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Abstract
We consider a differential inclusion

ẋ ∈ A(t)x+ f (t, x)+g(t, x,X1)

in an arbitrary Banach space X with a general exponential dichotomy, where X1 is the
closed unit ball of X. The right-hand side is strongly measurable in the time variable
and Lipschitz continuous in the others. We prove the existence and uniqueness of qua-
sibounded solutions corresponding to suitable selectors. The stable and unstable sets
of these quasibounded solutions are characterised as graphs of certain multifunctions.
Exponential dichotomy criteria are also presented.
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1 Introduction

It is well-known that invariant manifolds like stable and unstable ones play an impor-
tant role in understanding saddle dynamics for smooth nonlinear dynamical systems (DS)
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[1, 13, 14, 20–22]. To the best of our knowledge, instead, there are only few papers dealing
with saddle dynamics for non-smooth or even multivalued DS. The simplest example of
multivalued DS is the inflated dynamics, which was introduced in [15] and it was used in a
fairly large number of papers since then, for details, see [12]. This paper is a continuation
of [5], and we refer the reader for more results and a discussion on multivalued hyper-
bolical dynamics to that paper. Like in [5], our multivalued DS takes a special form of a
parametrized, i.e., controlled form with Lipschitzian nonlinearities/multifunctions. In view
of a parameterization result by Ornelas [16], this is not a loss of generality in finite dimen-
sional cases and with convex valued Lipschitzian multifunctions. However, in the general
case such a parameterization does not exist, see the Appendix of [5] for a short discussion
of the parameterization problem for multifunctions.

Hence we consider parametrized Lipschitzian and Carathéodorian semilinear differen-
tial inclusions in Banach spaces with exponentially dichotomous linear parts. Under addi-
tional assumptions, we prove the existence and uniqueness of quasibounded sets of those
differential inclusions. Then stable and unstable sets of these quasibounded sets are shown
to be graphs of suitable multifunctions. We also introduce and study more general weighted
quasibounded sets and discuss their hierarchy like in [1]. The paper is concluded with pre-
senting some criteria on the existence of exponential dichotomy.

2 Preliminaries

2.1 Measure theory

Throughout the whole paper (unless otherwise is stated) we suppose that X is a real Banach
space. We say that an interval I ⊂ R of arbitrary type is positive if its (Lebesgue) measure is
positive (the case ∞ is also involved). For this subsection assume that I ⊂ R is a nonempty
interval.

The function f : I → X is strongly measurable (according to [1]) if the range f (I) is
separable and f is measurable ( f is measurable if the preimage f −1(B) is a Borel set for
arbitrary Borel set B ⊂ X). The fundamental fact about s.m. functions (means strongly
measurable) is that: if f : I→ X is s.m. then there is a sequence { fn}∞n=1 of simple functions
which converges pointwise to f and satisfy the estimate || fn(t)|| ≤ || f (t)|| for all t ∈ I. The
function is simple if it has only finitely many values and is (strongly) measurable. It is
possible to reverse this fact in some sense: the function which is a pointwise limit of s.m.
functions is also a s.m. function. These facts together we call as the approximation property
of s.m. functions, for the proof see Appendix E of [4].

A function f : I × X → X has a Carathéodory property if at one hand f (t, ·) : X → X
is continuous for all fixed t ∈ I and on the other hand f (·, x) : I → X is s.m. for all fixed
x ∈ X.We denote the set of these function by CAR(I,X). The following consequence of the
approximation property will be useful for us (the proof is the same as the proof of Lemma
2.2 in [1] where continuous µ is investigated).

Lemma 2.1. Suppose that f ∈ CAR(I,X) and µ : I→ X is a s.m. function, then the ”par-
tially composed” mapping g : I→ X defined as g(t) := f (t,µ(t)) is also a s.m. function.

From measure theory we need also the theory of Bochner integrals, which can be found
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in many books on measures and integrals (cf. [4]). The brief definition by the help of
Lebesgue integrals is a following one: a s.m. function f : I → X is (Bochner) integrable
if the norm function || f || : I → R defined as || f ||(t) := || f (t)|| is Lebesgue integrable. The
function f is called locally integrable if it is integrable on every compact subinterval of
I. The definition of the integral for integrable simple function is straightforward. For an
arbitrary integrable function we use the approximation property to get simple integrable
functions fn such that f = limn→∞ fn, || fn(t)|| ≤ || f (t)|| and then the well known Lebesgue’s
Dominated Convergence Theorem for real-valued functions implies the well-definitness of∫

I f dt := limn→∞
∫

I fndt.

2.2 The Uniform Contraction Principle

One of the most often used tools in the theory of differential equations is the Uniform
Contraction Principle. We do not formulate it in the most general version, but only the case
what we use. The proof is easy and can be found in almost every textbook on functional
analysis (cf. [9]).

Theorem 2.2. Assume that X is a Banach space, P is a nonempty metric space with a
metric d and f : X ×P → X is a uniform contraction (there exist an α ∈ [0;1) such that
|| f (x, p)− f (x̃, p)|| ≤ α||x− x̃|| holds for all x, x̃ ∈ X, p ∈ P). Then for all p ∈ P there exists
a unique fixed point xfix = xfix(p) of the function f (·, p) : X → X. In addition xfix : P →
X is continuous if f (x, ·) : P → X is continuous for all x ∈ X and the Lipschitz property
|| f (x, p)− f (x, p̃)|| ≤ Ld(p, p̃) for all x ∈ X, p, p̃ ∈ P implies

||xfix(p)− xfix(p̃)|| ≤
L

1−α
d(p, p̃).

2.3 Solution concept for ordinary differential equation

We adopt the following quite general definition (from [1]) for the solutions of ordinary
differential equations. Suppose for this subsection that I is a positive interval and P is a
topological space.

Definition 2.3. Assume that J is a positive subinterval of I and f : I ×X ×P → X is such
that f (·, ·, p) ∈ CAR(I,X) for all p ∈ P. A continuous function λ : J → X is a solution of
the ordinary differential equation ẋ = f (t, x, p) at the parameter value p ∈ P if the function
f (·,λ(·), p) : J→ X is locally integrable and

λ(s)−λ(t) =
∫ s

t
f (τ,λ(τ), p)dτ

holds for all t, s ∈ J. In addition λ satisfies the initial condition x(t0)= x0 for some t0 ∈ I, x0 ∈

X if t0 ∈ J and λ(t0) = x0.

Let us recall a following fundamental theorem (Theorem 2.4 from [1]) about existence,
uniqueness and continuous dependence of the above defined solution type.
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Theorem 2.4 (Theorem 2.4 in [1]). Suppose that f : I ×X ×P→ X is such that f (·, ·, p) ∈
Car(I,X) for all p ∈ P. Assume also with locally integrable functions l, l0 : I → R+0 the
following conditions

|| f (t, x, p)− f (t, x̃, p)|| ≤ l(t)||x− x̃||,

|| f (t,0, p)|| ≤ l0(t),

for almost all t ∈ I, for all x, x̃ ∈ X and p ∈ P. Finally, suppose that f (t, x, ·) : P → X is
continuous for all (t, x) ∈ I×X. Then the initial value problem

ẋ = f (t, x, p), x(t0) = x0

has a unique solution λ(·; t0, x0, p) : I → X for all (t0, x0, p) ∈ I × X ×P. In addition the
so-defined mapping λ : I× I×X×P→ X is continuous.

