each y ∈ Ω, the function x 7→
Gα

D (x,y)

(ρD(x))
α
2−1

is continuous in B(x0,r), we de-

duce by Corollary 4.8 and the dominated convergence theorem that I(x, x′) tends to zero as
|x− x′| → 0.
Next, if x0 ∈ ∂D and x ∈ B(x0,r)∩D, then we have by (4.12) and (4.13), that

|J ( f ) (x)| ≤ ε+

∫
Ω

(
ρD(y)
ρD(x)

) α
2−1

Gα
D (x,y) |q(y)|dy

= : ε+ I(x).

Now, for y ∈Ω, we have by (3.4) that
Gα

D (x,y)

(ρD(x))
α
2−1
→ 0 as |x− x0|→ 0. So by a same argument

as for I(x, x′),we prove that I(x) tends to zero as |x− x0|→ 0 and then J ( f ) (x)→ 0 as x→ x0
uniformly in f .
Finally, let x ∈ D such that |x| ≥ M+1, then we have by (4.13), that

|J ( f ) (x)| ≤ ε+
∫

(|y|≤M)∩D

(
ρD(y)
ρD(x)

) α
2−1

Gα
D (x,y) |q(y)|dy.
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Since |y| ≤ M, then |x− y| ≥ 1 and by (3.4) we deduce that

|J ( f ) (x)| ≤ ε+ c
∫

(|y|≤M)∩D

(ρD(y))α−1

|x− y|n−α
|q(y)|dy

≤ ε+
c

(|x| −M)n−α

∫
(|y|≤M)∩D

(δD(y))α−1 |q(y)|dy.

Using Corollary 4.8, we deduce that J ( f ) (x)→ 0 as |x| →∞ uniformly in f . Consequently,
by Ascoli’s theorem, we deduce that Λq is relatively compact in C0(D). �

5 First existence result

In this section, we aim at proving the existence of a positive continuous solution to the
following nonlinear elliptic problem

(Pλ)


(−∆)

α
2 u = ϕ (·,u) in D (in the distributional sense)

lim
x→∂D

u(x)
wα(x)

= λ,

lim
|x|→∞

u(x)
wα(x)

= λ,

where λ is a nonnegative constant.

Remark 5.1. (i) For λ > 0, we shall prove the uniqueness of the solution of problem (Pλ) .
(ii) We remark that problem (P0) is equivalent to problem (P).

In order to reach our purpose, we need the following lemma.

Lemma 5.2. Let ϕ be a function satisfying (H1) and (H2) and u be a positive continuous
function in D such that

lim
x→∂D∪{∞}

u(x)
wα(x)

= λ > 0. (5.1)

Then the function x 7→
Gα

D(ϕ(·,u)) (x)
wα(x)

belongs to C0(D).

Proof. Since the function x 7→
u(x)

wα(x)
is positive and continuous in D and satisfies (5.1), it

follows that u(x) ≈ wα(x), for x ∈ D and so by (2.24), we deduce that u(x) ≈ (ρD(x))
α
2−1 .

Then we conclude by the monotonicity of ϕ that there exists c > 0 such that

ϕ(x,u(x)) ≤ ϕ(x,c (ρD(x))
α
2−1), x ∈ D. (5.2)

Put θ(x) := ϕ(x,c (ρD(x))
α
2−1), for x ∈ D. Then we have

Gα
D(θ)(x) =

∫
D

Gα
D(x,y)θ(y)dy

= (ρD(x))
α
2−1

∫
D

(
ρD(y)
ρD(x)

) α
2−1

Gα
D(x,y) (ρD(y))1− α2 θ (y)dy.
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Since ϕ satisfies hypothesis (H2), then it follows from Theorem 4.9 that the function

x 7→ (ρD(x))1− α2 Gα
D(θ)(x) ∈C0(D). (5.3)

This implies by (5.2) and Proposition 3.3, that the function x 7→ (ρD(x))1− α2 Gα
D(ϕ(·,u)) (x)

belongs to C0(D). The result is deduced by (2.24). �

Remark 5.3. Let λ > 0 and put u = λwα in Lemma 5.2, we obtain that the function

x 7→
Gα

D(ϕ(·,λwα)) (x)
wα(x)

∈C0(D). (5.4)

Lemma 5.4. Let λ > 0 and ϕ be a function satisfying (H1) and (H2). Let u be a positive
continuous function in D. Then u is a solution of problem (Pλ) if and only if u satisfies the
integral equation

u(x) = λwα(x)+
∫

D
Gα

D(x,y)ϕ(y,u(y))dy, x ∈ D. (5.5)

Proof. Suppose that u satisfies (5.5). Since ϕ is nonincreasing with respect to the second
variable, we have obviously

Gα
D (ϕ (·,u)) ≤Gα

D (ϕ (·,λwα)) .

