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Abstract

In this paper we investigate the foundations for analysis in infinitely-many (indepen-
dent) variables. We give a topological approach to the construction of the regular
σ-finite Kirtadze-Pantsulaia measure on R∞ (the usual completion of the Yamasaki-
Kharazishvili measure), which is an infinite dimensional version of the classical method
of constructing Lebesgue measure on Rn (see [YA1], [KH] and [KP2]). First we show
that von Neumann’s theory of infinite tensor product Hilbert spaces already implies
that a natural version of Lebesgue measure must exist on R∞. Using this insight, we
define the canonical version of L2[R∞,λ∞], which allows us to construct Lebesgue
measure on R∞ and analogues of Lebesgue and Gaussian measure for every separable
Banach space with a Schauder basis. When H is a Hilbert space and λH is Lebesgue
measure restricted to H , we define sums and products of unbounded operators and
the Gaussian density for L2[H ,λH ]. We show that the Fourier transform induces two
different versions of the Pontryagin duality theory. An interesting new result is that the
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character group changes on infinite dimensional spaces when the Fourier transform is
treated as an operator. Since our construction provides a complete σ-finite measure
space, the abstract version of Fubini’s theorem allows us to extend Young’s inequality
to every separable Banach space with a Schauder basis. We also give constructive ex-
amples of partial differential operators in infinitely many variables and briefly discuss
the famous partial differential equation derived by Phillip Duncan Thompson [PDT],
on infinite-dimensional phase space to represent an ensemble of randomly forced two-
dimensional viscous flows.
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Introduction

On finite-dimensional space it is useful to think of Lebesgue measure in terms of geometric
objects (e.g.,volume, surface area, etc.). Thus, it is natural to expect that this measure
will leave these objects invariant under translations and rotations, so that rotational and
translational invariance is an intrinsic property of Lebesgue measure. However, we then find
ourselves disappointed when we try to use this property to help define Lebesgue measure
on R∞. A more fundamental problem is that the natural Borel algebra for R∞, B[R∞], does
not allow an outer measure (since the measure of any open set is infinite).

The lack of any definitive understanding of the cause for this lack of invariance on R∞

has led some researchers to believe that it is not possible to have a reasonable version of
Lebesgue measure on R∞ (see, for example, DaPrato [DP] or Bakhtin and Mattingly [BM]).
In many applications, the study of infinite dimensional analysis is restricted to separable
Hilbert spaces, using Gaussian measure as a replacement for (the supposed nonexistent)
Lebesgue measure. In some cases the Hilbert space structure arises as a natural state space
for the modeling of systems. In other cases, both the Hilbert spaces and probability mea-
sures are imposed for mathematical convenience and are physically artificial and limiting.
However, all reasonable models of infinite dimensional (physical) systems require some
functional constraint on the effects of all but a finite number of variables. Thus, what is
needed, in general, is the imposition of constraints on the functions while preserving the
modeling freedom associated with infinitely-many independent variables (in some well-
defined sense). Any attempt to solve this problem necessarily implies a theory of Lebsegue
measure on R∞.

Even if a reasonable theory of Lebsegue measure on R∞ exists, this is not sufficient to
make it useful in engineering and science. In addition, all the tools developed for finite-
dimensional analysis, differential operators, Fourier transforms, etc are also required. Fur-
thermore, researchers need operational control over the convergence properties of these
tools. In particular, one must be able to approximate an infinite-dimensional problem as a
natural limit of the finite-dimensional case in a manner that lends itself to computational
implementation. This implies that a useful approach also has a well-developed theory of
convergence for infinite sums and products of unbounded linear operators.
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Historical Background

Research into the general problem of Lebesgue measure on infinite-dimensional vector
spaces and R∞ in particular, has a long and varied past, with participants living in a number
of different countries, during times when scientific communication was constrained by war,
isolation and/or national competition. These conditions allowed quite a bit of misinforma-
tion and folklore to grow up around the subject, so that even experts may have a limited
view of the history. Our own experience suggest that at least a brief survey of some impor-
tant events is in order. (We do not claim completeness and apologize in advance if we fail
to mention equally important contributions.)

Early studies in infinite dimensional analysis focused on the foundations of probability
theory and had a broad base of participation. However, the major inputs were made by
researchers in Poland, Russia, and France, with later contributions from the US. The first
important advance of the general theory was made in 1933 when Haar [HA] proved the
following theorem:

Theorem 0.1. On every locally compact abelian group G there exists a non-negative regu-
lar measure m (Haar measure) on G, which is not identically zero and is translation invari-
ant. That is, m(A+ x) = m(A) for every x ∈G and every Borel set A in G.

This theorem stimulated interest in the subject and von Neumann [VN1] proved that
it is the only locally finite left-invariant Borel measure on the group (uniqueness up to a
mulitplicative constant). Weil [WE] developed an axiomatic approach to the subject, made
a number of important refinements and, proved the “Inverse Weil theorem” (in moderm
terms):

Theorem 0.2. If G is a (separable) topological group and m is a translation invariant Borel
measure on G, then it is always possible to define an equivalent locally compact topology
on G.

In 1946, Oxtoby [OX] initiated the study of translation-invariant Borel measures on
Polish groups (i.e., complete separable metric groups). In this paper, Oxtoby provides a
proof of the following result which he attributes to Ulam:

Theorem 0.3. Let G be any complete separable metric group which is not locally compact,
and let m be any left-invariant Borel measure in G. Then every neighborhood contains an
uncountable number of disjoint mutually congruent sets of equal finite positive measure.

Stated another way, he proved that

Theorem 0.4. There always exists a left-invariant Borel measure on any Polish group which
assigns positive finite measure to at least one set and vanishes on singletons. However, a
locally finite measure is possible if and only if the group is locally compact.

(In 1967, Vershik [V] proved a related result for probability measures.) Apparently
uninformed of Oxtoby’s work, In 1959 Sudakov [SU] independently proved a special case
of Theorem 0.4: If R∞ is regarded as a linear topological space, then there does not exist
a σ-finite translation-invariant Borel measure for R∞. In 1964, Elliott and Morse [EM]
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developed a general theory of translation invariant product measures (non-σ-finite) and, in
1965, C. C. Moore [MO] initiated the study of measures that are translation invariant with
respect to vectors in R∞0 (i.e., the set of sequences that are zero except for a finite number
of terms). This work was extended and refined by Hill [HI] in 1971.

Motivated by Kakutani’s work on infinite product measures [KA], a number of young
Japanese researchers entered the field. In 1973, Hamachi [HA] made major improvements
on Hill’s work which, indirectly suggested the problem of identifying the largest group T,
of admissible translations in the sense of invariance for any σ-finite Borel measure µ on
R∞ which assigns the value of one to [−1

2 ,
1
2 ]ℵo and is metrically transitivity with respect

to R∞0 (equivalently, for each A with µ(A) > 0, there is a sequence (hk) ∈ R∞0 such that
µ(R∞ \∪∞k=1(A+hk)) = 0).

Yamasaki [YA1] solved this problem in 1980. Unaware of the Yamasaki’s proof,
Kharazishvili independently solved the same problem in 1984. In 1991 Kirtadze and Pantsu-
laia [KP1] provided yet another solution (see also Pantsulaia [PA]). Finally, In 2007, Kir-
tadze and Pantsulaia proved that, if µ is the completion of the measure µ, then: (see [KP2])

Theorem 0.5. The measure µ is the unique regular σ-finite measure on R∞ (uniqueness up
to a mulitplicative constant), which is assigns the value one to the set [−1

2 ,
1
2 ]ℵo , is invariant

under translations from the group `1 and has the metrically transitivity property with respect
to `1.

In the mean time, in 1991 Baker [BA1], unaware of the Elliott-Morse measures, dropped
the requirement that the measure beσ-finite and constructed a translation invariant measure,
ν, on R∞ (see also Baker (2004), [BA2]). In 1992, Ritter and Hewitt [RH] constructed a
translation invariant measure related to that of Elliott Morse.

Starting in 2007, A. M. Vershik (see [V1], [V2], [V3] and references contained therein)
started an investigation of an infinite-dimensional analogue of Lebesgue measure that is
constructed in a different manner than that studied in the previous papers. Roughly stated,
he considers the weak limit as n→∞ of invariant measures on certain homogeneous spaces
(hypersurfaces of high dimension) of the Cartan subgroup of the Lie groups SL(n,R) (i.e.,
the subgroups of diagonal matrices with unit determinant). Vershik’s measure is also unique
and invariant under the multiplicative group of positive functions, suggesting that a loga-
rithmic transformation may lead to a version of the measure in this paper. (The paper of
Vandev [VA] should also be consulted.)

Purpose

The purpose of this paper is to show that a minor change in the way we represent R∞

makes it possible to construct a σ-finite regular version of Lebesgue measure using basic
methods of measure theory from Rn. Since the measure is regular, it turns out to be the
Kirtadze and Pantsulaia [KP1] measure, which is unique (see Theorem 0.5). Using our
approach, we construct an analogue of both Lebesgue and Gaussian measure (countably
additive) on every (classical) separable Banach space with a Schauder basis. The version
of Gaussian measure constructed is also rotationally invariant (a property not shared by
Wiener measure). This approach also allows us to satisfy all the requirements of a useful
infinite dimensional theory.
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Summary

In the first section, we show how von Neumann’s infinite tensor product Hilbert space
theory implies that a natural version of Lebesgue measure must exist on R∞ and points to
a possible approach. In the first part of Section 2, we show that a slight change in thinking
about the cause for problems with unbounded measures on R∞ makes the construction of
Lebesgue measure not only possible, but no more difficult then the same construction on
Rn. (We denote it by R∞I , for reasons that are discussed in this section.) We also provide
natural analogues of Lebesgue and Gaussian measure for every separable Banach space
with a Schauder basis and show that `1 is the maximal translation invariant subspace. In
the last part of Section 2, we show that `2 is the maximal rotation invariant subspace. In
Section 3, we study the convergence properties of infinite sums and products of bounded
and unbounded linear operators. In Section 4, we investigate some of the function spaces
over R∞I and in Section 5, we discuss Fourier transforms and Pontryagin duality theory for
Banach spaces. A major result is that there are two different extensions of the Pontrjagin
Duality theory for infinite dimensional spaces. In this section, we also show that our theory
allows us to extend Young’s inequality to ever separable Banach space with a Schauder
basis. In Section 6, we give some constructive examples of partial differential operators in
infinitely many variables. This allows us to briefly discuss the famous partial differential
equation derived by Phillip Duncan Thompson [PDT], on infinite-dimensional phase space
to represent an ensemble of randomly forced two-dimensional viscous flows.

1 Why λ∞ Must Exist

In order to see that some reasonable version of Lebesgue measure must exist, we need to
review von Neumann’s infinite tensor product Hilbert space theory [VN2]. To do this, we
first define infinite products of complex numbers. (There are a number of other possibilities,
see [EM], [GU] and [PA], pg. 272-274.) In order to avoid trivialities, we always assume
that, in any product, all terms are nonzero.