3 Differential inclusions

Now we begin to deal with differential inclusions (or inflated differential equations). For
this we have to introduce some notations. For the arbitrary Banach space V denote by V1
the closed unit ball {v ∈ V : ||v||V ≤ 1}. A new space of function - the selector space - will
be

S := {h : R→ X : h is strongly measureable and ||h||∞ <∞}

where ||h||∞ = supt∈R ||h(t)||. It is easy to prove, that S is a Banach space with the norm || · ||∞.
As usual L(X) is the Banach space of bounded linear operators from X into itself with an
operator norm ||T ||o := supx∈X1

||T x|| for T ∈ L(X).
Our goal is to study the following ordinary differential inclusion

ẋ ∈ F(t, x,X1) (3.1)

where F : I×X×X1→ X is an arbitrary function, I is a positive interval and

F(t, x,X1) = {F(t, x,u) : u ∈ X1}.

Definition 3.1. Assume that J ⊂ I for positive intervals J, I. We say that the continuous
function λ : J → X is a solution of the differential inclusion (3.1) corresponding to the
selector h ∈ S1 if λ is a solution (in the sense of Definition 2.3) of the ordinary differential
equation ẋ = F(t, x,h(t)). In addition λ satisfies the initial condition x(t0) = x0 for t0 ∈ I, x0 ∈

X if we have t0 ∈ J and λ(t0) = x0.

Now we are able to state a theorem which can be derived from Theorem 2.4. However
we give a short proof (without technical details) which follows the lines of the proof of
Theorem 2.4.

Theorem 3.2. Assume that I is a positive interval and the right-hand side function F :
I×X×X1→ X satisfies the following three requirements:

(i) F(·, x,u) : I→ X is s.m. for all fixed (x,u) ∈ X×X1,
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(ii) F(t, ·, ·) : X×X1→ X is continuous for all t ∈ I,

(iii) there are locally integrable functions l0, l1, l2 : I→ [0;∞) such that

||F(t, x,u)−F(t, x̃, ũ)|| ≤ l1(t)||x− x̃||+ l2(t)||u− ũ||,

||F(t,0,0)|| ≤ l0(t),

for a.e. t ∈ I and for all x, x̃ ∈ X,u, ũ ∈ X1.

Under these conditions for every triple (t0, x0,h) ∈ I ×X×S1 there exists a unique solution
λ(·) = λ(·; t0, x0,h) : I→ X of the initial value problem

ẋ = F(t, x,h(t)), x(t0) = x0.

In other words, for every (t0, x0) ∈ I×X the inclusion initial value problem

ẋ ∈ F(t, x,X1), x(t0) = x0

has a unique solution λ(·) = λ(·; t0, x0,h) corresponding to the arbitrarily chosen selector
h ∈ S1.

In addition the mapping λ : I× I×X×S1→ X is continuous.

Proof. Without loss of generality we may restrict our attention to the case I = [a;b] for
arbitrary but fixed a < b,a,b ∈ R (simple reason is that every positive interval I can be
written in the form I =

⋃
j∈N[a j,b j] where a j+1 ≤ a j < b j ≤ b j+1 for j ∈ N and a j,b j ∈ R).

Denote by C(I,X) the Banach space of continuous functions x : I → X with a norm
|| · ||∞. Define T for x ∈C(I,X) and t0, t ∈ I, x0 ∈ X,h ∈ S1 as follows

T (x; t0, x0,h)(t) := x0+

∫ t

t0
F(s, x(s),h(s))ds.

It can be shown (as in the proof of Theorem 4.2 of the paper [1]) that this operator viewed
as

T : C(I,X)× I×X×S1→C(I,X)

is well-defined and continuous. Moreover for n ∈ N sufficiently large the iterated mapping
T n (defined as T k(x; t0, x0,h) :=T (T k−1(x; t0, x0,h); t0, x0,h) for k ≥ 2) is a uniform contrac-
tion at the first variable. Therefore Theorem 2.2 can be used to get a unique fixed point of
T n which depends continuously on the ”parameters” t0, x0,h.As a straightforward corollary
we obtain the statement of our theorem. �

4 Inclusions with exponential dichotomy

Suppose that A :R→ L(X) is a locally integrable function. In the paper [1] there is a detailed
proof of the existence of the evolution operator Φ : R×R→ L(X) to the linear differential
equation ẋ = A(t)x. This is defined as Φ(t, s) := B(t) where B : R → L(X) is the unique
solution of the operator differential equation Ḃ = A(t)B with initial condition B(s) = idX .

In [1] there are also proved some important properties of this operator, we collect them to
the following lemma.
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Lemma 4.1. For all t, s ∈ R we have Φ(t, s) ∈ GL(X) which is the group of invertible op-
erators in L(X). Moreover Φ : R×R→ L(X) is continuous, ||Φ(t, s)||o ≤ e|

∫ t
s ||A(τ)||dτ| for all

s, t ∈ R and the following cocycle property is valid

Φ(t,r)◦Φ(r, s) = Φ(t, s), t,r, s ∈ R.

In addition for any locally integrable function f : R → X there exists a unique solution
of the inhomogeneous linear differential equation ẋ = A(t)x + f (t) with initial condition
x(t0) = x0 ∈ X, t0 ∈ R. This is given by the variation of constants formula

x(t) = Φ(t, t0)x0+

∫ t

t0
Φ(t, s) f (s)ds.

Sometimes it is convenient to use also Φ̃ : R→ X which is the solution of the operator
differential equation ẋ = A(t)x with initial condition x(0) = idX . The relation between Φ and
Φ̃ is

Φ̃(t) = Φ(t,0), Φ(t, s) = Φ̃(t)◦
(
Φ̃(s)

)−1.

Definition 4.2. We say that A posses an exponential dichotomy on R if there are constants

K ≥ 1, α,β ∈ R,α < β

and a projection P ∈ L(X) (projection means P2 = P) such that

||Φ̃(t)◦P+ ◦
(
Φ̃(s)

)−1
||o ≤ K eα(t−s), t ≥ s, (4.1)

||Φ̃(t)◦P− ◦
(
Φ̃(s)

)−1
||o ≤ K eβ(t−s), t ≤ s, (4.2)

where P+ := P and P− := idX −P+.We denote by EDα,β(X) the set of all locally integrable
A : R→ L(X) which posses an exponential dichotomy on R with α < β (we also use shorter
notation EDα,β when it is clear which Banach space is investigated; note that A ∈ EDα,β
implies also the existence of the constant K and projection P although for simplicity the
notation does not includes these parameters). Furthermore we introduce for t ∈ R notations

P±(t) := Φ̃(t)◦P± ◦
(
Φ̃(t))−1, P±t := P±(t)(X).

