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Abstract

A different application of the familiar integral representation for the modified Bessel
function drives to a new Kontorovich-Lebedev-like integral transformation of a gen-
eral complex index. Mapping and operational properties, a convolution operator and
inversion formula are established. Solvability conditions and explicit solutions of the
corresponding class of convolution integral equations are exhibited. Finally, as a valu-
able application it is shown, that the introduced transformation is a key ingredient for
solving difference equations of the order n ∈ N with constant coefficients in a class of
analytic functions in the right half-plane Rez > n.
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1 Introduction

As it is known [2], Vol. II, the modified Bessel function Kz(2
√

x) can be represented by the
following integral

Kz(2
√

x) =
x−z/2

2

∫ ∞

0
e−t− x

t tz−1dt, x > 0, (1.1)

where z= ν+ iτ is a complex number. As it is easily seen, integral (1.1) converges absolutely
for any x ∈ R+,z ∈ C and represents an entire function of z. Formula (1.1) can be written
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with the use of the Parceval relation for the Mellin transform [6], which leads to the integral
representation

2xz/2Kz(2
√

x) =
1

2πi

∫ γ+i∞

γ−i∞
Γ(s+ z)Γ(s)x−sds, x > 0, (1.2)

where Γ(w) is Euler’s gamma function [2], Vol. 1 and γ > max(0,−Rez). Reciprocally, we
have the direct Mellin transform of the modified Bessel function, namely

Γ(s+ z)Γ(s) = 2
∫ ∞

0
Kz(2
√

x)xs+z/2−1dx. (1.3)

The left-hand side of (1.2) has the following asymptotic behavior near the origin x→ 0+

xz/2Kz(2
√

x) =


O(1), if Rez > 0,
O(xRez), if Rez < 0,
O

(
log

(
1
x

))
, if z = 0

and xz/2Kz(2
√

x) = O(e−2
√

xx(Rez−1/2)/2), x→ +∞.
Let us consider the following integral transformation with respect to an index z ∈ C of

the modified Bessel function

(F f )(z) = 2
∫ ∞

0
xz/2Kz(2

√
x) f (x)dx. (1.4)

This transformation looks like the Kontorovich-Lebedev transform [5], [8], [9]. However,
it is a completely different operator and cannot be reduced to the Kontorovich-Lebedev in-
tegral by any change of variables and functions. As far as the author is aware, the transform
(1.4) was not studied yet, taking into account his mapping properties and inversion formula
in an appropriate class of functions.

Our goal is to do this involving a special class of functions related to the Mellin trans-
form and its inversion, which was introduced in [7]. Indeed, we have

Definition 1. Denote byM−1(Lc) the space of functions f (x), x ∈ R+, representable by
inverse Mellin transform of integrable functions f ∗(s) ∈ L1(c) on the vertical line c = {s ∈
C : Res = c0}:

f (x) =
1

2πi

∫
c

f ∗(s)x−sds. (1.5)

The spaceM−1(Lc) with the usual operations of addition and multiplication by scalar
is a linear vector space. If the norm inM−1(Lc) is introduced by the formula∣∣∣∣∣∣ f ∣∣∣∣∣∣

M−1(Lc) =
1

2π

∫ +∞

−∞

| f ∗ (c0+ it) |dt, (1.6)

then it becomes a Banach space.
Definition 2 ([7], [8]). Let c1,c2 ∈ R be such that 2sign c1+ sign c2 ≥ 0. ByM−1

c1,c2
(Lc)

we denote the space of functions f (x), x ∈ R+, representable in the form (1.5), where

sc2eπc1 |s| f ∗(s) ∈ L1(c).
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It is a Banach space with the norm∣∣∣∣∣∣ f ∣∣∣∣∣∣
M−1

c1 ,c2 (Lc) =
1

2π

∫
c
eπc1 |s||sc2 f ∗(s)ds|.

In particular, letting c1 = c2 = 0 we get the spaceM−1(Lc). Moreover, it is easily seen the
inclusion

M−1
d1,d2

(Lc) ⊆M−1
c1,c2

(Lc)

when 2sign(d1− c1)+ sign(d2− c2) ≥ 0.

2 Mapping properties and an inversion formula

We begin with the following result.