Definition 1.1. If {zi} is a sequence of complex numbers indexed by i ∈ N (the natural
numbers),

1. We say that the product
∏

i∈N zi is convergent with limit z if, for every ε > 0, there is a
finite set J(ε) such that, for all finite sets J ⊂N, with J(ε)⊂ J, we have

∣∣∣∏i∈J zi− z
∣∣∣< ε.

2. We say that the product
∏

i∈N zi is quasi-convergent if
∏

i∈N |zi| is convergent. (If the
product is quasi-convergent, but not convergent, we assign it the value zero.)

We note that

0 <
∣∣∣∣∏i∈N

zi

∣∣∣∣ <∞ if and only if
∑

i∈N
|1− zi| <∞. (1.1)

LetHi = L2[R,λ] for each i ∈ N and letH2
⊗ = ⊗̂

∞
i=1L2[R,λ] be the infinite tensor product of

von Neumann. To see what this object looks like:

Definition 1.2. Let g = ⊗
i∈N

gi and h = ⊗
i∈N

hi be inH2
⊗.
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1. We say that g is strongly equivalent to h (g ≡s h) if and only if
∑
i∈N

∣∣∣1−〈gi,hi〉i

∣∣∣ <∞ .

2. We say that g is weakly equivalent to h (g ≡w h) if and only if
∑
i∈N

∣∣∣1− ∣∣∣〈gi,hi〉i

∣∣∣ ∣∣∣ <∞.
Proofs of the following may be found in von Neumann [VN2] (see also [GZ], [GZ1]).

Lemma 1.3. We have g ≡w h if and only if there exist zi, |zi | = 1, such that ⊗
i∈N

zigi ≡
s ⊗

i∈N
hi.

Theorem 1.4. The relations defined above are equivalence relations onH2
⊗, which decom-

posesH2
⊗ into disjoint equivalence classes (orthogonal subspaces).

Definition 1.5. For g = ⊗
i∈N

gi ∈ H
2
⊗, we define H2

⊗(g) to be the closed subspace generated

by the span of all h ≡s g and we call it the strong partial tensor product space generated by
the vector g. (von Neumann called it an incomplete tensor product space.)

Theorem 1.6. For the partial tensor product spaces, we have the following:

1. If hi , gi occurs for at most a finite number of i, then h = ⊗
i∈N

hi ≡
s g = ⊗

i∈N
gi.

2. The spaceH2
⊗(g) is the closure of the linear span of h = ⊗

i∈N
hi such that hi , gi occurs

for at most a finite number of i.

3. If g = ⊗i∈Ngi and h = ⊗i∈Nhi are in different equivalence classes ofH2
⊗, then (g,h)⊗ =∏

i∈N 〈gi,hi〉i = 0.

4. H2
⊗(g)w = ⊕

h≡wg

[
H2
⊗(h)s

]
.

5. For each g, H2
⊗(g)s is a separable Hilbert space.

6. For each g, H2
⊗(g)w is not a separable Hilbert space.

It follows from (6) thatH2
⊗ = ⊗̂

∞
i=1L2[R,λ] is not a separable Hilbert space.

From (5), we see that it is reasonable to define L2[R∞,λ∞] = H2
⊗(h)s, for some h =

⊗∞i=1hi. This definition is ambiguous, but, in most applications, the particular version does
not matter. To remove the ambiguity, we should identify a canonical version of h = ⊗∞i=1hi.
Any reasonable version of λ∞ should satisfy λ∞(I0) = 1, where I = [−1

2 ,
1
2 ] and I0 = ×

∞
i=1I.

Definition 1.7. If χI is the indicator function for I and hi = χI , we set h = ⊗∞i=1hi. We define
the canonical version of L2[R∞,λ∞] = L2[R∞,λ∞](h)s.

2 Lebesgue Measure on R∞I
2.1 The Construction

We now have the problem of identifying the measure space associated with L2[R∞,λ∞](h)s.
In the historical approach to the construction of infinite products of measures {µk, k ∈N} on
R∞, the chosen topology defines open sets to be the (cartesian) product of an arbitrary finite
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number of open sets in R, while the remaining infinite number are copies of R (cylindrical
sets). The success of Kolmogorov’s work on the foundations of probability theory naturally
led to the condition that µk(R) be finite for all but a finite number of k (see [KO]). Thus,
any attempt to construct Lebesgue measure via this approach starts out a failure in the
beginning. However, Kolmogorov’s approach is not the only way to induce a total measure
of one for the spaces under consideration.

Our definition of the canonical version of L2[R∞,λ∞] offers another approach. To see
how, consider a simple extension of the theory on R. Let I = [−1

2 ,
1
2 ] and define RI = R× I1,

where I1 =
∞
×

i=2
I. If B(R) is the Borel σ-algebra for R, let B(RI) be the Borel σ-algebra

for RI . For each set A ∈ B(R) with λ(A) < ∞, let AI be the corresponding set in B(RI),
AI = A× I1. We define λ∞(AI) by:

λ∞(AI) = λ(A)×
∞∏

i=2

λ(I) = λ(A).

We can construct a theory of Lebesgue measure on RI that completely parallels that on R.
This suggests that we use Lebesgue measure and replace the (tail end of the) infinite product
of copies of R by infinite products of copies of I. The purpose of this section is to provide
such a construction. Since we will be studying unbounded measures, for consistency, we
use the following conventions: 0 ·∞ = 0 and 0 ·∞∞ =∞.

Recall that R∞ is the set of all x = (x1, x2, · · ·), where xi ∈R. This is a linear space which
is not a Banach space. However, it is a complete metric space with metric given by:

d(x,y) =
∑∞

n=1

1
2n
|xn− yn|

1+ |xn− yn|
.

Remark 2.1. R∞ is a special case of a Polish space, which Banach called a Fréchet space
i.e., a Polish space with a translation invariant metric (see Banach [BA]). The topology
generated by d(·, ·) is generally known as the Tychonoff topology.

For each n, define Rn
I = R

n× In, where In =
∞
×

i=n+1
I.

Definition 2.2. If An = A× In, Bn = B× In are any sets in Rn
I , then we define:

1. An∪Bn = A∪B× In,

2. An∩Bn = A∩B× In, and

3. Bc
n = Bc× In.

In order to avoid confusion, we always assume that I0 = ×
∞
i=1I ⊂ R1

I . We can now define
the topology for Rn

I via the following class of open sets:

On =
{
Un : Un = U × In, U open in Rn} .
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2.1.1 Definition of R∞I
It is easy to see that Rn

I ⊂ R
n+1
I . Since this is an increasing sequence, we can define R′∞I by:

R′∞I = limn→∞R
n
I =

∞

∪
k=1
Rk

I .

Let τ1 be the topology on R′∞I = X1 induced by the class of open sets O defined by:

O =

∞⋃
n=1

On =

∞⋃
n=1

{
Un : Un = U × In, U open in Rn},

and let τ2 be topology on R∞ \R′∞I = X2 induced by the metric d2, for which d2(x,y)= 1, x,
y and d2(x,y) = 0, x = y, for all x,y ∈ X2.

Definition 2.3. We define (R∞I , τ) to be the sum (X1, τ1) and (X2, τ2), so that every open set
in (R∞I , τ) is union of two disjoint sets G1∪G2, where G1 is open in (X1, τ1) and G2 is open
in (X2, τ2).

It now follows from the above construction thatR∞I =R
∞ as sets. (However, they are not

equal as topological spaces.) The following result shows that convergence in the τ-topology
always implies convergence in the Tychonoff topology.

Theorem 2.4. If yk converges to x in the τ-topology, then yk converges to x in the Tychonoff
topology.

Proof. Case 1. If x ∈ R∞ \R′∞I then there is N such that yk = x for all k > N. Indeed, for
a neighborhood of diameter 1

2 about x, there is a N such that d2(x,yk) < 1/2 for all k > N.
This means that yk = x for k > N ({z : d2(x,z) < 1/2} only contains x), so that yk converges
to x in the Tychonoff topology.

Case 2. If x ∈ R′∞I and yk converges to x, then for any neighborhood Un ⊂ On, there is
N such that or all k > N, yk ∈ Un. This means that yk ∈ R

′∞
I for k > N, so that yk converges

to x in the Tychonoff topology. �

2.1.2 Definition of B(R∞I )

In a similar manner, if B(Rn
I ) is the Borel σ-algebra for Rn

I (i.e., the smallest σ-algebra
generated by the On), then B(Rn

I ) ⊂B(Rn+1
I ), so we can define B′(R∞I ) by:

B
′(R∞I ) = limn→∞B(Rn

I ) =
∞

∪
k=1
B(Rk

I ).

If P(·) denotes a powerset of a set (i.e., P(A) = {X : X ⊆ A}), let B(R∞I ) be the smallest σ-
algebra containing B′(R∞I )∪P(R∞I \∪

∞
n=1R

n
I ). (It is obvious that the class B(R∞I ) coincides

with Borel σ-algebra generated by the τ-topology on R∞.) From our definition of B(R∞I )
we see that B(R∞) ⊂B(R∞I ) and the containment is proper.

Theorem 2.5. λ∞(·) is a measure onB(Rn
I ), equivalent to n-dimensional Lebesgue measure

on Rn.



Constructive Analysis in Infinitely Many Variables 115

Proof. If A =
∞
×

i=1
Ai ∈ B(Rn

I ), then λ(Ai) = 1 for i > n so that the series λ∞(A) =
∏∞

i=1λ(Ai)

always converges. Furthermore,

0 < λ∞(A) =
∏∞

i=1
λ(Ai) =

∏n

i=1
λ(Ai) = λn(

n
×

i=1
Ai). (2.1)

Since sets of the type A =
n
×

i=1
Ai generate B(Rn), we see that λ∞(·), restricted to Rn

I , is

equivalent to λn(·). �

Corollary 2.6. The measure λ∞(·) is both translationally and rotationally invariant on
(Rn

I ,B[Rn
I ]).

2.2 The Extension to R∞I
It is not obvious that λ∞(·) can be extended to a countably additive measure on B(R∞I ).

Definition 2.7. Let

∆0 = {Kn = K × In ∈B(Rn
I ) ⊂B(R∞I ) : n ∈ N, K is compact and 0 < λ∞(Kn) <∞},

∆ = {PN =
⋃N

i=1
Kni , N ∈ N; Kni ∈ ∆0 and λ∞(Knl ∩Knm) = 0, l , m}.

Definition 2.8. If PN ∈ ∆, we define

λ∞(PN) =
∑N

i=1
λ∞(Kni).