Note that P±(t) are projections and P+(t)+P−(t) = I. It is easy to establish the following
quasi-commutation

P±(t)◦Φ(t, s) = Φ(t, s)◦P±(s), s, t ∈ R.

These notions are well-known, for more details see the book [6].

4.1 Bounded solutions revisited

For this subsection assume that

α < 0 < β and A ∈ EDα,β. (4.3)

This can be interpreted as the generalization of the hyperbolic matrix. The set of
bounded solutions and integral manifolds corresponding to them of the differential inclusion

ẋ ∈ A(t)x+ f (t, x)+g(t, x,X1) (4.4)
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was analysed in [5] (cf. section 4; mainly Theorems 3 and 4). We briefly recall these results.
For the sake of completness we also mention the main tools of the proofs, again without
technical details.

Lemma 4.3. Assume that f :R→ X is a s.m. function and M is a constant such that || f (t)|| ≤
M for a.e. t ∈ R. Then there is a unique bounded solution y : R→ X of the inhomogeneous
differential equation ẋ = A(t)x+ f (t) and it is given by the formula

y(t) =
∫ t

−∞

Φ(t, s)P+(s) f (s)ds−
∫ ∞

t
Φ(t, s)P−(s) f (s)ds. (4.5)

In addition ||y||∞ ≤ MK
( 1
β −

1
α

)
.

Proof. At first we show the uniqueness part of the statement. If µ1,2 are two bounded
solution, then u := µ1−µ2 is a bounded solution of u̇ = A(t)u. Therefore

||P+(t)u(t)|| = ||Φ̃(t)P+
(
Φ̃(s)

)−1u(s)|| ≤ K eα(t−s)||u||∞

is valid for all t, s ∈ R, s ≤ t. If s tends to −∞ we obtain P+(t)u(t) = 0 for all t ∈ R. Similarly
we get P−(t)u(t) = 0. These facts together yields µ1 = µ2.

On the other hand y defined by formula (4.5) really gives the unique bounded solution
(the omitted technicalities can be done in the following way: the right definitness of y
follows from considerations as in Lemma 2.1; to prove the continuity of y we have to
use Lebesgue’s theorem about dominated convergence; an application of Fubini’s theorem
about double integrals gives after some computation that y is a solution; the boundedness
of this solution is straightforward from the definition of exponential dichotomy on R). �

Now we state the nonlinear analogues of this lemma belonging to inclusion (4.4). Let
we introduce the notation

κα,β :=
1
β
−

1
α
.

Theorem 4.4 (Section 4, Theorem 3 in [5]). Suppose that for a functions

f : R×X→ X, g : R×X×X1→ X

the following is valid:

(i) Smoothness: f (·, x),g(·, x,u) : R→ X are s.m. for all x ∈ X,u ∈ X1 and f (t, ·) : X →
X,g(t, ·, ·) : X×X1→ X are continuous for all t ∈ R,

(ii) Boundedness: there are constants M1,M2 ≥ 0 such that

|| f (t,0)|| ≤ M1 and ||g(t,0,0)|| ≤ M2

for a.e. t ∈ R,

(iii) Lipschitz condition: there are constants L1,L2,L3 such that

|| f (t, x)− f (t, x̃)|| ≤ L1||x− x̃|| and ||g(t, x,u)−g(t, x̃, ũ)|| ≤ L2||x− x̃||+L3||u− ũ||

is valid for a.e. t ∈ R and for all x, x̃ ∈ X,u, ũ ∈ X1.
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Finally suppose that

(iv) K(L1+L2)κα,β < 1.

Then for every h ∈ S1 there exists a unique bounded solution Γ(·,h) : R→ X of the problem
(4.4) corresponding to the selector h. In addition the mapping Γ : R×S1→ X is continuous
with an estimate

||Γ(·,h)−Γ(·, h̃)||∞ ≤C(K,L1,L2,L3,α,β)||h− h̃||∞

where

C(K,L1,L2,L3,α,β) :=
KL3κα,β

1−K(L1+L2)κα,β
. (4.6)

Proof. For x ∈C(R,X),h ∈ S1 and t ∈ R we set

T (x,h)(t) :=
∫ t
−∞
Φ(t, s)P+(s)

[
f (s, x(s))+g(s, x(s),h(s))

]
ds

−
∫ ∞

t Φ(t, s)P−(s)
[
f (s, x(s))+g(s, x(s),h(s))

]
ds.

(4.7)

The form of this operator is motivated from the previous lemma. Application of Theorem
2.2 gives our assertation, where Γ(·,h) is the unique fixed point of T (·,h). �

For the later use we introduce another sets of selectors

Sε := {h ∈ S : ||h||∞ ≤ ε},

S+τ,ε := {h : R+τ → X is s.m. and ||h||+τ := sup
t≥τ
||h(t)|| ≤ ε},

S−τ,ε := {h : R−τ → X is s.m. and ||h||−τ := sup
t≤τ
||h(t)|| ≤ ε},

where τ ∈ R, ε ∈ [0,1] and R+τ := [τ,∞),R−τ := (−∞, τ]. Note that Sε ,S+τ,ε ,S
−
τ,ε are complete

metric spaces with corresponding metrics induced by || · ||∞, || · ||+τ , || · ||
−
τ .

In the situation of Theorem 4.4 we put down for ε ∈ [0,1] and τ ∈ R an important set of
initial positions of the bounded solutions

IPτ,ε := {Γ(τ,h) : h ∈ Sε}.

Note that an application of Theorem 3.2 gives the existence, uniqueness and continuous
dependence of the solution λ(·, t0, x0,h) of the problem

ẋ = A(t)x+ f (t, x)+g(t, x,h(t)), x(t0) = x0

for every triple (t0, x0,h) ∈ R×X×S1.

Now we define the stable set of IPτ,ε (”stable positions”) as

SPτ,ε := {ξ ∈ X : ∃h ∈ Sε such that lim
t→∞
||λ(t, τ,ξ,h)−Γ(t,h)|| = 0}

and similarly an unstable set (”unstable positions”) as

UPτ,ε := {ξ ∈ X : ∃h ∈ Sε such that lim
t→−∞

||λ(t, τ,ξ,h)−Γ(t,h)|| = 0}.
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Generally for functions k : R+τ → X, l : R−τ → X we introduce extensions k+, l− : R→ X
as

k+(t) :=
{

k(t) if t ≥ τ,
0 if t < τ,

l−(t) :=
{

0 if t > τ,
l(t) if t ≤ τ.

Introduce
SPτ,ε := {ξ ∈ X : ∃h ∈ S+τ,ε such that ||λ(·, τ,ξ,h+)||+τ <∞}

and
UPτ,ε := {ξ ∈ X : ∃h ∈ S−τ,ε such that ||λ(·, τ,ξ,h−)||−τ <∞}.