Theorem 2.1. Let f ∈M−1(Lc) and c0 < 1. Then transformation (1.4) is well-defined and
(F f )(z) is analytic in the half-plane Rez > c0−1. Further,

(F f )(z) =
1

2πi

∫ c0+i∞

c0−i∞
Γ(1− s+ z)Γ(1− s) f ∗(s)ds, (2.1)

and the operator F :M−1(Lc)→ L1(Rez− i∞,Rez+ i∞), Rez > c0 −1 is bounded with the
norm satisfying the estimate

||F|| ≤ Γ(1− c0)
∫ ∞

−∞

|Γ(1− c0+Rez+ iτ)|dτ.

Proof. In fact, substituting (1.5) into (1.4) and changing the order of integration by Fubini’s
theorem, we call (1.3) to prove (2.1). The inversion of the order of integration is guaranteed
by the estimate (see (1.3))

2
∫ ∞

0

∣∣∣xz/2Kz(2
√

x)
∣∣∣∫

c
| f ∗(s)x−sds|dx

≤ 2
∫ ∞

0
x(Rez−2c0)/2KRez(2

√
x)dx

∫
c
| f ∗(s)ds|

= Γ (1− c0+Rez)Γ(1− c0)
∫

c
| f ∗(s)ds| < +∞, Rez > c0−1, c0 < 1

and the asymptotic behavior of the modified Bessel function at infinity and near the origin
(see above). Furthermore, integral (1.4) converges absolutely in the half-plane Rez > c0−1
and uniformly in Rez≥ a0 > c0−1. Since for each x> 0 the function xz/2Kz(2

√
x) is analytic

by z, we have that F(z) is well-defined and represents an analytic function in the half-plane
Rez > c0−1. Finally, the straightforward estimate takes place

||F f ||1 =
∫ ∞

−∞

|(F f )(Rez+ iτ)|dτ
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≤
1

2π

∫ ∞

−∞

∫ ∞

−∞

|Γ(1− c0+Rez+ i(τ− t))Γ(1− c0− it) f ∗(c0+ it)|dtdτ

≤ Γ(1− c0) || f ||M−1(Lc)

∫ ∞

−∞

|Γ(1− c0+Rez+ iτ)|dτ,

which completes the proof of the theorem. �

For the subspaceM−1
0,n(Lc) ⊆M−1(Lc), n ∈ N0 we have

Theorem 2.2. Let n ∈ N0, f ∈ M−1
0,n(Lc) and c0 < 1− n. Then f (x), x ∈ R+ is n times

continuously differentiable,
(
F f (n)

)
(z) is analytic in the half-plane Rez > c0 + n− 1 and(

F f (n)
)
(z) = (F f )(z− n). Finally, for any arbitrary y ∈ R+ the following representation

holds

(F f )y(z) = 2
∫ ∞

y
xz/2Kz(2

√
x) f (x)dx

= 2
n−1∑
m=0

(−1)my(z+m+1)/2Kz+m+1(2
√

y) f (m)(y)+ (−1)n
(
F f (n)

)
y
(z+n), y > 0, (2.2)

where the empty sum (n = 0) is equal to zero.

Proof. Clearly, from representation (1.1) after differentiation and integration n times with
respect to x under the integral sign we come out, accordingly, with the identities

2
dn

dxn

[
xz/2Kz(2

√
x)

]
= (−1)n

∫ ∞

0
e−t− x

t tz−n−1dt = 2(−1)nx(z−n)/2Kz−n(2
√

x), (2.3)

2
(n−1)!

∫ ∞

y
(x− y)n−1xz/2Kz(2

√
x)dx =

∫ ∞

0
e−t− y

t tz+n−1dt

= 2y(z+n)/2Kz+n(2
√

y), y > 0. (2.4)

Further, from Definition 2 it follows that f is n times continuously differentiable and via
(1.5) it has

f (n)(x) =
(−1)n

2π

∫
c
(s)n f ∗(s)x−s−nds, (2.5)

where (a)n is Pochhammer’s symbol. Hence, considering (F f n)(z), we integrate by parts in
the corresponding integral (1.4), taking into account that the integrated terms are vanished
owing to the asymptotic behavior of the modified Bessel function, the estimate f (n)(x) =
O(x−c0−n), x > 0 (see (2.5)) and limit relations

lim
x→0+

x1−c0− j+(Rez−i)/2KRez−i(2
√

x) = 0, i, j ∈ N0, i+ j = n,

which take place by virtue of the conditions c0 < 1−n, Rez > c0+n−1. Thus calling (2.3)
we prove the equality