Since PN ∈B(Rn
I ) for some n, and λ∞(·) is a measure on B(Rn

I ), the next result follows:

Lemma 2.9. If PN1 , PN2 ∈ ∆ then:

1. If PN1 ⊂ PN2 , then λ∞(PN1) ≤ λ∞(PN2).

2. If λ∞(PN1 ∩PN2) = 0, then λ∞(PN1 ∪PN2) = λ∞(PN2)+λ∞(PN2).

Definition 2.10. If G ⊂ R∞I is any open set, we define:

λ∞(G) = lim
N→∞

sup {λ∞(PN) : PN ∈ ∆, PN ⊂G, } .

Theorem 2.11. If O is the class of open sets in B(R∞I ), we have:

1. λ∞(R∞I ) =∞.

2. If G1, G2 ∈O, G1 ⊂G2, then λ∞(G1) ≤ λ∞(G2).

3. If {Gk} ⊂O, then
λ∞(

⋃∞

k=1
Gk) ≤

∑∞

k=1
λ∞(Gk).

4. If the Gk are disjoint, then

λ∞(
⋃∞

k=1
Gk) =

∑∞

k=1
λ∞(Gk).
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Proof. The proof of (1) is standard. To prove (2), observe that

{PN : PN ⊂G1} ⊂
{
P′N : P′N ⊂G2

}
,

so that λ∞(G1) ≤ λ∞(G2). To prove (3), let PN ⊂
⋃∞

k=1 Gk. Since PN is compact, there is a
finite number of the Gk which cover PN , so that PN ⊂

⋃L
k=1 Gk. Now, for each Gk, there is a

PNk ⊂Gk. Furthermore, as PN is arbitrary, we can assume that PN = P′N =
⋃L

k=1 PNk . Since
there is an n such that all PNk ∈B(Rn

I ), we may also assume that λ∞(PNl ∩PNm) = 0, l , m.
We now have that

λ∞(PN) =
L∑

k=1

λ∞(PNk ) 6
L∑

k=1

λ∞(Gk) 6
∞∑

k=1

λ∞(Gk).

It follows that
λ∞(

⋃∞

k=1
Gk) ≤

∑∞

k=1
λ∞(Gk).

If the Gk are disjoint, observe that if PN ⊂ P′M,

λ∞(P′M) ≥ λ∞(PN) =
L∑

k=1

λ∞(PNk ).

It follows that
λ∞(

⋃∞

k=1
Gk) ≥

∑L

k=1
λ∞(Gk).

This is true for all L so that this, combined with (3), gives our result. �

If F is an arbitrary compact set in B(R∞I ), we define

λ∞(F) = inf
{
λ∞(G) : F ⊂G, G open

}
. (2.2)

Remark 2.12. At this point we see the power of B(R∞I ). Unlike B(R∞), equation (2.2) is
well-defined for B(R∞I ) because it has a sufficient number of open sets of finite measure.

Theorem 2.13. Equation (2.2) is consistent with Definition 2.6 and the results of Theorem
2.11.

Definition 2.14. Let A be an arbitrary set in R∞I .

1. The outer measure (on R∞I ) is defined by:

λ∗∞(A) = inf
{
λ∞(G) : A ⊂G, G open

}
.

We let L0 be the class of all A with λ∗∞(A) <∞.

2. If A ∈ L0, we define the inner measure of A by

λ∞,(∗)(A) = sup
{
λ∞(F) : F ⊂ A, F compact

}
.

3. We say that A is a bounded measurable set if λ∗∞(A) = λ∞,(∗)(A), and define the mea-
sure of A, λ∞(A), by λ∞(A) = λ∗∞A).



Constructive Analysis in Infinitely Many Variables 117

Theorem 2.15. Let A, B and {Ak} be arbitrary sets in R∞I with finite outer measure.

1. λ∞,(∗)(A) ≤ λ∗∞(A).

2. If A ⊂ B then λ∗∞(A) ≤ λ∗∞(B) and λ∞,(∗)(A) ≤ λ∞,(∗)(B).

3. λ∗∞(
⋃∞

k=1 Ak) ≤
∑∞

k=1λ
∗
∞(Ak).

4. If the {Ak} are disjoint, λ∞,(∗)(
⋃∞

k=1 Ak) ≥
∑∞

k=1λ∞,(∗)(Ak).

Proof. The proofs of (1) and (2) are straightforward. To prove (3), let ε > 0 be given. Then,
for each k, there exists an open set Gk such that Ak ⊂Gk and λ∞(Gk) < λ∗∞(Ak)+ε2−k. Since
(
⋃∞

k=1 Ak) ⊂ (
⋃∞

k=1 Gk), we have

λ∗∞

(⋃∞

k=1
Ak

)
6 λ∞

(⋃∞

k=1
Gk

)
6

∑∞

k=1
λ∞(Gk)

<
∑∞

k=1
[λ∗∞(Ak)+ε2−k] =

∑∞

k=1
λ∗∞(Ak)+ε.

Since ε is arbitrary, we are done.
To prove (4), let F1, F2, . . . , FN be compact subsets of A1, A2, . . . , AN , respectively.

Since the Ak are disjoint,

λ∞,(∗)

(⋃∞

k=1
Ak

)
> λ∞

(⋃N

k=1
Fk

)
=

∑N

k=1
λ∞(Fk).

Thus,

λ∞,(∗)

(⋃∞

k=1
Ak

)
≥

∑N

k=1
λ∞,(∗)(Ak).

Since N is arbitrary, we are done. �

The next two important theorems follow from the last one.

Theorem 2.16. (Regularity) If A has finite measure, then for every ε > 0 there exist a
compact set F and an open set G such that F ⊂ A ⊂G, with λ∞(G \F) < ε.

Proof. Let ε > 0 be given. Since A has finite measure, it follows from our definitions of
λ∞,(∗) and λ∗∞ that there is a compact set F ⊂ A and an open set G ⊃ A such that

λ∞(G) < λ∗∞(A)+ ∈2 and λ∞(F) > λ∞,(∗)(A)− ∈2 .

Since λ∞(G) = λ∞(F)+λ∞(G \F), we have:

λ∞(G \F) = λ∞(G)−λ∞(F) < (λ∞(A)+ ε
2 )− (λ∞(A)− ε

2 ) = ε.

�

Theorem 2.17. (Countable Additivity) If the family {Ak} consists of disjoint sets with bounded
measure and A =

⋃∞
k=1 Ak, with λ∗∞(A) <∞. then λ∞(A) =

∑∞
k=1λ∞(Ak).
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Proof. Since λ∗∞(A) <∞, we have:

λ∗∞(A) 6
∑∞

k=1
λ∗∞(Ak) =

∑∞

k=1
λ∞,(∗)(Ak) 6 λ∞,(∗)(A) 6 λ∗∞(A).

It follows that λ∞(A) = λ∗∞(A) = λ∞,(∗)(A), so that

λ∞(A) = λ∞
(⋃∞

k=1
Ak

)
=

∑∞

k=1
λ∞(Ak).

�

Definition 2.18. Let A be an arbitrary set in R∞I . We say that A is measurable if A∩M ∈ L0
for all M ∈ L0. In this case, we define λ∞(A) by:

λ∞(A) = sup {λ∞(A∩M) : M ⊂ L0} .

We let L∞I be the class of all measurable sets A.

Proofs of the following results are standard (see Jones [J], pages 48-52).

Theorem 2.19. Let A and {Ak} be arbitrary sets in L∞I .

1. If λ∗∞(A) <∞, then A ∈ L0 if and only if A ∈ L∞I . In this case, λ∞(A) = λ∗∞(A).

2. L∞I is closed under countable unions, countable intersections, differences and com-
plements.

3.
λ∞(

⋃∞

k=1
Ak) ≤

∑∞

k=1
λ∞(Ak).

4. If {Ak} are disjoint,
λ∞(

⋃∞

k=1
Ak) =

∑∞

k=1
λ∞(Ak).

5. If Ak ⊂ Ak+1 for all k, then

λ∞(
⋃∞

k=1
Ak) = lim

k→∞
λ∞(Ak).

6. If Ak+1 ⊂ Ak for all k and λ∞(A1) <∞, then

λ∞(
⋂∞

k=1
Ak) = lim

k→∞
λ∞(Ak).

We end this section with an important result that relates Borel sets to L∞I -measurable
sets (Lebesgue).

Theorem 2.20. Let A be a L∞I -measurable set. Then there exists a Borel set F and a set N
with λ∞(N) = 0 such that A = F ∪N.

Thus, we see that λ∞(·) is a regular countably additive σ-finite Borel measure on R∞I =
R∞ (as sets). More important is the fact that the development is no more difficult than the
corresponding theory for Lebesgue measure on Rn.

Throughout the remainder of the paper we will also use B[R∞I ] for its completion L∞I
when convenient. This should cause no confusion since the given context will always be
clear.
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2.3 Separable Banach Spaces

In order to see what other advantages our construction of (R∞I ,B[R∞I ],λ∞(·)) offers, in this
section we study separable Banach spaces. Let B be any separable Banach space.

Recall that (see Diestel [DI], page 32):

Definition 2.21. A sequence (un) is called a Schauder basis for B if ‖un‖B = 1 and, for each
f ∈ B, there is a unique sequence (an) of scalars such that

f = limn→∞

∑n

k=1
akuk.

Definition 2.22. A sequence (vn) is called an absolutely convergent Schauder basis for B
if

∑∞
n=1 ‖vn‖B <∞ and, for each f ∈ B, there is a unique sequence (bn) of scalars such that

f = limn→∞

∑n

k=1
bkvk.

Lemma 2.23. Let (un) be a Schauder basis forB, then there exists an absolutely convergent
Schauder basis for B.

Proof. Let (vn) = ( un
2n ). Then

∞∑
n=1

‖vn‖B =

∞∑
n=1

‖un‖B

2n =

∞∑
n=1

1
2n = 1 <∞.

To see that (vn) is a Schauder basis forB, let f ∈B. By definition, there is a unique sequence
(an) of scalars such that

f = limn→∞

∑n

k=1
akuk.

If we take the sequence (bn) = (2nan), then

limn→∞

∑n

k=1
bkvk = limn→∞

∑n

k=1
akuk = f .

�

It is known that most of the natural separable Banach spaces, and all that have any use
for applications in analysis, have a Schauder basis. In particular, it is easy to see from the
definition of a Schauder basis that, for any sequence (an) ∈R∞I representing a function f ∈B,
we have limn→∞ an = 0. It follows that every separable Banach space (with a Schauder basis)
is isomorphic to a subspace of R∞I .

Let BI be the set of all sequences (an) for which limn→∞
∑n

k=1 akuk exists in B. Define

‖(an)‖BI = sup
n

∥∥∥∥∑n

k=1
akuk

∥∥∥∥
B
.

Lemma 2.24. An operator

T : (B, || · ||B)→ (BI , || · ||BI ),

defined by T ( f ) = (ak) for f = limn→∞
∑n

k=1 akuk ∈ B, is an isomorphism from B onto BI .
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Let B be a separable Banach space with a Schauder basis and let BI = T [B]. If B(BI) =
BI ∩B[R∞I ], we define the σ−algebra generated on B, and associated with B(BI) by:

BI[B] =
{
T−1(A) | A ∈B[BI]

}
=: T−1 {B [BI]} .