Theorem 4.5 (Section 4, Theorem 4 in [5]). Suppose that all the assumptions of Theorem
4.4 are satisfied and choose τ ∈ R, ε ∈ [0,1]. Then there are Lipschitz continuous functions

ws : P+τ ×S
+
τ,ε → P

−
τ , wu : P−τ ×S

−
τ,ε → P

+
τ

such that
SPτ,ε = SPτ,ε = {ξ++ws(ξ+,h) : ξ+ ∈ P+τ ,h ∈ S

+
τ,ε},

UPτ,ε = UPτ,ε = {ξ−+wu(ξ−,h) : ξ− ∈ P−τ ,h ∈ S
−
τ,ε}.

(4.8)

Exact Lipschitz constants are expressed in the formulaes

||ws(ξ+1 ,h1)−ws(ξ+2 ,h2)|| ≤
K

1−K(L1+L2)κα,β
||ξ+1 − ξ

+
2 ||+C(K,L1,L2,L3,α,β)||h1−h2||

+
τ ,

||wu(ξ−1 ,h1)−wu(ξ−2 ,h2)|| ≤
K

1−K(L1+L2)κα,β
||ξ−1 − ξ

−
2 ||+C(K,L1,L2,L3,α,β)||h1−h2||

−
τ .

Proof. We deal with the stable case - the unstable one is analogical. At first we show the
characterisation (4.8) for SPτ,ε . Arguments as in Lemma 4.3 yields that the ”right” operator
is

T (x, ξ+,h)(t) := Φ(t, τ)ξ++
∫ t

τ
Φ(t, s)P+(s)Λx,h(s)ds−

∫ ∞

t
Φ(t, s)P−(s)Λx,h(s)ds

viewed as T : C+τ ×P
+
τ ×S

+
τ,ε → C+τ , where Λx,h(s) := f (s, x(s))+ g(s, x(s),h(s)) and C+τ is

the Banach space of bounded and continuous functions from R+τ to X supplied with a norm
|| · ||+τ (of course this is not obvious at all, for more details see the series of Lemmas 3.2 – 3.7
of the paper [1]). The operator T is ”right” in the sense that µ ∈ C+τ is a bounded solution
of the problem ẋ = A(t)x+ f (t, x)+g(t, x,h(t)) if and only if T (µ,P+(τ)µ(τ),h) = µ.

Now a standard application of Theorem 2.2 shows the existence of the unique fixed
point xξ+,h of T (·, ξ+,h) and also the corresponding Lipschitz bounds. The statement of
(4.8) for SPτ,ε then follows if we set ws(ξ+,h) := xξ+,h(τ).

The relation SPτ,ε ⊂ SPτ,ε is trivial. For SPτ,ε ⊂ SPτ,ε we use again Theorem 2.2. Let
ξ ∈ SPτ,ε . Therefore there is a h ∈ S+τ,ε such that ||λ(·, τ,ξ,h+)||+τ <∞. Introduce

u : R+τ → X, u(t) = λ(t, τ,ξ,h+)−Γ(t,h+).

Then u is a solution of ẋ = A(t)x+F(t, x) on R+τ where

F(t, x) := f (t, x+Γ(t,h+))− f (t,Γ(t,h+))+g(t, x+Γ(t,h+),h(t))−g(t,Γ(t,h+),h(t)).
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In addition u is bounded on R+τ therefore (cf. Lemmas 3.2 – 3.7 in [1])

u(t) = Φ(t, τ)P+(τ)u(τ)+
∫ t

τ
Φ(t, s)P+(s)F(s,u(s))ds−

∫ ∞

t
Φ(t, s)P−(s)F(s,u(s))ds.

Set for γ ∈ (0,−α) a Banach space

Xγ := {x ∈C(R+τ ,X) : ||x||+τ,−γ := sup
t≥τ
||x(t)||eγt <∞}

with a norm || · ||+τ,−γ. Define

T̂ (x, ξ+)(t) := Φ(t, τ)ξ++
∫ t

τ
Φ(t, s)P+(s)F(s, x(s))ds−

∫ ∞

t
Φ(t, s)P−(s)F(s, x(s))ds

for (x, ξ+, t) ∈ Xγ ×P+τ ×R
+
τ .

Apply Theorem 2.2 for T̂ : Xγ ×P+(τ)→ Xγ (it is possible for γ > 0 sufficiently small
– we need exactly the condition K(L1 + L2)κα+γ,β+γ < 1 which can be satisfied due to the
assumption (iv) of Theorem 4.4). Therefore ||u||+τ,−γ <∞ which yields SPτ,ε ⊂ SPτ,ε . �

4.2 Quasibounded solution

The main assumption for this subsection is

A ∈ EDα,β with α,β ∈ R,α < β, (4.9)

note the difference from previous subsection in (4.3) where α < 0 < β was crucial.
We adopt the exact definition of quasiboundedness from [1].

Definition 4.6. Assume that I is unbounded to the left (or to the right) – I is unbounded to
the left if I is one of the interval types (−∞,a), (−∞,a],R and similarly I is unbounded to
the right if I is one of the following interval types (a,∞), [a,∞),R. Let g : I → X,γ ∈ R be
an arbitrary function. We say that g is γ−-quasibounded (or γ+-quasibounded) if ||g||−τ,γ <∞
(or ||g||+τ,γ <∞) for some τ ∈ I, where

||g||−τ,γ := sup
t≤τ
||g(t)||e−γt, ||g||+τ,γ := sup

t≥τ
||g(t)||e−γt.

In the special case I = R we say that g is γ-quasibounded if ||g||γ <∞ where

||g||γ := sup
t∈R
||g(t)||e−γt.

The main tool of this subsection will be the transformation discussed in the next lemma.

Lemma 4.7. Assume that I is a positive interval and f ∈ CAR(I,X). Let µ : I → X be a
solution (in the sense of Definition 2.3) of ẋ = f (t, x) and ρ : I → R \ {0} is a C1 scalar
function. Then µ̃ : I → X defined as µ̃(t) := ρ(t)µ(t) is a solution of ẋ = g(t, x) for g(t, x) =
ρ̇(t)
ρ(t) x+ρ(t) f (t, 1

ρ(t) x).
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Proof. µ is a solution, therefore f (·,µ(·)) : I → X is locally integrable and µ(t)− µ(s) =∫ t
s f (τ,µ(τ))dτ is valid for t, s ∈ I. Fix an arbitrary functional φ ∈ X∗ and elements t, s ∈ I

such that s < t. With a notation u(r) := φ(µ(r)) we have u(r2)− u(r1) =
∫ r2

r1
φ( f (τ,µ(τ)))dτ

for r1,r2 ∈ [s, t]. Then u : [s, t]→ R is absolutely continuous on [s, t]. So u̇(r) exists for a.e.
r ∈ [s, t] and u̇(r) = φ( f (r,µ(r))) for these r ∈ [s, t]. This means that v(r) := ρ(r)u(r) is also
absolutely continuous on [s, t] with derivative

v̇(r) = u̇(r)ρ(r)+u(r)ρ̇(r) = φ( f (r,µ(r)))ρ(r)+φ(µ(r))ρ̇(r)

for a.e. r ∈ [s, t]. Therefore for all r1,r2 ∈ [s, t] we have

v(r2)− v(r1) =
∫ r2

r1

(
φ( f (τ,µ(τ)))ρ(τ)+φ(µ(τ))ρ̇(τ)

)
dτ.