(
F f (n)

)
(z) = (F f )(z−n) and similar to the proof of Theorem 2.1 we

easily justify the analyticity of G(z) =
(
F f (n)

)
(z) in the half-plane Rez > c0+n−1. Finally,

the proof of (2.2) follows immediately, appealing to (2.4) and integrating n times by parts
in its left-hand side. �
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In order to establish an inversion formula for the transformation (1.4) we employ an
operational technique, which was used formally by Sneddon [5], Ch. 6 to deduce the inver-
sion formula for the Kontorovich-Lebedev transform. We start multiplying both sides of the
equality (2.1) by xz, x > 0 and integrating with respect to z over the line (γ− i∞,γ+ i∞), γ >
c0 − 1. Changing the order of integration in the right-hand side of the obtained equality,
which is possible via Theorem 2.1 and calculating the corresponding inverse Mellin trans-
form of the gamma-function, we derive∫ γ+i∞

γ−i∞
(F f )(z)xzdz =

1
2πi

∫ c0+i∞

c0−i∞

∫ γ+i∞

γ−i∞
Γ(1− s+ z)Γ(1− s) f ∗(s)xzdzds

= e−1/x
∫ c0+i∞

c0−i∞
Γ(1− s) f ∗(s)xs−1ds.

Hence, taking into account that f ∈M−1(Lc), we apply the Mellin -Parseval identity to the
right-hand side of the latter equality. Thus

1
2πi

∫ γ+i∞

γ−i∞
(F f )(z)e1/xxzdz = (L f )(x) =

∫ ∞

0
e−xt f (t)dt, x > 0 (2.6)

and the right-hand side of the latter equality represents the Laplace transform denoted by
(L f )(x). In the meantime, relation (2.15.5.4) in [4], Vol. 2 gives the key integral involving
the modified Bessel function of the third kind Iν(w) [2], Vol. II

e1/xxz =

∫ ∞

0
e−xtI−(1+z)

(
2
√

t
)

t−(1+z)/2dt, x > 0, Rez < 0.

Substituting this integral into the left-hand side of (2.6) and assuming an additional condi-
tion

(F f )(γ+ iτ) ∈ L1
(
|τ| > 1; |τ|γ+1/2 eπ|τ|/2dτ

)
, γ ∈ (c0−1,0), (2.7)

we change of integration by Fubini’s theorem and arrive at the equality∫ ∞

0
e−xt 1

2πi

∫ γ+i∞

γ−i∞
I−(1+z)

(
2
√

t
)

t−(1+z)/2 (F f )(z)dzdt =
∫ ∞

0
e−xt f (t)dt, x > 0. (2.8)

Indeed, the motivation of the inversion of the order of integration in (2.8) is given due to
the representation of the modified Bessel function I−(1+z)

(
2
√

t
)

in terms of the series

I−(1+z)
(
2
√

t
)
=

∞∑
n=0

tn−(1+z)/2

n! Γ(n− z)
(2.9)

and an absolute integrability by τ ∈ R of the product (F f )(γ+ iτ)I−(1+γ+iτ)
(
2
√

t
)

under con-
dition (2.7), since Γ(n−γ− iτ) =O(|τ|n−γ−1/2e−π|τ|/2), |τ| →∞, n ∈N0 via Stirling’s formula
[2], Vol. I. Finally, we observe that equality (2.8) is true for all x > 0, where functions
under the convergent Laplace integrals in its both sides are continuous on R+ owing to con-
dition f ∈M−1(Lc) and assumption (2.7). Therefore one can cancel the Laplace transform
in (2.8) by virtue of the uniqueness theorem (see in [3]) to get the inversion formula for the
Kontorovich-Lebedev transformation (1.4). Thus we have proved
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Theorem 2.3. Let f (t) ∈M−1(Lc), c0 < 1 and condition (2.7) holds. Then for all t > 0 the
following inversion formula for the transformation (1.4) takes place

f (t) =
1

2πi

∫ γ+i∞

γ−i∞
I−(1+z)

(
2
√

t
)
t−(1+z)/2 (F f )(z)dz, γ ∈ (c0−1,0), (2.10)

where the integral is absolutely convergent.