Note that, just as B[R∞] ⊂ B[R∞I ], we also have B[B] ⊂ BI[B] (with the containment
proper).

Theorem 2.25. Let A ∈ BI(B) and set λ̂B(A) = λ∞[T (A)]. Let λB be the completion of λ̂B,
then λB is a non-zero σ-finite Borel measure on B.

Proof. Let {vk} be an absolutely convergent Schauder basis. We first prove that, for any
L > 0 and any sequence (ak) ∈ [−L,L]ℵo , the function f =

∑∞
k=1 akvk ∈ B. We then prove that

λB is nonzero.
Part 1
Let L be given. Since (vn) is an absolutely convergent Schauder basis, given ε > 0 we

can choose N such that
∑∞

k=N ||vk|| <
ε
L . It follows that, for N ≤ m ≤ n, we have∥∥∥∥∥∥∥

n∑
k=m

akvk

∥∥∥∥∥∥∥ 6
n∑

k=m

‖vk‖ < ε.

Thus, the sequence { fn}, defined by fn =
∑n

k=1 akvk, is a Cauchy sequence in B. Since B is
a Banach space, the sequence converges.

Part 2
To prove that λB is nonzero, it suffices to show that λB

[
T−1 (I0)

]
, 0, where (I0) =

[−1
2 ,

1
2 ]ℵo . First, we note that T is an injective linear map into R∞I , so that B = T−1(I0) ∈

BI(B). Thus,
λB(B) = λ∞

[
T

(
T−1(I0)

)]
= λ∞(I0) = 1.

�

2.4 Translations

In the theorem below, we will provide a new proof that `1 is the largest (dense) group of ad-
missible translations for R∞I , so necessarily `1 is the largest group of admissible translations
for every separable Banach space B.

Recall that h(x) = ⊗∞k=1hk(xk), where hk(xk) = 1, for xk ∈ [−1
2 ,

1
2 ]. It follows from dν =

hdλ∞, that ν is absolutely continuous with respect to λ∞. Thus, ν is equivalent to λ∞. Let
Tλ∞ be the set of admissible translations for R∞I (i.e., λ∞[A− x] = λ∞[A] for all A ∈B[R∞I ]
and x ∈ Tλ∞).

Theorem 2.26. If A ∈B[R∞I ] then λ∞[A− x] = λ∞[A] if and only if Tλ∞ = `1.

Proof. Suppose that x ∈ `1. Since ν ∼ λ∞, we have that Tν = Tλ∞ (see Yamasaki [YA1]).
Thus, it suffices to prove that ν[A− x] = ν[A]. By Kakutani’s Theorem ([KA], see also
[HHK] pg. 116), ν[A− x] ∼ ν[A] if and only if

∞∏
k=1

∫ ∞

−∞

√
hk (yk)hk (yk − xk)dλ(yk) > 0. (2.3)
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Now, ∫ ∞

−∞

√
hk (yk)hk (yk − xk)dλ(yk) =

∫
[−1

2 ,
1
2 ]∩[−1

2+xk ,
1
2+xk]

dλ(yk) = (1− |xk|)+,

where r+ = max(0,r). Since x ∈ `1,
∏∞

k=n (1− |xk|)+ > 0 for n large enough. Thus, equation
(2.3) will be satisfied for every x ∈ `1, so that `1 ⊂ Tν.

Now, suppose that x ∈ Tλ∞ , so that λ∞[A− x] = λ∞[A] for all A ∈ B[R∞I ]. Thus, for
A ∈B[Rn

I ], we have

λ∞ [A− x] = λn [An− xn] ·
∞∏

k=n+1

λ
{[
−1

2 ,
1
2

]
∩

[
−1

2 − xk,
1
2 − xk

]}
= λn [An] ·

∞∏
k=n+1

λ
{[
−1

2 ,
1
2

]
∩

[
−1

2 − xk,
1
2 − xk

]}
= λn [An] ·

∞∏
k=n+1

(1− |xk|)+.

If An = In = ×
n
k=1[−1

2 ,
1
2 ], we have 1 = lim

n→∞

∞∏
k=n+1

(1− |xk|)+. It follows that
∑∞

k=1 |xk| <∞, so

that x ∈ `1. �

In closing, we note that, since λ∞ is complete and regular, it is metrically transitivity
with respect to R∞0 . It follows from Theorem 0.5 that λ∞ is unique (this comment also
applies to λB).

2.5 Gaussian measure

If we replace Lebesgue measure by the infinite product Gaussian measure, µ∞, on R∞, we
get countable additivity but lose rotational invariance. Furthermore, the µ∞ measure of
l2 is zero. On the other hand, another approach is to use the standard projection method
onto finite dimensional subspaces to construct a probability measure directly on l2. In this
case, we recover rotational invariance but not translation invariance (and lose countable
additivity). The resolution of this problem led to the development of the Wiener measure
[WSRM] and this is where we are today. A nice discussion of this and related issues can be
found in Dunford and Schwartz [DS] (see pg. 402).

We now turn to take a look at infinite product Gaussian measure from our new perspec-
tive. The canonical Gaussian measure on R is defined by:

dµ(x) =
1
√

2π
exp

{
−
|x|2

2

}
dλ(x).

Recall that µ∞ = ⊗∞k=1µ is countably additive on R∞, but its measure of `2 is zero. If we
introduce a scaled version of Gaussian measure on R∞I , we can resolve this difficulty. We
seek a family of variances {σ2

k} such that

µB(B) =
∞
⊗

k=1
µk(T [B] = 1,

where µk is a linear Gaussian measure on R with parameters (0,σk) for k ∈ N and µB is
defined by:

µB(B) =
∞
⊗

k=1
µk(T [B]),
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for any Borel subset B of B.

Lemma 2.27. Let
{
σ2

k

}
be a family of variances such that

∞∑
k=1

σ2
k <∞,

then µB
(
T−1([−L,L]ℵo)

)
> 0 for every positive number L.

Proof. Let {Xk} be the family of independent Gaussian random variables defined on some
common probability space, (Ω, B, P[·]), with law µk. If X = (X1,X2, . . . ), then

P
[{
ω ∈Ω | X(ω) ∈ [−L,L]ℵo

}]
= P

[⋂∞

k=1
{ω ∈Ω | Xk(ω) ∈ [−L,L]}

]
=

∏∞

k=1
P [{ω ∈Ω | |Xk(ω)| 6 L]}] >

∏∞

k=1

1− σ2
k

L2

, by Chebyshev’s inequality.

Clearly the product is positive. We are done since B = T−1([−L,L]ℵo) ∈B(B) and

µB (B) =
(
⊗∞k=1µk

) (
T [T−1([−L,L]ℵo)]

)
= P

[{
ω ∈Ω | X(ω) ∈ [−L,L]ℵo

}]
.

�

Theorem 2.28. If the family of variances
{
σ2

k

}
satisfies the stronger condition

∞∑
k=1

σ2
k

|xk|
<∞ (2.4)

for some sequence (xk) ∈ `1, then µB([B]) = 1.

Proof. By definition, if f ∈ B and (un) is a Schauder basis for B, then there is a sequence
of scalars (ak) such that f = limn→∞

∑n
k=1 akuk. Since T ( f ) = (ak),

|‖(an)‖|BI = sup
n

∥∥∥∥∥∥∥
n∑

k=1

akuk

∥∥∥∥∥∥∥
B

6

 ∞∑
k=1

|ak|

 ,
so that, if (an) ∈ `1, then (an) ∈ T (B) = BI .

Suppose that there is a sequence (xk) ∈ `1 such that such that the inequality (2.3) is
satisfied. As in Lemma 2.24, by Chebyshev’s inequality and inequality (2.3) we have

µB

{
T−1

(
∞
×

k=1

[
−|xk|

1/2 , |xk|
1/2

])}
> 0.

If An = Rn × (×∞k=n+1[−|xk|
1/2 , |xk|

1/2]), then An ⊂ An+1 and An ⊆ BI for all natural n. Thus,
we have

µB[T−1(BI)] ≥ lim
n→∞

µB[T−1(An)]

= lim
n→∞

∞∏
k=n+1

µk([−|xk|
1/2 , |xk|

1/2]) ≥ lim
n→∞

∞∏
k=n+1

1− σ2
k

|xk|

 = 1.

�
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Definition 2.29. We call µB a scaled version of Gaussian measure for B.

Theorem 2.30. The measure µB is a countably additive version of Gaussian measure on B.

In particular, observe that we obtain a countably additive version of Gaussian measure
for both `2 and C0[0,1] (the continuous functions x(t) on [0,1] with x(0) = 0).

2.6 Rotational Invariance

In this section we study rotational invariance on subspaces of
(
R∞I , BI[R∞] λ∞

)
. First, we

need a little more information about Gaussian measures on vector spaces. (See Yamasaki
[YA], pg. 151, for a proof of the next Theorem).

Let F be a a real vector space, let F a be its algebraic dual space, and let BF be the
smallest σ-algebra such that L(x) is measurable for each functional L ∈ F a and all x ∈ F .

Theorem 2.31. If µ is a measure on (F a, BF ), then the following are equivalent.

1. The Fourier transform of µ, µ̂, is of the form:

µ̂(x) = exp
{
−1

2 〈x, x〉
}
,

for some inner product on F .

2. For every x ∈ F , the distribution of L(x) is a one-dimensional Gaussian measure.

In this general setting, a measure µ is said to be Gaussian on (F a, BF ) if it satisfies
either of the above conditions.

Example 2.32. Let F = R∞0 , the set of sequences that are zero except for a finite number
of terms and let 〈·, ·〉 be the inner product on R∞0 . It is easy to show that the corresponding
measure on F a = R∞ (satisfying either (1) or (2) above) is the infinite product Gaussian
measure.

To understand the importance of this example, let (an) be any sequence of positive
numbers and let

Ha =

x ∈ R∞
∣∣∣ ∞∑

n=1

a2
nx2

n <∞

 . (2.5)

The proof of the following is due to Yamasaki ([YA], pg. 153).

Lemma 2.33. If a ∈ `2, µ[Ha] = 1, and if a < `2, µ[Ha] = 0.

Now, let us note that the standard one-dimensional Gaussian density, which is normally
written as fX(x) = [

√
2π]−1exp{−1

2 |x|
2}, may also be written as fX(x) = exp{−π |x|2} with

no factors of
√

2π if we scale x→ x√
2π

. With this convention, we can write the infinite

dimensional version for L2[H ,λH ] as the derivative of the Gaussian distribution µH with
respect to the Lebesgue measure onH :

f (x) = exp{−π |x|2
H
} =

dµH (x)
dλH (x)

. (2.6)

This shows that, with the appropriate definition of Lebesgue measure, there is a correspond-
ing density for a Gaussian distribution on Hilbert space.
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Remark 2.34. In the general case (see DePrato [DP]), when Q is a (positive definite)
trace-class operator and x is a Gaussian random variable with mean m and covariance Q,
we can write equation (2.6) as:

f (x) = [detQ]−1/2 exp
{
−π

〈
Q−1(x−m), (x−m)

〉
H

} dµH (x)
dλH (x)

.