After elementary computations we obtain for all φ ∈ X∗ and s, t ∈ I the following equality

φ
(
ρ(t)µ(t)−ρ(s)µ(s)

)
= φ

[∫ t

s

(
ρ(τ) f (τ,µ(τ))+ ρ̇(τ)µ(τ)

)
dτ

]
or with a notation µ̃(t) = ρ(t)µ(t)

φ
(
µ̃(t)− µ̃(s)

)
= φ

[∫ t

s

(
ρ(τ) f

(
τ,

1
ρ(τ)
µ̃(τ)

)
+
ρ̇(τ)
ρ(τ)
µ̃(τ)

)
dτ

]
.

A consequence of the Hahn-Banach Theorem says that functionals separates points, so we
have

µ̃(t)− µ̃(s) =
∫ t

s

(
ρ(τ) f

(
τ,

1
ρ(τ)
µ̃(τ)

)
+
ρ̇(τ)
ρ(τ)
µ̃(τ)

)
dτ

which means exactly that µ̃ : I→ X is a solution of ẋ = g(t, x). �

Therefore the problem of finding a γ−quasibounded solution µ : R→ X of ẋ = A(t)x+
F(t, x) with γ ∈ (α,β) can be transformed with a transformation y(t) = x(t)e−γt (apply the
above lemma with ρ(t) := e−γt) to the problem of finding bounded solutions y : R→ X of

ẏ = (A(t)−γI)y+ e−γtF(t, eγty).

Noting the bijective correspondence between these solution sets and the fact

(A(t)−γI) ∈ EDγ−α,β−γ

with γ−α < 0 < β−γ, we can generalize Theorem 4.4 as follows.

Theorem 4.8. Assume that we have functions f : R× X → X,g : R× X × X1 → X and a
constant γ ∈ (α,β) such that

(i) Smoothness: f (·, x),g(·, x,u) : R→ X are s.m. for all x ∈ X,u ∈ X1 and f (t, ·) : X →
X,g(t, ·, ·) : X×X1→ X are continuous for all t ∈ R,
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(ii) Quasiboundedness a.e.: there are constants M1,M2 such that

|| f (t,0)|| ≤ M1 eγt, ||g(t,0,0)|| ≤ M2 eγt

for a.e. t ∈ R,

(iii) Lipschitz condition: there are constants L1,L2,L3 such that

|| f (t, x)− f (t, x̃)|| ≤ L1||x− x̃||

and
||g(t, x,u)−g(t, x̃, ũ)|| ≤ L2||x− x̃||+L3 eγt||u− ũ|| (4.10)

are valid for a.e. t ∈ R and for all x, x̃ ∈ X,u, ũ ∈ X1,

(iv) K(L1+L2)κα−γ,β−γ < 1.

Then for every h ∈ S1 there exists a unique γ−quasibounded solution Γγ(·,h) : R→ X of the
problem (4.4) corresponding to the selector h. In addition the mapping Γγ : R×S1→ X is
continuous and the following is hold

||Γγ(·,h)−Γγ(·, h̃)||γ ≤C(K,L1,L2,L3,α−γ,β−γ)||h− h̃||∞

where the function C is defined by (4.6).

Proof. Apply the above lemma with ρ(t) := e−γt. Then the assumptions of Theorem 4.4 are
fulfilled and the inverse transformation gives our statement with Γγ(·,h) := Γ(·,h)eγ·. �

Remark 4.9. The special Lipschitz-type condition (4.10) can be omitted. For this aim we
have to work with a new complete metric space of selectors Sγε := {h ∈ Sε : ||h||γ <∞} where
the metric is induced by || · ||γ. So, under the conditions of the previous theorem, except
(4.10), which is modified to the usual one

||g(t, x,u)−g(t, x̃, ũ)|| ≤ L2||x− x̃||+L3||u− ũ||

the assertion of the theorem is still valid with Γγ : R×Sγ1 → X for selectors h ∈ Sγ1. We get
an estimate

||Γγ(·,h)−Γγ(·, h̃)||γ ≤C(K,L1,L2,L3,α−γ,β−γ)||h− h̃||γ.

The proof of this remark is the same application of the above defined transformation.

Remark 4.10. Now we generalize Theorem 4.5. We accomplish this as simply as above by
the use of Lemma 4.7. Assume all the assumptions of Theorem 4.8. Introduce the following
notations

IP
γ
τ,ε := {Γγ(τ,h) : h ∈ Sε},
SP
γ
τ,ε := {ξ ∈ X : ∃h ∈ Sε such that limt→∞ ||λ(t, τ,ξ,h)−Γγ(t,h)||e−γt = 0},

UP
γ
τ,ε := {ξ ∈ X : ∃h ∈ Sε such that limt→−∞ ||λ(t, τ,ξ,h)−Γγ(t,h)||e−γt = 0},

SP
γ

τ,ε := {ξ ∈ X : ∃h ∈ S+τ,ε such that ||λ(·, τ,ξ,h+)||+τ,γ <∞},
UP
γ

τ,ε := {ξ ∈ X : ∃h ∈ S−τ,ε such that ||λ(·, τ,ξ,h−)||−τ,γ <∞}.
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where λ(·, t0, x0,h) is the unique solution of the problem

ẋ = A(t)x+ f (t, x)+g(t, x,h(t)), x(t0) = x0.

Then there exists Lipschitz continuous functions

ws,γ : P+τ ×S
+
τ,ε → P

−
τ , wu,γ : P−τ ×S

−
τ,ε → P

+
τ

such that
SP
γ
τ,ε = SP

γ

τ,ε = {ξ
++ws,γ(ξ+,h) : ξ+ ∈ P+τ ,h ∈ S

+
τ,ε},

UP
γ
τ,ε = UP

γ

τ,ε = {ξ
−+wu,γ(ξ−,h) : ξ− ∈ P−τ ,h ∈ S

−
τ,ε}.

Remark 4.11. The statement of the previous remark has again a variant for the situation
when (4.10) in Theorem 4.8 is replaced with

||g(t, x,u)−g(t, x̃, ũ)|| ≤ L2||x− x̃||+L3||u− ũ||.