3 Expansion of an arbitrary function in terms of the Kontorovich-
Lebedev-like integral

In this section we will prove that any function from the spaceM−1
0,(|ε|+ε)/2(Lc), c0 < 1, 2c0−

1 < ε < c0 can be expanded in terms of the following integral

f (x) =
1
πi

d
dx

∫ γ+i∞

γ−i∞
I−z

(
2
√

x
)

x−z/2
∫ ∞

0
tz/2Kz(2

√
t) f (t) dtdz, x > 0, (3.1)

where γ is taken from the interval (c0−1, (ε−1)/2).
Precisely, we have

Theorem 3.1. Let c0 < 1, 2c0 − 1 < ε < c0 and f ∈ M−1
0,(|ε|+ε)/2(Lc). Then for any x > 0

formula (3.1) is true, where the interior integral with respect to t converges absolutely and
the exterior integral by z is understood in the improper sense of Riemann.

Proof. In fact, since M−1
0,(|ε|+ε)/2(Lc) ⊆ M−1(Lc), the absolute convergence of the interior

integral in (3.1) follows from Theorem 2.1. Moreover, equality (2.1) holds. Hence writing
the modified Bessel function I−z

(
2
√

x
)

similar to (2.9) and substituting the right-hand side
of (2.1) into (3.1), we come out with the following iterated integral

I(x) = −
1

4π2

∫ γ+i∞

γ−i∞

∞∑
n=0

xn−z

n! Γ(1+n− z)

∫ c0+i∞

c0−i∞
Γ(1− s+ z)Γ(1− s) f ∗(s)dsdz. (3.2)

Meanwhile, appealing to the Stirling formula for gamma-functions [2], Vol. I, we find for
any n ∈ N ∣∣∣∣∣Γ(1− s+ z)

Γ(1+n− z)

∣∣∣∣∣ = ∣∣∣∣∣B(1− s+ z, s−ε)B(n,1− z)
Γ(1−ε+ z)

Γ(s−ε)Γ(1− z)(n−1)!

∣∣∣∣∣
≤

B(1− c0+γ,c0−ε)Γ(1−γ)
Γ(1+n−γ)

∣∣∣∣∣ Γ(1−ε+ z)
Γ(s−ε)Γ(1− z)

∣∣∣∣∣ = O
(
|z|2γ−ε

|Γ(s−ε)|

)
, |Imz| → ∞,

where B(a,b) is Euler’s beta-function, c0 − 1 < γ < (ε− 1)/2. Hence from (3.2) for each
fixed x > 0 we obtain the estimate∫ γ+i∞

γ−i∞

∞∑
n=0

∣∣∣∣∣ xn−z

n! Γ(1+n− z)

∣∣∣∣∣ ∫ c0+i∞

c0−i∞

∣∣∣Γ(1− s+ z)Γ(1− s) f ∗(s)dsdz
∣∣∣

≤ B(1− c0+γ,c0−ε)Γ(1−γ)x−γ/2I−γ(2
√

x)
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×

∫ γ+i∞

γ−i∞

∣∣∣∣∣Γ(1−ε+ z)
Γ(1− z)

∣∣∣∣∣ ∫ c0+i∞

c0−i∞

∣∣∣∣∣Γ(1− s)
Γ(s−ε)

f ∗(s)dsdz
∣∣∣∣∣

= O
(∫ γ+i∞

γ−i∞
|z|2γ−ε|dz|

∫ c0+i∞

c0−i∞
|s|ε| f ∗(s)ds|

)
< +∞.

Consequently, the change of the order of integration and summation is possible in (3.2).
After calculation of the integral with respect to z using relation (8.4.19.1) in [4], Vol. 3 it
becomes

I(x) =
1

2πi

∫ c0+i∞

c0−i∞

∞∑
n=0

xn

n!
Jn+1−s(2

√
x) Γ(1− s) f ∗(s)x(1−s)/2ds, (3.3)

where Jµ(w) is the Bessel function of the first kind [2], Vol. II. But the series inside (3.3) is
calculated in [4], Vol. 2, relation (5.7.6.7), namely

∞∑
n=0

xn

n!
Jn+1−s(2

√
x) =

x(1−s)/2

Γ(2− s)
.