Definition 2.35. A rotation onH is a bijective isometry U :H →H .

It is well-known that µH is invariant under rotations over (H , BH ) (see Yamasaki [YA],
pg. 163).

Theorem 2.36. The measure, λH , is invariant under rotations and R =: (T−1(`2)) is dense
inH and the maximal rotation invariance subspace for λH .

Proof. Let any measurable set A ∈ BH . If U is any rotation on H , then µH (UA) = µH (A)
and |Ux|2

H
= |x|2

H
. It follows from equation (2.6) that λH (UA) = λH (A).

It follows from R∞0 ⊂R ⊂H , that R is dense, and from Lemma 2.33 that R is maximal.
�

Discussion

In this section, we have shown that what appears to be a minor change in the way we rep-
resent R∞ makes it possible to define an analogue of both Lebesgue and Gaussian measure
(countably additive) on every (classical) separable Banach space with a Schauder basis. Fur-
thermore, our version of Gaussian measure is rotationally invariant, a property not shared
by Wiener measure. (What is more important, we have obtained our core results using basic
methods of Lebesgue measure theory from Rn.)

3 Operators

This section provides the background to understand the relationship between operators de-
fined onH2

⊗ (which is nonseparable), and their restriction toH2
⊗(h). We also obtain general

conditions that allow us to define infinite sums and products of linear operators on H2
⊗(h)

for a given h.

3.1 Bounded Operators onH2
⊗

In this section we review the class of bounded operators on H2
⊗ and their relationship to

those on eachHi. Many of the results are originally due to von Neumann [VN2]. However,
the proofs are new or simplified versions (some from the literature).

Let L[H2
⊗] be the set of bounded operators on H2

⊗. For each fixed i0 ∈ N and Ai0 ∈

L(Hi0), defineAi0 ∈ L(H2
⊗) by:

Ai0(
N∑

k=1

⊗i∈Ngk
i ) =

N∑
k=1

Ai0gk
i0 ⊗ (⊗i,i0gk

i )



Constructive Analysis in Infinitely Many Variables 125

for
∑N

k=1⊗i∈Ngk
i in H2

⊗ and N finite but arbitrary. Extending to all of H2
⊗ produces an

isometric isomorphism of L[Hi0] into L[H2
⊗], which we denote by L[H(i0)], so that the

relationship L[Hi]↔ L[H(i)] is an isometric isomorphism of algebras. Let L#[H2
⊗] be the

uniform closure of the algebra generated by {L[H(i)], i ∈ N}. It is clear that L#[H2
⊗] ⊂

L[H2
⊗]. von Neumann has shown that the inclusion becomes equality if and only if N is

replaced by a finite set. On the other hand, L#[H2
⊗] clearly consists of all operators on H2

⊗

that are generated directly from the family {L[H(i)], i ∈ N} by algebraic and topological
processes.

Let Ps
g denote the projection from H2

⊗ onto H2
⊗(g)s, and let Pw

g denote the projection
fromH2

⊗ ontoH2
⊗(g)w.

Theorem 3.1. If T ∈ L#(H2
⊗), then Ps

gT = TPs
g and Pw

g T = TPw
g .

Proof. The weak case follows from the strong case, so we prove that Ps
gT = TPs

g. Since
vectors of the form G =

∑L
k=1⊗i∈Ngk

i , with gk
i = gi for all but a finite number of i, are dense

inH2
⊗(g)s; it suffices to show that T f ∈H2

⊗(g)s. Now, T ∈ L#(H2
⊗) implies that there exists a

sequence of operators Tn such that ‖T−Tn‖⊗→ 0 as n→∞, where each Tn is of the form:
Tn =

∑Nn
k=1 an

kT n
k , with an

k a complex scalar, Nn < ∞, and each T n
k = ⊗̂i∈Mk T

n
ki⊗̂i∈N\Mk Ii for

some finite set of i-valuesMk, where Ii is the identity operator onHi. Hence,

Tn f =
∑L

l=1

∑Nn

k=1
an

k ⊗i∈Mk T n
kig

l
i⊗i∈N\Mk gl

i.

Now, it is easy to see that, for each l, ⊗i∈Mk T
n
kig

l
i ⊗i∈N\Mk gl

i ≡
s ⊗i∈Ngi. It follows that Tn f ∈

H2
⊗(g)s for each n, so that Tn ∈ L[H2

⊗(g)s]. Since L[H2
⊗(g)s] is a norm closed algebra,

T ∈ L[H2
⊗(g)s] and it follows that Ps

gT = TPs
g. �

Let zi ∈ C, |zi| = 1, and define U[z] by: U[z]⊗i∈N gi = ⊗i∈Nzigi.

Theorem 3.2. The operator U[z] has a unique extension to a unitary operator on H2
⊗,

which we also denote by U[z], such that:

1. U[z] : H2
⊗(g)w→H2

⊗(g)w, so that Pw
g U[z] = U[z]Pw

g .

2. If
∏

ν zν is quasi-convergent but not convergent, then U[z] : H2
⊗(g)s →H2

⊗(h)s, for
some h ∈ H2

⊗(g)w with g⊥h.

3. U[z] : H2
⊗(g)s→H2

⊗(g)s if and only if
∏

i zi converges and U[z] = (
∏

i zi)I⊗, where
I⊗ is the identity operator onH2

⊗. This implies that Ps
gU[z] = U[z]Ps

g.

Proof. For (1), let h =
∑N

k=1⊗i∈Nhk
i , where ⊗i∈Nhk

i ≡
w ⊗i∈Ngi, N is arbitrary and 1 6 k 6 N.

Then

U∗[z]U[z]h =
N∑

k=1

⊗i∈Nz∗i zihk
i = h = U[z]U∗[z]h.

Thus, we see that U[z] is a unitary operator, and since h of the above form are dense, U[z]
extends to a unitary operator onH2

⊗. By definition,
∑N

k=1⊗i∈Nzihk
i ∈H

2
⊗(g)w if

∑N
k=1⊗i∈Nhk

ν ∈

H2
⊗(g)w, so that U[z] : H2

⊗(g)w→H2
⊗(g)w and Pw

g U[z] = U[z]Pw
g . To prove (2), use Theo-

rem 1.6 (3) and (4) to note that
∏

i zi = 0 and ⊗i∈Nhk
i ≡

s ⊗i∈Ngi imply that ⊗i∈Nzihk
i ∈H

2
⊗( f )s
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withH2
⊗( f )s⊥H2

⊗(g)s. To prove (3), note that, if 0 <
∣∣∣∏i zi

∣∣∣ <∞, then U[z] = [(
∏

i zi)I⊗], so
that U[z] : H2

⊗(g)s→H2
⊗(g)s. Now suppose that U[z] : H2

⊗(g)s→H2
⊗(g)s, then ⊗i∈Nzihk

i ≡
s

⊗i∈Ngi and so
∏

i zi must converge. Therefore, U[z]h = [(
∏

i zi)I⊗]h and Ps
gU[z] = U[z]Ps

g.
It is easy to see that, for each fixed i ∈ N,A(i) ∈ L[H(i)] commutes with any Ps

g, Pw
g or

U[z], where g and z are arbitrary. �

Theorem 3.3. Every T ∈ L#[H2
⊗] commutes with all Ps

g, Pw
g and U[z], where g and z are

arbitrary.

Proof. Let L be the set of all Ps
g, Pw

g or U[z], with g and z arbitrary. From the above
observation, we see that all Ai ∈ L[H(i)], i ∈ N, commute with L and hence belong to its
commutator L′. Since L′ is a closed algebra, this implies that L#[H2

⊗] ⊆ L′ so that all
T ∈ L#[H2

⊗] commute with L. �

3.2 Unbounded Operators onH2
⊗

In this section, we consider a restricted class of unbounded operators and the notion of a
strong convergence vector introduced by Reed [RE].

For each i ∈ N, let Ai be a closed densely defined linear operator on Hi, with domain
D(Ai), and let Ai be its extension to H2

⊗, with domain D(Ai) ⊃ D̃(Ai) = D(Ai)⊗ (⊗k,iHk).
The next theorem follows directly from the definition of the tensor product of semigroups.

Theorem 3.4. Let Ai, 1 6 i 6 n, be generators of a family of C0-semigroups S i(t) on Hi

with ‖S i(t)‖Hi 6 Mieωit. Then Sn(t) = ⊗̂i=1,n S i(t), defined on ⊗̂i=1,nHi, has a unique ex-
tension (also denoted by Sn(t)) to all of H2

⊗, such that, for all vectors
∑K

k=1⊗i∈Ngk
i with

gk
l ∈ D(Al), 1 6 l 6 n, the infinitesimal generator for Sn(t) satisfies:

An

 K∑
k=1

⊗i∈Ngk
i

 = n∑
l=1

K∑
k=1

Algk
l (⊗i,l

i∈Ngk
i ).

Definition 3.5. Let {Ai}, i ∈ N, be a family of closed densely defined linear operators onHi

and let gi ∈ D(Ai) (respectively, fi ∈ D(Ai)), with ‖gi‖H = 1 (respectively, ‖ fi‖H = 1), for all
i ∈ N.

1. We say that g = ⊗i∈Ngi is a strong convergence sum (scs)-vector for the family {Ai} if
s - lim

n→∞

∑n
k=1Akg =

∑∞
k=1 Akgk(⊗i,k

i∈Ngi) exists.

2. We say that f = ⊗i∈N fi is a strong convergence product (scp)-vector for the family
{Ai} if s - lim

n→∞

∏n
k=1Ak f = ⊗i∈NAi fi exists.

Let Dg be the linear span of {χ = ⊗i∈Nχi, χi ∈ D(Ai)}, with χi = gi (and let D f be the
linear span of {η = ⊗i∈Nηi, ηi ∈ D(Ai)}, with ηi = fi) for all i > L, where L is arbitrary
but finite. Clearly, Dg is dense in H2

⊗(g)s (Dη is dense in H2
⊗( f )s). If there is a possible

chance for confusion, we letAs, respectivelyAp, denote the closure of
∑∞

k=1Ak onH2
⊗(g)s

(respectively
∏∞

k=1Ak onH2
⊗( f )s). It follows thatH2

⊗(g)s (respectivelyH2
⊗( f )s) are natural

spaces for the study of infinite sums or products of unbounded operators. (The notion of a
strong convergence sum vector first appeared in Reed [RE].)
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Definition 3.6. We call H2
⊗(g)s an RS-space (respectively, H2

⊗( f )s an RP-space ) for the
family {Ai}.