This together with (5.4) implies that lim
x→∂D∪{∞}

u(x)
wα(x)

= λ > 0.Now, since u is continuous, we

apply (−∆)
α
2 on both sides of (5.5) and we conclude that u is a positive continuous solution

of problem (Pλ) by Propositions 2.9 and 2.13.
Conversely, suppose that u is a positive continuous solution of problem (Pλ), then u satisfies
(5.1). It follows by Lemma 5.2 that the function v = u−Gα

D (ϕ (·,u)) satisfies
(−∆)

α
2 v = 0 in D,

lim
x→∂D∪{∞}

v(x)
wα(x)

= λ.

Thus we deduce by Proposition 2.15, that v = λwα. This ends the proof. �

Proposition 5.5. Let ϕ be a function satisfying (H1) and (H2) and let 0 < µ ≤ λ. Then we
have

0 ≤ uλ−uµ ≤ (λ−µ)wα in D,

where uλ and uµ are respectively solutions of problems (Pλ) and (Pµ).

Proof. Let h be the function defined on D by

h (x) =

 ϕ(x,uλ(x))−ϕ(x,uµ(x))
uµ(x)−uλ(x) if uµ (x) , uλ (x)

0 if uµ (x) = uλ (x) .
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Then h ∈ B+ (D) . Using Lemma 5.4, we deduce(
uλ−uµ

)
(x)+Gα

D

(
h
(
uλ−uµ

))
(x) = (λ−µ)wα (x) .

Furthermore, by (5.4), we conclude that

Gα
D

(
h
∣∣∣uλ−uµ

∣∣∣) ≤ Gα
Dϕ(·,uλ)+Gα

Dϕ(·,uµ)

≤ Gα
Dϕ(·,λwα)+Gα

Dϕ(·,µwα) <∞

Now, the result holds by Proposition 3.4. �

Theorem 5.6. Assume (H1)− (H2). Then for each λ > 0, problem (Pλ) has a unique positive
continuous solution uλ in D satisfying

λwα(x) ≤ uλ(x) ≤ γwα(x), for x ∈ D,

where γ is a constant strictly larger than λ.

Proof. In view of (5.4), the constant

γ := λ+ sup
x∈D

1
wα(x)

Gα
D(ϕ(·,λwα))(x)

is finite.
In order to apply a fixed point argument, we consider the convex set given by

Λ =
{
v ∈C(D∪{∞}) : λ ≤ v ≤ γ

}
.

We define the integral operator T on Λ by

Tv(x) := λ+
1

wα(x)

∫
D

Gα
D(x,y)ϕ(y,wα(y)v(y))dy, x ∈ D.

First, we aim to prove that the operator T maps Λ into itself. Let v ∈ Λ, we have clearly
λ ≤ Tv ≤ γ. By (5.4) with Proposition 3.3, we see Tv ∈ C(D∪ {∞}). More strongly, we
can show that TΛ is relatively compact in C(D∪ {∞}) as in the proof of Theorem 4.9. In
particular, TΛ ⊂ Λ.
So it remains to prove the continuity of T in Λ. Consider a sequence (vk)k in Λ which
converges uniformly to a function v in Λ. Then we obtain

|Tvk(x)−Tv(x)| ≤ c
∫

D
wα(y)
wα(x)

Gα
D(x,y)

1
wα(y)

|ϕ(y,wα(y)vk(y))−ϕ(y,wα(y)v(y))|dy.

Using the monotonicity of ϕ, we deduce that

1
wα(y)

|ϕ(y,wα(y)vk(y))−ϕ(y,wα(y)v(y))| ≤ 2θ (y) ,

where θ(y) :=
ϕ(y,λwα(y))

wα(y)
. By (2.24) and hypothesis (H2), the function θ ∈ K∞α (D) and so

since ϕ is continuous with respect to the second variable, we deduce by (2.24), (4.9) and
the dominated convergence theorem that

∀x ∈ D, Tvk(x)→ Tv(x), as k→∞.
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Since TΛ is relatively compact in C(D∪{∞}), we have the uniform convergence, namely,

‖Tvk −Tv‖∞→ 0 as k→∞.

Thus we have proved that T is a compact mapping from Λ to itself. Hence, by the Schauder
fixed-point theorem, T has a fixed point vλ ∈ Λ. Put uλ(x) = wα(x)vλ(x), for x ∈ D. Then uλ
is a continuous function in D and satisfies

uλ(x) = λwα(x)+
∫

D
Gα

D(x,y)ϕ(y,uλ(y))dy

and

λwα(x) ≤ uλ(x) ≤ γwα(x), x ∈ D.