Thus substituting this value into (3.3) and applying the reduction formula for gamma-
function, we arrive at the equality

I(x) =
1

2πi

∫ c0+i∞

c0−i∞
f ∗(s)

x1−s

1− s
ds. (3.4)

Hence the differentiation with respect to x > 0 under integral sign in (3.4) is permitted
via the absolute and uniform convergence since f ∗(s) ∈ L1(c) (see Definition 2). Thus we
establish equality (3.1) and complete the proof. �

As we see, expansion (3.1) generates the following reciprocal inversion formula of the
index transform (1.4)

f (x) =
1

2πi
d
dx

∫ γ+i∞

γ−i∞
I−z

(
2
√

x
)

x−z/2(F f )(z)dz, x > 0. (3.5)

Corollary 3.2. Let, in addition, condition (2.7) hold. Then formula (3.5) can be written in
the form (2.10).

Proof. Indeed, in this case the differentiation under integral sign in (3.5) is allowed via
the absolute and uniform convergence. Hence using the identity for derivatives of Bessel
functions [2], Vol. II

d
dx

[
I−z

(
2
√

x
)

x−z/2
]
= I−(z+1)

(
2
√

x
)

x−(z+1)/2,

we arrive at the result. �

Corollary 3.3. Let c0 < 1, 2c0−1 < ε < c0 and f ∈M−1
0,(|ε|+ε)/2(Lc). Then the homogeneous

integral equation ∫ ∞

0
tz/2Kz(2

√
t) f (t)dt = 0

has only the trivial solution.
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Expansion (3.1) gives a new source of index integrals involving the modified Bessel
function Iν(w). It can be obtained employing the corresponding integrals (1.4) for concrete
functions f from [4], Vol. 2. In fact, making a simple substitution in (1.4) and then using
relation (2.16.6.4) in [4], Vol. 2 we calculate the value of the index integral

1
2πi

∫ ν+i∞

ν−i∞
I−z

(
2
√

x
) Γ(z)

2z+1
x−z/2 dz = e−2

√
x, x > 0, ν < 1/2.

Meanwhile, relation (2.16.33.2) in [4], Vol. 2 leads us to the value of the reciprocal index
integral

1
4πi

∫ ν+i∞

ν−i∞
I−z

(
2
√

x
) Γ (z+ µ2 )Γ (z− µ2 )

Γ(z+1)
x−z/2 dz

= Kµ(2
√

x)
[
Γ

(
1+
µ

2

)
Γ

(
1−
µ

2

)]−1
, x > 0, |Reµ|/2 < ν < 1/2.

More curious example can be calculated, for instance, via relation (2.16.8.4) in [4], Vol. 2.
Indeed, we have

1
2πi

∫ ν+i∞

ν−i∞
I−z

(
2
√

x
)
W−z/2, (z−1)/2

(
1

4p

)
Γ (z) (4px)−z/2 dz

= e−4px− 1
8p , x, p > 0, 1/2 < ν < ε+1/2, ε ∈ (0,1/4).

where Wµ,ν(w) is the Whittaker function [2], Vol. I.

4 A convolution operator, integral equations of the convolution
type and difference equations

In this section we will construct a convolution operator, which is related to the transforma-
tion (1.4) and the Mellin transform [6]

(M f ) (z) =
∫ ∞

0
f (x)xz−1dx. (4.1)

Our construction will be based on the convolution properties of the Mellin transform in L1
(see [5], [6], Th. 44) and representation (1.1). Indeed, considering (1.1) of the same param-
eter z and different positive arguments x and y, we deduce the following representation of
the product of these integrals, namely

4(xy)z/2Kz(2
√

x)Kz(2
√

y) =
∫ ∞

0
e−t− x

t tz−1dt
∫ ∞

0
e−u− y

u uz−1du

=

∫ ∞

0
wz−1

(∫ ∞

0
e−

t(y+w)
w − x+w

t
dt
t

)
dw = 2

∫ ∞

0
K0

2 √
(x+w)(y+w)

w

wz−1dw,

where the change of the order of integration is allowed by the Fubini theorem via the abso-
lute convergence. So we find the product integral formula for the kernel of transformation
(1.4)

2(xy)z/2Kz(2
√

x)Kz(2
√

y) =
∫ ∞

0
K0

2 √
(x+w)(y+w)

w

wz−1dw, (x,y) ∈ R2
+, z ∈ C. (4.2)
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Definition 3. We will call the following bilinear form ( f ∗g)(x), x ∈ R+

( f ∗g)(x) = 2
∫
R2
+

K0

2 √
(x+u)(x+w)

x

 f (u)g(w)dudw (4.3)

a convolution operator for the transformation (1.4) whenever it exists.
Let us consider the weighted L1-space L1(R+;2xα/2Kα(2

√
x)dx), α ∈ R with the norm

|| f ||L1(R+;2xα/2Kα(2
√

x)dx) = 2
∫ ∞

0
| f (x)|xα/2Kα(2

√
x)dx.