In the light of the above mentioned two remarks it is straightforward how to achive this. At
first set new selector spaces Sγ,±τ,ε := {h ∈ S±τ,ε : h± ∈ Sγε } (they are complete metric spaces with
metrics induced by || · ||±τ,γ; everywhere we use the standard double notation ±). Introduce

IP
γ
τ,ε := {Γγ(τ,h) : h ∈ Sγε },
SP
γ
τ,ε := {ξ ∈ X : ∃h ∈ Sγε such that limt→∞ ||λ(t, τ,ξ,h)−Γγ(t,h)||e−γt = 0},

UP
γ
τ,ε := {ξ ∈ X : ∃h ∈ Sγε such that limt→−∞ ||λ(t, τ,ξ,h)−Γγ(t,h)||e−γt = 0},

SP
γ

τ,ε := {ξ ∈ X : ∃h ∈ Sγ,+τ,ε such that ||λ(·, τ,ξ,h+)||+τ,γ <∞},
UP
γ

τ,ε := {ξ ∈ X : ∃h ∈ Sγ,−τ,ε such that ||λ(·, τ,ξ,h−)||−τ,γ <∞}.

Then there are uniquely determined Lipschitz continuous functions

ws,γ : P+τ ×S
γ,+
τ,ε → P

−
τ , wu,γ : P−τ ×S

γ,−
τ,ε → P

+
τ

such that
SP
γ
τ,ε = SP

γ

τ,ε = {ξ
++ws,γ(ξ+,h) : ξ+ ∈ P+τ ,h ∈ S

γ,+
τ,ε },

UP
γ
τ,ε = UP

γ

τ,ε = {ξ
−+wu,γ(ξ−,h) : ξ− ∈ P−τ ,h ∈ S

γ,−
τ,ε }.

Partial answer to the question of independence of Γγ from γ is stated in the following
corollary.

Corollary 4.12. Let we have α<α1 < β1 < β and functions f :R×X→ X, g :R×X×X1→ X
such that

(i) Smoothness: f (·, x),g(·, x,u) : R→ X are s.m. for all x ∈ X,u ∈ X1 and f (t, ·) : X →
X,g(t, ·, ·) : X×X1→ X are continuous for all t ∈ R,

(ii) Quasiboundedness a.e.: there are constants M1,M2 such that

|| f (t,0)|| ≤ M1η(t), ||g(t,0,0)|| ≤ M2η(t)

for a.e. t ∈ R, where η(t) :=min{eα1t, eβ1t},
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(iii) Lipschitz condition: there are constants L1,L2,L3 such that

|| f (t, x)− f (t, x̃)|| ≤ L1||x− x̃||

and
||g(t, x,u)−g(t, x̃, ũ)|| ≤ L2||x− x̃||+L3η(t)||u− ũ||

are valid for a.e. t ∈ R and for all x, x̃ ∈ X,u, ũ ∈ X1,

(iv) for θ :=max
{
κα−α1,β−α1 , κα−β1,β−β1

}
we have

K(L1+L2)θ < 1.

Then Γγ from previous theorem is well-defined for γ ∈ [α1,β1] and independent from γ (that
is Γγ1 = Γγ2 for all γ1,γ2 ∈ [α1,β1]).

Proof. We set |||x||| := ||x||α1 + ||x||β1 for x ∈C(R,X). The space

Y := {x ∈C(R,X) : |||x||| <∞}

is a Banach space with a norm ||| · |||. Define T : Y ×S1 → Y formally as in (4.7). Then it
is well-defined, continuous and also a uniform contraction. Theorem 2.2 yields the unique
solution x∗ in the space Y.We have immediately Γγ = x∗ for all γ ∈ [α1,β1]. �

Note that from this corollary without any effort we may obtain γ-independent variants
(in the above mentioned interpretation) of remarks 4.9 – 4.11.

Remark 4.13. From these results the so-called ”hierarchy of integral manifolds” (cf. [1])
could be also established. We describe this in a simple situation (without inflation). Let
X := R3 and A(t) := diag(a(t),0,b(t)) with a,b : R→ R continuous and

a(t) ≤ α < 0 < β ≤ b(t), t ∈ R.

Then the evolution operator of ẋ = A(t)x is

Φ(t, s) = diag(e
∫ t

s a(τ)dτ,1, e
∫ t

s b(τ)dτ)

which posses an exponential dichotomy on R in two ways

• with projection P(x1, x2, x3)T := (x1,0,0)T and constant K = 1 we have A ∈ EDα,0,

• with projection P(x1, x2, x3)T := (x1, x2,0)T and constant K = 1 we have A ∈ ED0,β.

Choose γ1,γ2 ∈ R such that α < γ1 < 0 < γ2 < β. Let f : R×X→ X satisfies the following
conditions

• f ∈ CAR(R,X),

• ∃M ≥ 0 such that f (t,0) ≤ M min{eγ1t, eγ2t} for a.e. t ∈ R,

• ∃L ≥ 0 such that || f (t, x)− f (t, x̃)|| ≤ L||x− x̃|| for a.e. t ∈ R and for all x, x̃ ∈ X.
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Assume that
Lmax{κα−γ1,−γ1 , κ−γ2,β−γ2} < 1.

Then the above discussed graph characterisation is valid and we have immediately the fol-
lowing hierarchy

SP
γ1
0,0 = SP

γ1
0,0 ⊂ SP

γ2
0,0 = SP

γ2
0,0,

UP
γ1
0,0 = UP

γ1
0,0 ⊃ UP

γ2
0,0 = UP

γ2
0,0.

5 Remarks on Exponential Dichotomy of ODE

Here we present simple criteria on exponential dichotomy for linear systems. We consider
on Cn the following standard norms [23]:

|x|p := p
√
|x1|p+ |x2|p+ · · ·+ |xn|

p , |x|∞ :=max {|x1|, |x2|, · · · , |xn|} ,

where p ≥ 1 and x = (x1, x2, · · · , xn). The corresponding norms on L(Cn) are denoted by ‖ ·‖p
and ‖ · ‖∞. We recall the following result [23]: If A =

(
ai j

)n

i, j=1
then

‖A‖1 = max
1≤i≤n

 n∑
j=1

|a ji|

 , ‖A‖2 = √
max
1≤i≤n
λi

ĀT A
, ‖A‖∞ = max

1≤i≤n

 n∑
j=1

|ai j|

 , (5.1)

where λi
ĀT A

, i = 1,2, · · · ,n are eigenvalues of ĀT A.
Next, by using the Hölder inequality, for p > 1 we compute

|Ax|p =
p

√√√√ n∑
i=1

∣∣∣∣∣∣∣∣
n∑

j=1

ai jx j

∣∣∣∣∣∣∣∣
p

≤
p

√√√√√ n∑
i=1

 n∑
j=1

|ai j|
q


p/q  n∑

j=1

|x j|
p

 = p

√√√√√ n∑
i=1

 n∑
j=1

|ai j|
q


p/q

|x|p

for 1
p +

1
q = 1, which gives

‖A‖p ≤
p

√√√√√ n∑
i=1

 n∑
j=1

|ai j|
q


p/q

. (5.2)

Take λ ∈ C. To show the invertibility of Aλ := λI−A, first we suppose that

aii , λ, ∀i = 1,2, · · · ,n , (5.3)

and then we consider the following modification of Aλ:

Ãλ :=

λδ j
i −ai j

λ−aii


n

i, j=1

. (5.4)

Now we decompose (5.4) as follows

Ãλ := I+Bλ , Bλ :=
(
bλi j

)n

i, j=1
, bλi j =

{
−

ai j
λ−aii

for i , j ,
0 for i = j .