By Lemma 5.4, we conclude that uλ is a solution of problem (Pλ). The uniqueness follows
by Proposition 5.5. �

Proof of Theorem 2. Let (λk) be a sequence of positive real numbers, nonincreasing to
zero. For each k ∈ N, put

γk = λk + sup
x∈D

1
wα(x)

Gα
D(ϕ (·,λkwα))(x)

and denote by uk the unique solution of problem
(
Pλk

)
. By Proposition 5.5, the sequence

(uk) decreases to a function u and so the sequence (uk −λkwα) increases to u. Moreover, we
have for each x ∈ D

u (x) ≥ uk (x)−λkwα (x)

=

∫
D

Gα
D(x,y)ϕ (y,uk (y))dy

≥

∫
D

Gα
D(x,y)ϕ (y,γkwα(y))dy > 0.

Hence, applying the monotone convergence theorem and using the continuity of ϕ with
respect to the second variable, we get

u (x) =
∫
D

Gα
D(x,y)ϕ (y,u (y))dy, x ∈ D. (5.6)

Let us prove that u is a positive continuous solution of (P). It is clear that u is continuous
on D. Indeed, we have

u = sup
k

(uk −λkwα) = inf
k

uk

and uk and wα are continuous functions in D. So applying (−∆)
α
2 on both sides of the

equation (5.6), we conclude that u is a positive continuous solution of

(−∆)
α
2 u = ϕ (·,u) (in the distributional sense).
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Furthermore, since 0 < u(x) ≤ uk(x), for each x ∈ D and k ∈ N, we deduce that

lim
x→∂D∪{∞}

u(x)
wα(x)

= 0 by applying Lemma 5.2 to γkwα. Then by (2.24), we have

lim
x→∂D

(δD(x))1− α2 u (x) = 0 and lim
|x|→∞

u(x) = 0.

This proves that u is a positive continuous solution of (P).

Corollary 5.7. Let ϕ be a function satisfying (H1) and (H2). Then for each λ ≥ 0 and for
each nonnegative continuous function f on ∂D, the following nonlinear problem

(−∆)
α
2 u = ϕ (·,u) in D (in the distributional sense)

lim
x→z∈∂D

u(x)
wα(x)

= f (z),

lim
|x|→∞

u(x)
wα(x)

= λ,

(5.7)

has a positive continuous solution u in D satisfying

u(x) =Gα
D(ϕ(·,u))(x)+Mα

D f (x)+λc0Mα
D(x,∞), x ∈ D.

Proof. Put h(x) = Mα
D f (x)+ λc0Mα

D(x,∞) and let Ψ be the function defined on D× (0,∞)
by

Ψ(x, t) = ϕ(x, t+h(x)).

Then Ψ satisfies (H1) and (H2) . Hence, by Theorem 2.17, the following problem
(−∆)

α
2 v = Ψ (·,v) in D (in the distributional sense)

lim
x→∂D

v(x)
wα(x)

= 0

lim
|x|→∞

v(x) = 0,

has a positive continuous solution v satisfying v =Gα
D(Ψ(·,v)) in D.

Then, the function

u(x) = h(x)+ v(x)

= h(x)+Gα
D(Ψ(·,v))(x)

= h(x)+Gα
D(ϕ(·,u))(x)

is a positive continuous solution of problem (5.7). This completes the proof. �

6 Second existence result

Before giving the proof of Theorem 2.18, some tools of potential theory are needed.
We are going to recall them in this paragraph and we refer to [15] or [21] for more details.
For q ∈ B+(D), we define the potential kernel Vq on B+(D) by

Vq f (x) :=
∫ ∞

0
Ex(e−

∫ t
0 q(XD

t )ds f (XD
t ))dt. (6.1)
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Note that V := V0 =Gα
D.

Furthermore if q satisfies Vq <∞, then the kernel Vq satisfies the following resolvent equa-
tion

V = Vq+Vq(qV) = Vq+V(qVq). (6.2)

In particular, if u ∈ B+(D) is such that V(qu) <∞, then we have

(I−Vq(q.))(I+V(q.))u = (I+V(q.))(I−Vq(q.)) = u. (6.3)

The following lemma plays a key role.

Lemma 6.1. Let q be a nonnegative function in K∞α (D) and v be a positive finite function
in SαD. Then for all x ∈ D, we have

exp(−aα (q))v (x) ≤ v (x)−Vq (qv) (x) ≤ v (x) .