Similar to (2.6), we prove first the composition representation of the transformation
(1.4) in terms of the Mellin and Laplace integrals.

Theorem 4.1. Let f ∈ L1(R+; x(α−|α|)/2dx), α , 0. Then (F f )(z) is analytic in the right
half-plane

Re z ≥

0, if α > 0,
α, if α < 0

and can be represented there by the composition of the Mellin and Laplace transforms as
follows

(F f )(z) =M◦
(
e−t(L f )(1/t)

)
(z). (4.4)

Proof. The proof is straightforward by Fubini’s theorem with the use of integral represen-
tation (1.1), asymptotic behavior of the modified Bessel function and the estimates

|xz/2Kz(2
√

x)| ≤ xRez/2KRez(2
√

x) ≤Cxβ/2Kβ(2
√

x), x > 0, (4.5)

where C > 0 is an absolute constant when

Re z ≥

0, if β ≥ 0,
β, if β < 0,

2xα/2Kα(2
√

x) ≤ x(α−|α|)/2Γ(|α|), α , 0, (4.6)∫ ∞

0
|xz/2Kz(2

√
x)| f (x)|dx ≤C

∫ ∞

0
| f (x)|

∫ ∞

0
e−t− x

t tα−1dtdx

≤C Γ(|α|)
∫ ∞

0
x(α−|α|)/2| f (x)|dx <∞.

�

Theorem 4.2. Let f ,g ∈ L1(R+;2xα/2Kα(2
√

x)dx), α ∈R. Then convolution (4.3) exists and
belongs to the space L1(R+; xα−1dx), satisfying the Young type inequality

|| f ∗g||L1(R+;xα−1dx) ≤ || f ||L1(R+;2xα/2Kα(2
√

x)dx)||g||L1(R+;2xα/2Kα(2
√

x)dx). (4.7)

Moreover, this form is commutative and the following factorization equality holds in terms
of transformations (1.4), (4.1)
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(M( f ∗g)) (z) = (F f )(z)(Fg)(z), (4.8)

where z belongs to the half-plane

Re z ≥

0, if α ≥ 0,
α, if α < 0.

Proof. In fact, the existence of the convolution (4.3) for almost all x > 0 follows from
Fubini’s theorem and the estimate∫ ∞

0
|( f ∗g)(x)|xα−1dx ≤ 2

∫ ∞

0
xα−1

∫ ∞

0

∫ ∞

0
K0

2 √
(x+u)(x+w)

x

 | f (u)g(w)|dudwdx

= 4
∫ ∞

0
uα/2Kα(2

√
u)| f (u)|du

∫ ∞

0
wα/2Kα(2

√
w)|g(w)|dw.

This also drives us to the Young type inequality (4.6). Hence the factorization equality (4.7)
is an immediate consequence of (4.2), (4.5) with β= α and straightforward calculations. �

Letting α = 1 and using inequality (4.6) we obtain as a corollary the L1-property of the
convolution (4.3).

Corollary 4.3. Let f ,g ∈ L1(R+;dx). Then convolution (4.3) exists and belongs to L1(R+;dx),
yielding the corresponding Young inequality

|| f ∗g||L1 ≤ || f ||L1 ||g||L1 . (4.9)

Moreover, the convolution is commutative and associative, satisfying the factorization equal-
ity (4.8) in the half-plane Rez ≥ 0.

Further, appealing to Corollary 3.3 we prove an analog of Titchmarsh’s theorem about
the absence of divisors of zero for convolution (4.3).

Theorem 4.4. Let f ,g ∈ L1(R+;dx). Then the equality ( f ∗g)(x) = 0 yields that at least one
of the functions f (x) and g(x) is equal to zero for all x > 0.

Proof. In fact, both functions (F f )(z), (Fg)(z) are analytic in the half plane Rez > 0 and via
equality (4.8) at least on of them is identically equal to zero. Then the result follows from
Theorem 4.1 due to the uniqueness theorems in L1 for the Mellin and Laplace transforms.