Note Aλ = DλÃλ for Dλ := diag(λ−a11,λ−a22, · · · ,λ−ann). Clearly Aλ is invertible if and
only if Ãλ is invertible, and then A−1

λ = Ã−1
λ D−1

λ .
Now we have the following consequences of Neumann’s theorem [23].
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Theorem 5.1. Suppose (5.3) and set d := max1≤i≤n
{
|λ−aii|

−1
}
. Then the following state-

ments hold:
1. If

η1 := max
1≤i≤n


n∑

j=1, j,i

|a ji|

|λ−a j j|

 < 1 , (5.5)

then Aλ is invertible and ‖A−1
λ ‖1 ≤

d
1−η1

.
2. If

η∞ := max
1≤i≤n


∑n

j=1, j,i |ai j|

|λ−aii|

 < 1 , (5.6)

then Aλ is invertible and ‖A−1
λ ‖∞ ≤

d
1−η∞

.
3. If

τp :=
n∑

i=1

(∑n
j=1, j,i |ai j|

q
)p/q

|λ−aii|
p < 1 , (5.7)

for some p > 1, where 1
p +

1
q = 1, then Aλ is invertible and ‖A−1

λ ‖p ≤
d

1− p√τp
.

Proof. Since by Neumann’s theorem

‖A−1
λ ‖p ≤ ‖D

−1
λ ‖p‖Ã

−1
λ ‖p ≤

‖D−1
λ ‖p

1−‖Bλ‖p

and ‖D−1
λ ‖p = d for any p ∈ [1,∞], statements follow from (5.1) and (5.2), respectively. �

Remark 5.2. a) For λ = 0, condition (5.5) is the Hadamard classical assumption on invert-
ibility of A [18], but Hadamard ones have no estimates on the norm of A−1. Further results
on the invertibility of matrices are presented in [11].

b) Taking the transpose AT we get dual results of Theorem 5.1 which here we do not
present explicitly.

c) Taking opposite inequalities in the above conditions (5.5), (5.6) and (5.7), we can
localize the spectrum σ(A) by obtaining Geršgoring type sets [11, 26].

d) If <aii , 0 for all i = 1,2, · · · ,n then using |λ− aii| ≥ |<aii| for all i = 1,2, · · · ,n and
any λ ∈ C with <λ = 0 we see that A is hyperbolic, i.e., <σ(A) , 0, if one of the next
assumptions holds

max
1≤i≤n


n∑

j=1, j,i

|a ji|

|<a j j|

 < 1 , max
1≤i≤n


∑n

j=1, j,i |ai j|

|<aii|

 < 1 ,
n∑

i=1

(∑n
j=1, j,i |ai j|

q
)p/q

|<aii|
p < 1 , (5.8)

for some p > 1 where 1
p +

1
q = 1. Moreover, A has the same type of hyperbolicity as

diag
(
<a11,<a22, · · · ,<ann

)
. This follows from the fact that all matrices

diag
(
<a11,<a22, · · · ,<ann

)
+ ξ

(
A−diag

(
<a11,<a22, · · · ,<ann

))
, ξ ∈ [0,1]

are hyperbolic.
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Now we deal with infinite dimensional matrices of the form (Bx)i =
∑i+s

j=i−s bi jx j, i ∈ Z

for s ∈ N and a bounded sequence {bi j}
| j−i|≤s
i, j∈Z , where x = {xi}i∈Z ∈ `p. Then we have

|Bx|1 =
∑
i∈Z

|(Bx)i| ≤

sup
i∈Z

i+s∑
j=i−s

|b ji|

 |x|1, |Bx|∞ = sup
i∈Z
|(Bx)i| ≤

sup
i∈Z

i+s∑
j=i−s

|bi j|

 |x|∞,
|Bx|p = p

√∑
i∈Z

|(Bx)i|
p ≤

p

√√√√√
sup
i∈Z

i+s∑
k=i−s

 k+s∑
j=k−s

|bk j|
q


p/q

|x|p

for p > 1 and 1
p +

1
q = 1. So if we take a matrix

(Ax)i =

s∑
j=−s

ai jx j, i ∈ Z (5.9)

for s ∈N and a bounded sequence {ai j}
| j−i|≤s
i, j∈Z such that infi∈Z |<aii| = ω > 0, then A is hyper-

bolic

in `1 if sup
i∈Z

i+s∑
j=i−s, j,i

|a ji|

|<a j j|
< 1 , in `∞ if sup

i∈Z

∑i+s
j=i−s, j,i |ai j|

|<aii|
< 1 ,

in `p if sup
i∈Z

i+s∑
k=i−s

(∑k+s
j=k−s, j,k |ak j|

q
)p/q

|<akk|
p < 1 ,

(5.10)

for some p > 1 where 1
p +

1
q = 1. Moreover, A has the same type of hyperbolicity as

diag
(
<aii

)
i∈Z. Of course, conditions (5.10) are direct generalizations of (5.8) to (5.9).

More sophisticated results are presented in [24, 25] on spectra of infinite matrices.
Now we consider a first order T -periodic ODE

ẋ = A(t)x (5.11)

with (A(t)x)i =
∑i+s

j=i−s ai j(t)x j, i ∈Z for s ∈N and a uniformly bounded sequence {ai j(t)}
| j−i|≤s
i, j∈Z

of T -periodic continuous functions. First we suppose that

lim
i→±∞

ai j(t) = a±j (t)∀ j = i− s, · · · , i+ s (5.12)

uniformly on [0,T ]. Then we set

(A∞(t)x)i =


∑i+s

j=i−s a+j (t)x j i ≥ 0∑i+s
j=i−s a−j (t)x j i < 0

It is easy to verify that C(t) := A(t)−A∞(t) are compact in any `p, p ∈ [1,∞] for all t ∈ [0,T ].
Note the fundamental matrix solution X(t) of (5.11) has the form

X(t) = X∞(t)+
∫ t

0
X∞(t)

(
X∞(z)

)−1C(z)X(z)dz,
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where X∞ is the fundamental matrix solution of ẋ = A∞(t)x. Hence X(T )−X∞(T ) is com-
pact and so σess(X(T )) = σess(X∞(T )). For instance, if A∞(t) = 0 then X(T ) is a compact
perturbation of I. We recall [7, Theorem 2.1, p. 203] that (5.11) has an exponential di-
chotomy on R if and only if σ(X(T ))∩ S 1 = ∅ for the unit circle S 1. This is equivalent to
say that the inhomogeneous system

ẋ = A(t)x+h(t) (5.13)

has a unique bounded solution on R for any bounded continuous h ∈ Cb(R,X) (here X is a
complex Banach space, namely one of the `p spaces for p ∈ [1;∞]). Now we rewrite (5.13)
as a system