Let {Uk(t)} be a set of unitary groups on {Hk}. It is easy to see that U(t) = ⊗̂∞k=1Uk(t)
is a unitary group on H2

⊗. However, we know from Theorem 3.2 (2), that it need not be
reduced on any partial tensor product subspace. The following results are due to Streit [ST]
and Reed [RE], as indicated.

Theorem 3.7. (Streit) Suppose {Ak} is a set of selfadjoint linear operators on the space
H2
⊗(g)s, with corresponding unitary groups {Uk(t)}. If U(t) = ⊗̂∞k=1Uk(t), then Ps

gU(t) =
U(t)Ps

g (i.e., U(t) is reduced onH2
⊗(g)s) and U(t) is a strongly continuous unitary group on

H2
⊗(g)s if and only if, for each c > 0, the following three conditions are satisfied:

1.
∑∞

k=1 |〈AkEk[−c,c]gk,gk〉| <∞,

2.
∑∞

k=1

∣∣∣∣〈A2
k Ek[−c,c]gk,gk

〉∣∣∣∣,
3.

∑∞
k=1 |〈(Ik −Ek[−c,c]gk,gk〉| <∞,

where Ek[−c,c] are the spectral projectors ofAk and, in this case, U(t)= s−limn→∞ ⊗̂
n
k=1Uk(t).

Corollary 3.8. Conditions 1-3 are satisfied if and only if there exists a strong convergence
vector g = ⊗∞k=1gk for the family {Ak} such that gk ∈ D(Ak) and∑∞

k=1
|〈Akgk,gk〉| <∞,

∑∞

k=1
‖Akgk‖

2 <∞.

Theorem 3.9. (Reed) U(t) is reduced onH2
⊗(g)s and U(t) is a strongly continuous unitary

group onH2
⊗(g)s if and only if g = ⊗∞k=1g is a strong convergence vector for the family {Ak}

and
∑∞

k=1 |〈Akgk,gk〉| < ∞. If each Ak is positive, the statement is true without the above
condition. In either case,A, the closure of

∑∞
k=1Ak, is the generator of U(t).

The next result strengthens and extends Reed’s theorem to contraction semigroups (i.e.,
the positivity requirement above can be dropped).

Theorem 3.10. Let {S k(t)} be a family of strongly continuous contraction semigroups with
generators {Ak} defined on {Hk}, and let g = ⊗∞k=1gk be a strong convergence vector for
the family {Ak}. Then S(t) = ⊗̂∞k=1S k(t) is reduced on H2

⊗(g)s and is a strongly continuous
contraction semigroup. If S(t) = ⊗̂∞k=1S k(t) is reduced on H2

⊗(g)s and is a strongly con-
tinuous contraction semigroup on H2

⊗(g)s, then there exists a strong convergence vector
f = ⊗∞k=1 fk ∈ H2

⊗(g)s for the family {Ak}.

Proof. Let g = ⊗∞k=1gk be a strong convergence vector for the family {Ak}. Without loss,
we can assume that ‖gk‖ = 1. Let Sn(t) = ⊗̂n

k=1S k(t)⊗̂(⊗∞k=n+1Ik) and observe that Sn(t) is a
contraction semigroup on H2

⊗(g)s for all finite n . Furthermore, its generator is the closure
ofAn =

∑n
k=1Ak, whereAk = Ak⊗̂(⊗∞i,kIi). If n and m are arbitrary, then

[Sn(t)−Sm(t)]g =
∫ 1

0

d
dλ
{Sn[λt]Sm[(1−λ)t]}gdλ

= t
∫ 1

0
Sn[λt]Sm[(1−λ)t]

[
An−Am]

gdλ,
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where we have used the fact that, if two semigroups commute, then their corresponding
generators also commute. It follows that:

‖[Sn(t)−Sm(t)]g‖ 6 t
∥∥∥[An−Am]

g
∥∥∥ .

Since g = ⊗∞k=1g is a strong convergence vector for the family {Ak}, it follows that
s− limn→∞Sn(t) = S(t) exists on a dense set in H2

⊗(g)s and the convergence is uniform on
bounded t intervals. It follows that S (t) extends to a bounded linear operator on H2

⊗(g)s.
To see that the closure of S (t) must be a contraction, for any ε > 0, choose n so large that
‖[Sn(t)−S(t)]g‖⊗ < ε‖g‖⊗. It follows that

‖S(t)g‖⊗ 6 ‖Sn(t)g‖⊗+ ‖[Sn(t)−S(t)]g‖⊗ < ‖g‖⊗ (1+ε).

Thus, S(t) is a contraction operator onH2
⊗(g)s. It is easy to check that it is a C0-semigroup.

Now suppose that S(t)= ⊗̂∞k=1S k(t) is a strongly continuous contraction semigroup which
is reduced onH2

⊗(g)s. It follows that the generatorA of S(t) is m-dissipative, and hence de-
fined on a dense domain D(A) inH2

⊗(g)s with S′(t) f = S(t)A f =AS(t) f for all f ∈ D(A).
Since any such f is of the form f =

∑∞
l=1⊗

∞
k=1 f l

k, each f l = ⊗∞k=1 f l
k is in D(A). A simple

computation shows thatA f l =
∑∞

k=1Ak f l, so that any f l is a strong convergence vector for
the family {Ak}. �

It is easy to see that, in the second part of the theorem, we cannot require that g=⊗∞k=1gk

itself be a strong convergence vector for the family {Ak} since it need not be in the domain
ofA. For example, g1 < D(A1), while gk ∈ D(Ak), k , 1.

4 Function Spaces

Let χIn be the indicator (or characteristic) function of In =×
∞
k=n+1I. If we let L(Rn) represent

the class of measurable functions on Rn, then for each measurable function fn ∈ L(Rn) we
identify f ∈ L(Rn

I ) by f = fn⊗χIn .

Definition 4.1. A real-valued function f defined on the measure space
(
R∞I ,B[R∞I ],λ∞

)
is

said to be measurable if f −1(A) ∈B[R∞I ] for every A ∈B[R].

In this section we develop those aspects of function space theory that will be of use
later. We note that all the standard theorems for Lebesgue measure apply. (The proofs are
the same as for integration on Rn.)

4.1 L1-Theory

Let L1[Rn
I ] be the class of integrable functions on Rn

I . Since L1(Rn
I ) ⊂ L1(Rn+1

I ), we define
L1[R′∞I ]=

⋃∞
n=1 L1(Rn

I ) and let L1[R∞I ] be the norm closure of L1[R′∞I ]. It follows that every
function in L1[R∞I ] is the limit of a sequence of functions in L1[Rnk

I ], for some sequence
{nk} ⊂ N.

Let Cc(Rn
I ) be the class of continuous functions on Rn

I which vanish outside compact
sets. We define Cc(R∞I ) to be the closure of

⋃∞
n=1Cc(Rn

I ) = Cc(R′∞I ) in the sup norm. Thus,
for any f ∈ Cc(R∞I ), there always exists a sequence of functions { fnk } ∈ Cc(Rnk

I ) such that
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fnk → f , for some sequence {nk} ⊂ N. We define C0(R∞I ), the functions that vanish at ∞, in
the same manner.

Lemma 4.2. If f ∈Cc(R∞I ) or C0(R∞I ), then f is continuous.

Proof. Let f (x) ∈Cc(R∞I ) and let {xn | n = 1,2, . . . } be any sequence in Rn
I such that xn→ x

as n→∞. If ε > 0 is given, choose K1 so that for k ≥ K1 and fk ∈Cc(R∞I ), | fk(xn)− f (xn)| <
ε
3 . Then choose K2 so that for k ≥ K2, | fk(x)− f (x)| < ε

3 . Choose N so that for n ≥
N, | fk(xn)− fk(x)| < ε

3 . If n ≥ N and k ≥max{K1,K2}, we have:

| f (xn)− f (x)| ≤ | fk(xn)− f (xn)|+ | fk(x)− fk(xn)|+ | fk(x)− f (x)| < ε.

The same proof applies to C0(R∞I ) �

Theorem 4.3. Cc(R∞I ) is dense in L1(R∞I ).

Proof. We prove this result in the standard manner, by reducing the proof to positive sim-
ple functions and then to one characteristic function and finally using the approximation
theorem to approximate a measurable set which contains a closed set and is contained in an
open set.

First note that, since limk→∞
∥∥∥ fχBI (0,k)− f

∥∥∥
1 = 0 for all f ∈ L1 (by the DCT), we can

prove the result for functions that vanish outside a compact set. In this case, as f = f+ −
f−, we need only consider positive f . However, this function can be approximated by
simple functions in S +. Since each simple function is a finite sum of characteristic functions
(of bounded measurable sets) multiplied by finite constants, it follows that we need only
show that we can approximate the characteristic function of a bounded measurable set by
a continuous function which vanishes outside a compact set. Let ε > 0 be given and let
g = χA, where A is any bounded measurable set. By the regularity of λ∞, there exists an
open set O and a compact set H with H ⊂ A ⊂ O and λ∞(O \H) < ε.

Let {Vn} be the class of open intervals with rational end points. For each n ∈ N, let
Fn ⊂ g−1[Vn] and Gn ⊂ (O \ g−1[Vn]) be compact sets, such that λ∞[(O \Fn∪Gn)] < ε

2n . If
H = ∩∞n=1[Fn∪Gn], then λ∞(O \H) < ε.

If x ∈ H, there is an n such that f (x) ∈ Vn and x ∈Gc
n, so that g[Gc

n∩H] ⊂ Vn. It follows
that g restricted to H is continuous and λ∞(A \H) ≤ λ∞(O \H) < ε. �

In a similar fashion we can define the Lp spaces, 1 < p <∞. We should note that, each
space is defined relative to the family of indicator functions for I. Thus, each space is the
canonical one for that particular class of spaces.

5 Fourier Transform Theory

In this section, we study the implications of Lebesgue measure on R∞ for the Fourier
transform and discuss two different extensions of the Pontrjagin Duality theory for Banach
spaces.
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Background

Let G be a locally compact abelian (LCA) group (c.f., Rn). The following is a restatement
of Theorem 0.1 (see Rudin [RU1]).

Theorem 5.1. If G is a LCA group and B(G) is the Borel σ-algebra of subsets of G, then
there is a non-negative regular translation invariant measure µ (i.e., µ(g+A) = µ(A), A ∈
B(G). The (Haar) measure µ is unique up to multiplication by a constant.

Definition 5.2. A complex valued function α : G→ C on a LCA group is called a character
on G provided that α is a homomorphism and |α(g)| = 1 for all g ∈G.

The set of all continuous characters of G defines a new group Ĝ, called the dual group
of G and (α1 +α2)(g) = α1(g) ·α2(g). If we define a map γ : G→ ˆ̂G, by γg(α) = α(g), then
the following theorem was proven by Pontryagin:

Theorem 5.3. (Pontryagin Duality Theorem) If G is a LCA-group, then the mapping γ :
G→ ˆ̂G is an isomorphism of topological groups.