�

The Parseval type equality for convolution (4.3) is an immediate consequence of the
Plancherel L2-theory of the Mellin transform [6]. We have

Theorem 4.5. Let f ,g ∈ L1(R+;dx). Then ( f ∗g)(x) ∈ L2(R+; x2α−1dx), α > 0 and the Par-
seval type equality holds∫ ∞

0
|( f ∗g)(x)|2x2α−1dx =

1
2π

∫ ∞

−∞

|(F f )(α+ it)(Fg)(α+ it)|2 dt. (4.10)
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Proof. Indeed by virtue of the generalized Minkowskii inequality and relation (8.4.23.27)
in [4], Vol. 3 we derive

|| f ∗g||L2(R+;x2α−1dx) = 2

∫ ∞

0

∣∣∣∣∣∣∣
∫
R2
+

K0

2 √
(x+u)(x+w)

x

 f (u)g(w)dudw

∣∣∣∣∣∣∣
2

x2α−1dx


1/2

≤ 2
∫
R2
+

| f (u)g(w)|

∫ ∞

0
K2

0

2 √
(x+u)(x+w)

x

 x2α−1dx

1/2

dudw

≤

(∫ ∞

0
K2

0

(
2
√

x
)

x2α−1dx
)1/2

|| f ||L1 ||g||L1 = 2−2α−1/2π1/4 Γ3/2(2α)
Γ1/2(2α+1/2)

|| f ||L1 ||g||L1 <∞.

Hence factorization equality (4.8) and Theorem 71 in [6] give the result. �

Finally, let us consider a class of convolution integral equations of the first kind gener-
ated by (4.3) ∫ ∞

0
kh(x,y) f (y)dy = g(x), x > 0, (4.11)

where

kh(x,y) = 2
∫ ∞

0
K0

2 √
(x+ y)(x+u)

x

h(u)du, (4.12)

h,g are given functions and f is to be determined.

Theorem 4.6. Let f ∈ M−1(Lc), c0 < 1, h ∈ L1(R+;2xα/2Kα(2
√

x)dx), 0 > α > c0 − 1 and
g ∈ L1(R+; xα−1dx). Let also transformation (1.4) of h (Fh)(z) has no zeros in the strip
Rez ∈ (α,0) and the quotient (Mg) (z)/(Fh)(z), where (Mg) (z) is the Mellin transform (4.1)
of g, satisfies condition (2.7) in this strip. Then a solution of the integral equation (4.11)
has the form

f (x) =
1

2πi

∫ γ+i∞

γ−i∞
I−(1+z)

(
2
√

x
)

x−(1+z)/2 (Mg) (z)
(Fh)(z)

dz, x > 0,γ ∈ (α,0). (4.13)

Proof. Clearly, by straightforward estimate of the norm we verify that if f ∈M−1(Lc), c0 <

1 and α ∈ (c0−1, 0), then f ∈ L1(R+;2xα/2Kα(2
√

x)dx). Therefore Theorem 4.2 and formula
(4.8) are valid for convolution ( f ∗h)(x). Hence since (Fh)(z) , 0 in the strip Rez ∈ (α,0) it
has the equality

(F f )(z) =
(Mg) (z)
(Fh)(z)

.

Consequently, appealing to Theorem 2.3 and formula (2.10), we complete the proof of the
theorem. �

An interesting example of the equation (4.12) and its solution can be found, taking, for
instance, h(x)= x−1/2. In this case one can calculate the kernel (4.12) via relation (2.16.3.10)
in [4], Vol. 2 and we obtain

kh(x,y) =
π
√

x
√

x+ y
e−2
√

x+y.
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Moreover, it has (Fh)(z) =
√
πΓ(z+1/2) by formula (1.3). Hence Theorem 4.6 says that a

solution of the integral equation

π
√

x
∫ ∞

0

e−2
√

x+y

√
x+ y

f (y)dy = g(x), x > 0,

is given by the integral

f (x) =
1

2π
√
πi

∫ γ+i∞

γ−i∞

I−(1+z)
(
2
√

x
)

Γ(z+1/2)
x−(1+z)/2 (Mg) (z)dz, x > 0,

where γ ∈ (α,0), α is chosen from the interval α ∈ (max(c0−1,−1/2), 0) and

(Mg) (γ+ iτ) ∈ L1
(
|τ| > 1; |τ|1/2 eπ|τ|dτ

)
.

This example can be generalized, considering h(x) = xβ−1, β > 0. Hence using relation
(2.16.3.8) in [4], Vol. 2, we find

kh(x,y) = 2Γ(β)
(

x
√

x+ y

)β
Kβ

(
2
√

x+ y
)
.