Proof. Since v ∈ SαD then by ([3], Chap. II, Proposition 3.11), there exists a sequence ( fk)k
in B+(D) such that v = sup

k
V fk.

Let x ∈ D and k ∈ N such that 0 < V fk (x) < ∞. Consider γ(t) = Vtq fk (x) , for t ≥ 0.
Then by (6.1), the function γ is completely monotone on [0,∞) . So we deduce from ([27],
Theorem 12a) and the Schwarz inequality that logγ is convex on [0,∞) . This implies that

logγ(1) ≥ logγ(0)+
γ′(0)
γ(0)

.

That is

γ(0) ≤ γ(1)exp(−
γ′(0)
γ(0)

).

Which implies that

V fk (x) ≤ Vq fk (x)exp
(
V (qV fk) (x)

V fk (x)

)
.

Since V fk is in SαD, it follows from (4.4) that

V fk (x) ≤ exp(aα (q))Vq fk (x) .

Hence by (6.2), we obtain

exp(−aα (q))V fk (x) ≤ Vq fk (x) = V fk (x)−Vq (qV fk) (x) ≤ V fk (x) .

The result holds by letting k→∞. �

Proof of Theorem 3. We shall convert problem (Q) into a suitable integral equation. So,
we aim to show an existence result for the equation

u+V(uϕ(·,u)) = Mα
D f (x)+λc0Mα

D(x,∞), (6.4)
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where f is a non-trivial nonnegative continuous function on ∂D and λ is a nonnegative
constant.
Put

h(x) = Mα
D f (x)+λc0Mα

D(x,∞).

First, we remark by (2.24) that

h(x) ≤max(λc0,‖ f ‖∞)wα(x) ≤ c (ρD(x))
α
2−1 . (6.5)

Put q := qc be the function in K∞α (D) given by (H4).
Let Λ be the closed convex set given by

Λ =
{
u ∈ B+(D) : exp(−aα(q))h ≤ u ≤ h

}
and let T be the operator defined on Λ by

Tu = h−Vq(qh)+Vq((q−ϕ(·,u))u).

We claim that Λ is invariant under T. Indeed by (H4), we have for any u ∈ Λ

0 ≤ ϕ(·,u) ≤ q. (6.6)

Then, it follows by Lemma 6.1, that for u ∈ Λ, we have

Tu ≥ h−Vq(qh) ≥ exp(−aα(q))h.

Moreover, since for u ∈ Λ, we have u ≤ h and consequently

Tu ≤ h−Vq(qh)+Vq(qu) ≤ h.

This shows that TΛ ⊂ Λ.
Let u and v be two functions in Λ such that u ≤ v. Then from (H4) , we have

Tv−Tu = Vq
[
(q−ϕ(·,v))v− (q−ϕ(·,u))u

]
≥ 0.

Thus, T is nondecreasing on Λ. Now, let (uk) be the sequence defined by

u0 = exp(−aα(q))h and uk+1 = Tuk, for k ∈ N.

Since TΛ ⊂ Λ and from the monotonicity of T , we obtain

u0 ≤ u1 ≤ ..... ≤ un+1 ≤ h.

Hence by (H4) and the dominated convergence theorem, we conclude that the sequence (uk)
converges to a function u ∈ Λ satisfying

u = h−Vq(qh)+Vq(u(q−ϕ(·,u))).

That is

(I−Vq(q.))u+Vq(uϕ(·,u)) = (I−Vq(q.))h.
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Applying the operator (I +Vq(q.)) on both sides of the above equality and using (6.2) and
(6.3), we deduce that u satisfies (6.4).
It remains to prove that u is a positive continuous solution of problem (Q). Since q is in
K∞α (D), then we have by (6.6) that for x ∈ D

0 ≤ u(x)ϕ(x,u(x)) ≤ u(x)q(x) ≤ q(x)h(x). (6.7)

It follows from (6.5) that

0 ≤ u(x)ϕ(x,u(x)) ≤ cq(x)(ρD(x))
α
2−1. (6.8)

So by Theorem 4.9, we conclude that the function x 7→ (ρD(x))1− α2 V(uϕ(·,u))(x) is in C0(D).
According to (6.4) we deduce that u is continuous in D. Now, going back to (6.4) and
applying (−∆)

α
2 , we deduce that u satisfies

(−∆)
α
2 u+uϕ(·,u) = 0 (in the distributional sense).

On the other hand, by (6.4) and Remark 2.14, we conclude that

lim
x→z∈∂D

u(x)
wα(x)

= f (z) and lim
|x|→∞

u(x)
wα(x)

= λ.

This completes the proof. �
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