Thus, Pontrjagin Duality identifies those groups that are the character groups of their
character groups. If the group is not locally compact Theorem 5.1 does not hold (e.g., there
is no Haar measure). However Kaplan [KA1] has shown that the class of topological abelian
groups for which the Pontrjagin Duality holds is closed under the operation of taking infinite
products of groups. This result immediately implies that this class is larger than the class of
locally compact abelian groups because the infinite product of locally compact groups (for
example, R∞) may be non-locally compact (see also [KA2]).

5.1 Pontryagin Duality Theory I

In this section, we treat the Fourier transform as an operator. As will be seen, this approach
has the advantage of being constructive. It also provides us with some insight into the
problem that arises when we look at analysis on infinite dimensional spaces.

We define F on L1[R,λ] by

ĝ(x) = F(g)(x) =
∫
R

exp{−2πixy}g(y)dy.

It is easy to check that F−1 is defined by

g(y) = F−1(ĝ)(y) =
∫
R

exp{2πiyx}ĝ(x)dx.

This representation is more convenient for the infinite-dimensional case, because we have
no factors of

√
2π to worry about.

It is possible to define F as a mapping on L1[Rn
I ,λ] to C0[Rn

I ,λ] for all n as one fixed
linear operator. However, in the case of Hilbert spaces,Theorem 3.2(2) requires that we
clearly specify our canonical domain and range space. The same is also true for L1[Rn

I ,λ](h)
and C0[Rn

I ,λ](ĥ) (see [GZ]). Since h = ⊗∞k=1χI(xk), an easy calculation shows that ĥ =
⊗∞k=1

sin(πxk)
πxk

. Thus, we can define F( fn)(x), mapping L1[Rn
I ](h) into C0[Rn

I ](ĥ) by

F( fn))(x) = ⊗n
k=1Fk( f (n))⊗

∞
k=n+1 ĥk(xk). (5.1)
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Theorem 5.4. The operator F extends to a bounded linear mapping of L1[R∞I ](h) into
C0[R∞I ](ĥ).

Proof. Since

lim
n→∞

L1[Rn
I ](h) =

∞⋃
n=1

L1[Rn
I ](h) = L1[R′∞I ](h)

and L1[R∞I ](h) is the closure of L1[R′∞I ](h) in the L1 - norm, it follows that F is a bounded
linear mapping of L1[R′∞I ](h) into C0[R∞I ](ĥ).

Supposed that { fn} ⊂ L1[R′∞I ](h), converges to f ∈ L1[R∞I ](h). Thus, the sequence is
Cauchy, so that ‖ fn− fm‖1→ 0 as m, n→∞. It follows that

|F ( fn(x)− fm(x))| 6
∫
R∞I

| fn(y)− fm(y)|dλ∞(y) = ‖ fn− fm‖1 ,

so that |F ( fn(x)− fm(x))| is a Cauchy sequence in C0[R∞I ](ĥ). Since L1[R′∞I ](h) is dense in
L1[R∞I ](h), it follows that F has a bounded extension, mapping L1[R∞I ](h) into C0[R∞I ](ĥ).

�

5.2 L2-Theory

In the case of L2, the Fourier transform is an isometric isomorphism from L2[Rn] onto
L2[Rn].

Theorem 5.5. The operator F is an isometric isomorphism of L2[R∞I ](h) onto L2[R∞I ](ĥ).

Proof. Let f ∈ L2[R∞I ](h). By construction, there exists a sequence of functions { fk ∈
L2[Rnk

I ], nk ∈N} such that lim
k→∞
‖ f − fk‖2 (h) = 0. Furthermore, since the sequence converges,

it is a Cauchy sequence. Hence, given ε > 0, there exists a N(ε) such that m, n ≥ N(ε)
implies that ‖ fm− fn‖2 (h) < ε. Since F is an isometry, ‖F( fm)−F( fn)‖2 (ĥ) < ε, so that the
sequence F( fk) is also a Cauchy sequence in L2[R∞I ](ĥ). Thus, there is a f̂ ∈ L2[R∞I ](ĥ) with
lim
k→∞

∥∥∥ f̂ −F( fk)
∥∥∥

2 (ĥ) = 0, and we can define F( f ) = f̂ . It is easy to see that f̂ is unique. �

We can also prove a version of Theorems 5.4 and 5.5 for every separable Banach space
(with a basis). Fix B and for each n, let Bn

I = B∩R
n
I . It is clear that Bn

I ⊂ B
n+1
I , so that B is

the norm closure of lim
n→∞
Bn

I . The following have the same proofs as Theorems 5.4 and 5.5.

Theorem 5.6. The operator F extends to a bounded linear mapping of L1[B](h) into
C0[B](ĥ).

Theorem 5.7. The operator F is an isometric isomorphism from L2[B](h) onto L2[B](ĥ).

Theorems 5.4 - 5.7 show that ⊗∞i=1ĥi is a strong (product) convergence vector for the
Fourier transform operator F. In the L2-theory, we know that L2[R∞I ](h) and L2[R∞I ](ĥ) are
orthogonal subspaces of H2

⊗. Thus, in this approach, the natural interpretation is that the
Fourier transform induces a Pontryagin duality like theory that does not depend on the group
structure of R∞I , but depends on the pairing of different function spaces. This approach is
direct, constructive and applies to all separable Banach spaces (with a basis). Thus, the
group structure of the underlying measure space plays no role.
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5.3 Pontryagin Duality Theory II

In this section, we show that the standard form of Pontryagin duality theory is also possible,
using the underlying measure space group structure. It is constructive but restrictive, in that,
it does not apply to every separable Banach space with a basis.

Let B be any uniformly convex separable Banach space UCB over the reals, so that
B = B∗∗ (second dual). The next theorem follows from our theory of Lebesgue measure on
Banach spaces.

Theorem 5.8. If λB is our version of Lebesgue measure on B, then B and B∗ are also duals
as character groups (i.e., B∗ = B̂).

Proof. If we consider the restriction to L2[B,λB], we can define F directly by:

[F( f )](x∗) = f̂ (x∗) =
∫
B

exp{−2πi
〈
y,x∗

〉
} f (y)dλB(y), (5.2)

where 〈y,x∗〉 is the pairing between B and B∗. From Plancherel’s Theorem, we have:∥∥∥ f̂
∥∥∥2

2 =
(

f̂ , f̂
)
2
= ( f , f )2 = ‖ f ‖

2
2 .

It follows that B and B∗ are duals as character groups and

f (y) =
∫
B∗

exp{2πi
〈
y,x∗

〉
} f̂ (x∗)dλB∗(x∗).

�

IfBn
I =BI∩R

n
I , we can represent f̂n directly as a mapping from L2[Bn

I ,λB]→ L2[B∗,nI ,λB∗],
by

[F( fn)](x∗) = f̂n(x∗) =
∫
B

exp{−2πi
〈
y,x∗

〉
n} fn(y)dλB(y),

where 〈y,x∗〉n is the restricted pairing of y and x∗ to Bn
I and B∗,nI respectively. It follows

that equations 5.1 and 5.2 provide two distinct definitions of the Fourier transform for B.
Thus, in this approach the group structure of the underlying measure space changes.

It is clear that representation for f̂ (x∗) also applies if we use L1[B,λB], but in this case
f̂ (x∗) ∈ C0[B∗].

If we define y(·) mapping B→C, by y(x) = exp{−2πi 〈y,x∗〉}, then y(x) is a character of
B. Furthermore, it is easy to see that (y1+y2)(x) = y1(x) ·y2(x). We now have the extension
of the Pontryagin Duality Theorem to all UCB (with a basis).

Theorem 5.9. If B is a UCB, then the mapping γx : B→ ˆ̂
B, defined by γx(y) = y(x), is an

isomorphism of topological groups.

In case B =H , is a Hilbert space, we can replace equation (5.2) by

f̂ (x) = F[ f ](x) =
∫
H

exp{−2πi 〈x,y〉H } f (y)dλH (y), (5.3)
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so that H is self-dual (as expected). From equation (5.3), we also get the expected result
that:

F
[
exp{−π |x|2

H
}
]
= exp{−π |x|2

H
}.

In closing, we observe that by Theorem 2.31 (see Example 2.32), if we use Gaussian
measure on R∞, the dual character groups are R∞ and R̂∞ = R∞0 . From this we see that
probability measures on (R∞, B[R∞]) induce a different character theory compared to that
induced by λ∞ on (R∞I , B[R∞I ]).

5.4 Lp-Theory

We can obtain Lp[R∞I ] as in the construction of L1[R∞I ]. In this section we want to show the
power of our approach to measure theory by establishing a version of Young’s Theorem for
every separable Banach space with a Schauder basis:

Theorem 5.10. (Young) Let p,q,r ∈ [1,∞] with

1
r
=

1
p
+

1
q
−1.

If f ∈ Lp[R∞I ] and g ∈ Lq[R∞I ], then the convolution of f and g, f ∗g, exists (a.s.), belongs
to Lr[R∞I ] and

‖ f ∗g‖r 6 ‖ f ‖p ‖g‖q .

Corollary 5.11. Let B be a separable Banach space with a Schauder basis and let p,q,r ∈
[1,∞] with

1
r
=

1
p
+

1
q
−1.

If f ∈ Lp[B] and g ∈ Lq[B], then the convolution of f and g, f ∗ g, exists (a.s.), belongs to
Lr[B] and

‖ f ∗g‖r 6 ‖ f ‖p ‖g‖q .

In order to prove Theorem 5.10, we first need the appropriate version of Fubini’s The-
orem. Since

(
R∞I ,L

∞
I ,λ∞

)
is a complete σ-finite measure space, a proof of the following

may be found in Royden [RO] (see Theorems 19 and 20, pgs. 269-270):

Theorem 5.12. (Fubini) If f ∈ L1[R∞I ×R
∞
I ], then

1. for almost all x ∈ R∞I the function fx defined by fx(y) = f (x,y) ∈ L1[R∞I ](y):

2. for almost all y ∈ R∞I the function fy defined by fy(x) = f (x,y) ∈ L1[R∞I ](x):

3.
∫
R∞I

f (x,y)dλ∞(y) ∈ L[R∞I ](x);

4.
∫
R∞I

f (x,y)dλ∞(x) ∈ L[R∞I ](y);

5. ∫
R∞I ×R

∞
I

f (x,y)d (λ∞⊗λ∞) (x,y)

=

∫
R∞I

∫
R∞I

f (x,y)dλ∞(y)

dλ∞(x) =
∫
R∞I

∫
R∞I

f (x,y)dλ∞(x)

dλ∞(y).
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Theorem 5.13. Let f ,g ∈ L1[R∞I ], then ( f ∗g)(x) exists (a.s.); that is f (y)g(x−y) ∈ L1[R∞I ].
In addition, f ∗g ∈ L1[R∞I ] and

‖ f ∗g‖1 6 ‖ f ‖1 ‖g‖1 .