Moreover, (Fh)(z) = Γ(β)Γ(β+ z) and a solution of the equation

2Γ(β)
∫ ∞

0

(
x
√

x+ y

)β
Kβ

(
2
√

x+ y
)

f (y)dy = g(x), x > 0,

is

f (x) =
1

2πΓ(β)i

∫ γ+i∞

γ−i∞

I−(1+z)
(
2
√

x
)

Γ(z+β)
x−(1+z)/2 (Mg) (z)dz, x > 0,

where γ ∈ (α,0), α is chosen from the interval α ∈ (max(c0−1,−β), 0) and

(Mg) (γ+ iτ) ∈ L1
(
|τ| > 1; |τ|1−β eπ|τ|dτ

)
.

Let us write this solution in terms of the Neumann type series. In fact, substituting the
value of the modified Bessel function I−(1+z)

(
2
√

x
)

by series (2.9), we change the order of
summation and integration via the absolute convergence to obtain

f (x) =
1
Γ(β)

∞∑
n=0

xn−1

n! Γ(n+β)

{
xβ(1+ x)−β−n

}−1
g,

where by the symbol

{
xβ(1+ x)−β−n

}−1
g =

1
2πi

∫ γ+i∞

γ−i∞

(Mg) (z)
Γ(n− z)Γ(z+β)

x−zdz

the generalized inverse Stieltjes transform is denoted (see details in [1]).
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Finally, we will show that some difference equations can also be solved by using the
transformation (1.4). In fact, let us take, for instance, the difference equation of the order n

n∑
k=0

ckF(z− k) =G(z), Rez > n, n ∈ N0, (4.14)

where ck, k = 0,1, . . . ,n are given constants, such that the characteristic polynomial Pn(t) =∑n
k=0 cktk has no roots onR+, G is a known function and F is unknown. Calling Theorem 2.2

and assuming that G(z)= (Fg)(z) is a transformation (1.4) of a given function g ∈M−1
0,n(Lc)∩

L1(R+;dx) and c0 + n < 0, we seek a solution in the form (1.4) with an unknown function
f ∈M−1

0,n(Lc)∩L1(R+;dx). Then owing to Theorem 2.2

F(z− k) =
(
F f (k)

)
(z), k = 0,1, . . . ,n,

where f (x), x ∈ R+ is n times continuously differentiable and satisfies trivial initial condi-
tions f (0) = f ′(0) = · · · = f (n−1)(0) = 0. Hence equation (4.14) becomesF

n∑
k=0

ck f (k)

 = (Fg)(z)

and appealing to Corollary 3.3 the latter equality is equivalent to the linear n-th order dif-
ferential equation with constant coefficients

n∑
k=0

ck f (k)(x) = g(x), x ≥ 0

under trivial initial conditions f (0) = f ′(0) = · · · = f (n−1)(0) = 0. This equation can be solved
by operational calculus for the Laplace transform (see in [3]) since f ,g and all derivatives
are Laplace transformable via Definition 2 of the classM−1

0,n(Lc) and the estimate f (k)(x) =
O(x−c0−k), x ≥ 0, c0 + k < 0, k = 0,1, . . . ,n. Hence we find the Laplace transform (2.6) of f
in terms of the Laplace transform of g as

(L f )(x) =
(Lg)(x)
Pn(x)

, x > 0.

Now taking into account Theorem 4.1 and composition (4.4), the solution of (4.14) can be
written in the integral form

F(z) =
∫ ∞

0

∫ ∞

0
e−xt−1/tg(x)t−z−1 dxdt

Pn(t)
.

For example, a simple difference equation

F(z−2)+3F(z−1)+2F(z) = eΓ(1+ z)Γ(−z,1), (4.15)

where Γ(ν,y) is the upper incomplete gamma-function, corresponds to the second order
differential equation
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f ′′(x)+3 f ′(x)+2 f (x) = e−x, x ≥ 0,

which has a unique solution under trivial conditions f ′(0) = f (0) = 0

f (x) = e−2x− (1− x)e−x.

Consequently, the desired solution of the equation (4.15) can be given immediately, em-
ploying relation (2.16.8.5) in [4], Vol.2 and we obtain

F(z) =
√

eΓ(z+1)
[
(z+1)Γ(z−2)W−(z+3)/2,z/2(1)+2−1−zΓ(−z,1/2)−

√
eΓ(−z,1)

]
.
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