Proof. First, it is easy to see that f (y)g(x− y) is a measurable function on R∞I . (There is no
change from the case of Rn.) We can apply Fubini’s theorem to get that:∫

R∞I

( f ∗g) (x)dλ∞(x)

=

∫
R∞I

dλ∞(x)

∫
R∞I

f (y)g(x− y)dλ∞(y)

 = ∫
R∞I

dλ∞(y)

∫
R∞I

f (y)g(x− y)dλ∞(x)


=

∫
R∞I

f (y)dλ∞(y) ·
∫
R∞I

g(x)dλ∞(x).

It follows from the last equality that ‖ f ∗g‖1 6 ‖ f ‖1 ‖g‖1. �

5.4.1 Proof of Young’s Theorem

Proof. First, assume that f and g are nonnegative and ‖ f ‖p = ‖g‖q = 1. Let 1
q′ = 1− 1

q and
1
p′ = 1− 1

p . Now note that

1
r
+

1
q′
+

1
p′
=

1
r
+

(
1−

1
q

)
+

(
1−

1
p

)
= 1;(

1−
p
r

)
q′ = p

(
1
p
−

1
r

)
q′ = p

(
1−

1
q

)
q′ = p;(

1−
q
r

)
p′ = q

(
1
q
−

1
r

)
p′ = q

(
1−

1
p

)
p′ = q.

If we use Holder’s inequality (for three functions), we can write ( f ∗g)(x) as:

( f ∗g) (x) =
∫
R∞I

[
f (y)p/rg(x− y)q/r

] [
f (y)1−p/rg(x− y)1−q/r

]
dλ∞(y)

6

∫
R∞I

f (y)pg(x− y)qdλ∞(y)

1/r ∫
R∞I

f (y)(1−p/r)q′dλ∞(y)

1/q′ ∫
R∞I

g(x− y)(1−q/r)p′dλ∞(y)

1/p′

.

This last inequality shows that

( f ∗g) (x) 6

∫
R∞I

f (y)pg(x− y)qdλ∞(y)

1/r

⇒

( f ∗g)r (x) 6

∫
R∞I

f (y)pg(x− y)qdλ∞(y)

 ⇒ ( f ∗g)r (x) 6
(
f p ∗gq) (x).

From Theorem 5.13, we have ‖( f ∗g)r‖1 6 ‖ f
p‖1 ‖g

q‖1 = 1. In the general case, we know
that | f | ∗ |g| exists (a.e.), so that | f (y)g(x− y)| ∈ L1[R∞I ]. But then, f (y)g(x−y) ∈ L1[R∞I ]. �

In closing we note that, Beckner [BE] and Brascamp-Lieb [BL] have shown that on
Rn we can write Young’s inequality as ‖ f ∗g‖r 6 (Cp,q,r;n)n ‖ f ‖p ‖g‖q, where Cp,q,r;n ≤ 1 is
sharp. We conjecture that 1 is the sharp constant for R∞I .
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6 Partial Differential Operators (Examples)

In this section, we give examples of strong product and sum vectors for differential operators
that have found interest in infinite dimensional analysis.

Definition 6.1. For x ∈ R, 0 ≤ y <∞ and 1 < a <∞ define ḡ(x,y), h̄(x) by:

ḡ(x,y) = exp
{
−yaeiax

}
,

h̄(x) =


∫ ∞

0
ḡ(x,y)dy, x ∈ [− π

2a ,
π
2a ],

0 otherwise .

The following properties of ḡ are easy to check:

1.
∂ḡ(x,y)
∂x

= −iayaeiaxḡ(x,y),

2.
∂ḡ(x,y)
∂y

= −aya−1eiaxḡ(x,y),

so that

3.
iy
∂ḡ(x,y)
∂y

=
∂ḡ(x,y)
∂x

.

It is also easy to see that h̄(x) is in L1[R] for x ∈ [− π
2a ,

π
2a ] and,

dh̄(x)
dx
=

∫ ∞

0

∂ḡ(x,y)
∂x

dy =
∫ ∞

0
iy
∂ḡ(x,y)
∂y

dy. (6.1)

Integration by parts in the last expression of equation (6.1) shows that h̄′(x) = −ih̄(x), so
that h̄(x) = h̄(0)e−ix for x ∈ [− π

2a ,
π
2a ]. Since h̄(0) =

∫ ∞
0 exp{−ya}dy, an additional integration

by parts shows that h̄(0) = Γ( 1
a +1).

Let a = π
1−ε , h̄(x) = h̄ε(x), x ∈ [− π

2a ,
π
2a ], where 0 < ε� 1, and define

fε(x) =

 cexp
{

ε2

|2x|2−ε2

}
, |x| < ε/2,

0, |x| > ε/2,
(6.2)

where c is the standard normalizing constant. We now define ξ(x) = (h̄ ∗ fε)(x), so that
spt(ξ) = [−1

2 ,
1
2 ] = Iε. Thus, ξ(x) = 0, x < Iε and otherwise,

ξ(x) =
∫ ∞

−∞

h̄[x− z] fε(z)dz = e−ix
∫ ∞

−∞

eiz fε(z)dz = αεe−ix.

It follows from this that:

α−1
ε ξ(ix) =

{
ex, x ∈ Iε
0, x < Iε

Define λε = λ and,
Iε = ×∞k=1Iε, Iεn = ×

∞
k=n+1 and, λε∞ = ⊗

∞
k=1λε.
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Example 6.2. In this example, we let hk(xk) = α−1
ε ξ(ixk), for each k ∈ N so that Dkhk = hk ,

for xk ∈ I. Let L2
ε[R

n
I ] = L2[Rn

I ,λ
ε
∞]. If D∞ =

∏∞
k=1 Dk and fn ∈ L2

ε[R
n
I ]∩D(D∞), we can

define D∞ on Rn
I by D∞ fn(x) = Dn fn(x) =

∏n
l=1 Dl f(n)(x)⊗

(
⊗∞l=n+1hl

)
, (a.s). This operator

is well-defined and has a closed densely defined extension to L2
ε[R
∞
I ](h), where h = ⊗∞k=1hk.

Thus, h is a strong product vector for D∞.
The operator D∞ is required if we want to obtain the probability density for a distri-

bution function. (Note, by construction the density can be approximated from below by
densities in a finite number of variables.)

In the following example, we construct a general elliptic operator on L2
ε[R
∞
I ].

Example 6.3. If ∇ = (D1,D2, · · ·) and σk :R∞I →R is a bounded analytic function for each
k ∈ N, then let σ(x) = (σ1(x),σ2(x), · · ·). We assume that∥∥∥∥∥∥∥∥

∞∑
j,k=1

σ j(x)σk(x)+
∞∑

k=1

bk(x)

∥∥∥∥∥∥∥∥
2

<∞, where bk(x) =
∑∞

j=1
σ j(x)D jσk(x).

We can now define ∆∞ by:

∆∞ = (σ(x) · ∇)2 =

∞∑
j,k=1

σ j(x)σk(x)D jDk +

∞∑
k=1

bk(x)Dk.

For the same version of L2
ε[R
∞
I ] as in the last example, if gn ∈ L2[Rn

I ]∩D(∆∞) and cn(x) =∑∞
j=n+1σ j(x)

[
D jσk(x)

]
, then ∆∞ is defined on Rn

I and

∆∞gn(x) =
n∑

j,k=1

σ j(x)σk(x)D jDkgn(x)+
n∑

k=1

bkDkψ(x)+ cn(x)gn(x).

In order to obtain the same equation with cn(x) = 0, we use the version of L2
ε[R
∞
I ] defined

with hk = ξI(0), k ≥ n+1. In this case, for gn(x) ∈ L2
ε[R
∞
I ]∩D(∆∞), we see that

∆∞gn(x) =
n∑

j,k=1

σ j(x)σk(x)D jDkgn(x)+
n∑

k=1

bk(x)Dkgn(x).

In either case, ∆∞ is well-defined for each n and has a closed densely defined extension to
L2
ε[R
∞
I ] and gn(x)→ g(x) implies that limn→∞∆∞gn(x) = ∆∞g(x).

It follows that different versions of L2[R∞I ] offer advantages for particular types of dif-
ferential operators. (For other approaches, see [BK], [GZ] and [UM].)

The following special cases have appeared in the literature (all can be obtained from the
last example):

1. The natural infinite dimensional Laplacian:

A = ∆∞ =
∑∞

i=1
∂2

/
∂x2

i .
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2. The nonterminating diffusion generator in infinitely many variables (also known as
the Ornstein-Uhlenbeck operator):

A = 1
2∆∞−Bx · ∇∞ = 1

2

∑∞

i=1
∂2

/
∂x2

i −
∑∞

i=1
bixi∂/∂xi.

The infinite dimensional Laplacian of Umemura [UM]:

A =
∞∑

i=1

 ∂2

∂x2
i

−
xi

c2

∂

∂xi

.
Berezanskii and Kondratyev ([BK], pages 520-521) have also discussed operators analo-
gous to (2) and (3).

6.1 Discussion

In a very interesting paper, Phillip Duncan Thompson [PDT] used the amplitudes of a set
of orthogonal modes as the co-ordinates in an infinite-dimensional phase space. This al-
lowed him to derive the probability distribution for an ensemble of randomly forced two-
dimensional viscous flows as the solution of the continuity equation for the phase flow. He
obtained the following equation for the probability density:

∂ρ

∂t
+

∞∑
k=1

Mk(x)
∂ρ

∂xk
− ν

∞∑
k=1

∂

∂xk

[
ρα2

k xk
]
−

∞∑
k=1

∂2ρ

∂x2
k

= 0, (6.3)

where

Mk(x) =
∞∑

i=1

∞∑
j=1

α2
jβi jk

αiα jαk

(
µiµ jµk

) 1
2

µk
xix j.

The coefficients βi jk vanishes if any two indices are equal, is invariant under cyclic per-
mutation of indices and reverses sign under non-cyclic permutation of indices, while the
coefficients αi and µi are positive constants, determined by the problem. Thompson im-
posed the natural condition

∞∫
−∞

· · ·

∞∫
−∞

ρ(x, t)
∞∏

k=1

dxk = 1. (6.4)

At that time, he ran into the obvious mathematical criticism because equation (6.4) was
meaningless at the time. He also derived the equilibrium density

ρ0(x) =C exp

−1
2ν

∞∑
k=1

α2
k x2

k

 . (6.5)

The results in section 2.5, see also equation (2.5), along with those in section 4.4, show that
Thomson’s paper was prescient.
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7 Conclusion

In this paper we provided a reasonable version of Lebesgue measure on R∞, which together
with the standard Gaussian measure on R∞, have allowed us to construct natural analogues
of Lebesgue and Gaussian measure for every separable Banach space with a Schauder ba-
sis. We have extended the Fourier transform to L1[R∞,λ∞], L2[R∞,λ∞], defined sums and
products of unbounded operators, and presented a few constructive examples of partial dif-
ferential operators in infinitely many variables.
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