ẋi = aii(t)xi+

i+s∑
j=i−s, j,i

ai j(t)x j+hi(t), i ∈ Z (5.14)

for h(t) = {hi(t)}i∈Z. We suppose

ω := inf
i∈Z,t∈R

|<aii(t)| > 0. (5.15)

We want to find criteria that (5.14) has a unique bounded solution on R. For this purpose,
we rewrite it as

xi(t) =
∫ t

ai∞

eAi(t,z)
i+s∑

j=i−s, j,i

ai j(z)x j(z)dz+
∫ t

ai∞

eAi(t,z)hi(z)dz, i ∈ Z,

where ai := sign<aii(t) and Ai(t,z) :=
∫ t

z aii(u)du. Note |<Ai(t,z)| ≥ ω|t− z|.
Then for x,h ∈Cb(R, `∞) we derive

|xi(t)| ≤ sup
i∈Z,z∈R

i+s∑
j=i−s, j,i

|ai j(z)|
|<aii(z)|

(
−ai

∫ t
ai∞
|<aii(z)|e<Ai(t,z)dz

)
|x|∞+ |h|∞(−ai)

∫ t
ai∞

eaiω(t−z)dz

= sup
i∈Z,z∈R

i+s∑
j=i−s, j,i

|ai j(z)|
|<aii(z)| |x|∞+

|h|∞
ω .

Consequently, if

sup
i∈Z,z∈R

i+s∑
j=i−s, j,i

|ai j(z)|
|<aii(z)|

< 1

then (5.13) has a unique solution x ∈ Cb(R, `∞) for any h ∈ Cb(R, `∞), and thus (5.11) has
an exponential dichotomy on `∞.

Similarly for x,h ∈Cb(R, `1) we derive

|x(t)|1 =
∑
i∈Z
|xi(t)| ≤

∑
i∈Z
−ai

∫ t
ai∞

eaiω(t−z)
i+s∑

j=i−s, j,i
|ai j(z)||x j(z)|dz+

∑
i∈Z
−ai

∫ t
ai∞

eaiω(t−z)|hi(z)|dz

=
∑
j∈Z

j+s∑
i= j−s,i, j

−ai
∫ t

ai∞
eaiω(t−z)|ai j(z)||x j(z)|dz+

∑
i∈Z
−ai

∫ t
ai∞

eaiω(t−z)|hi(z)|dz

=
∑
j∈Z

 ai=−1∑
0<|i− j|≤s

∫ t
−∞

e−ω(t−z)|ai j(z)||x j(z)|dz+
ai=1∑

0<|i− j|≤s

∫ ∞
t eω(t−z)|ai j(z)||x j(z)|dz


+

ai=−1∑
i∈Z

∫ t
−∞

e−ω(t−z)|hi(z)|dz+
ai=1∑
i∈Z

∫ ∞
t eω(t−z)|hi(z)|dz

≤

sup
j∈Z

sup
z∈R

ai=−1∑
0<|i− j|≤s

|ai j(z)|+sup
z∈R

ai=1∑
0<|i− j|≤s

|ai j(z)|


ω |x|∞+
2|h|∞
ω ,
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which implies

|x|∞ ≤

sup j∈Z

supz∈R

ai=−1∑
0<|i− j|≤s

|ai j(z)|+ supz∈R

ai=1∑
0<|i− j|≤s

|ai j(z)|


ω
|x|∞+

2|h|∞
ω
.

Consequently, if

sup
j∈Z

sup
z∈R

ai=−1∑
0<|i− j|≤s

|ai j(z)|+ sup
z∈R

ai=1∑
0<|i− j|≤s

|ai j(z)|

 < ω
then (5.13) has a unique solution x ∈ Cb(R, `1) for any h ∈ Cb(R, `1), and thus (5.11) has an
exponential dichotomy on `1.

Finally for x,h ∈Cb(R, `p), p ∈ (1,∞) we derive

|x(t)|p =
p

√∑
i∈Z

∣∣∣∣∣∣−ai
∫ t

ai∞
eAi(t,s)

i+s∑
j=i−s, j,i

|ai j(z)|x j(z)dz−ai
∫ t

ai∞
eAi(t,z)hi(z)dz

∣∣∣∣∣∣p
≤

p

√∑
i∈Z

∣∣∣∣∣∣∫ t
ai∞

eaiω(t−z)
i+s∑

j=i−s, j,i
|ai j(z)||x j(z)|dz

∣∣∣∣∣∣p+ p

√∑
i∈Z

∣∣∣∣∫ t
ai∞

eaiω(t−z)|hi(z)|dz
∣∣∣∣p

≤
p

√√∑
i∈Z

∣∣∣∣∣∣∣∫ t
ai∞

eaiω(t−z) q

√
i+s∑

j=i−s, j,i
|ai j(z)|q p

√
i+s∑

j=i−s, j,i
|x j(z)|pdz

∣∣∣∣∣∣∣
p

+ p

√∑
i∈Z

∣∣∣∣∫ t
ai∞

eaiω(t−z)dz
∣∣∣∣p/q ∣∣∣∣∫ t

ai∞
eaiω(t−z)|hi(z)|pdz

∣∣∣∣
≤

p

√√∑
i∈Z

∣∣∣∣∫ t
ai∞

eaiω(t−z)dz
∣∣∣∣p/q

∣∣∣∣∣∣∣∫ t
ai∞

eaiω(t−z)

(
i+s∑

j=i−s, j,i
|ai j(z)|q

)p/q ( i+s∑
j=i−s, j,i

|x j(z)|p
)
dz

∣∣∣∣∣∣∣
+

q
√

1
ω

p

√
ai=−1∑

i∈Z

∫ t
−∞

e−ω(t−z)|hi(z)|pdz+
ai=1∑
i∈Z

∫ ∞
t eω(t−z)|hi(z)|pdz

≤
q
√

1
ω

( ∑
j∈Z

∫ t
−∞

e−ω(t−z)
ai=−1∑

0<|i− j|≤s

(
i+s∑

k=i−s,k,i
|aik(z)|q

)p/q

|x j(z)|pdz

+
∑
j∈Z

∫ ∞
t eω(t−z)

ai=1∑
0<|i− j|≤s

(
i+s∑

k=i−s,k,i
|aik(z)|q

)p/q

|x j(z)|pdz
)1/p

+
p√2
ω |h|∞

≤ 1
ω

(
sup

j∈Z,z∈R

ai=−1∑
0<|i− j|≤s

(
i+s∑

k=i−s,k,i
|aik(z)|q

)p/q

+ sup
j∈Z,z∈R

ai=1∑
0<|i− j|≤s

(
i+s∑

k=i−s,k,i
|aik(z)|q

)p/q )1/p

|x|∞+
p√2
ω |h|∞.

Consequently, if

sup
j∈Z,z∈R

ai=−1∑
0<|i− j|≤s

 i+s∑
k=i−s,k,i

|aik(z)|q


p/q

+ sup
j∈Z,z∈R

ai=1∑
0<|i− j|≤s

 i+s∑
k=i−s,k,i

|aik(z)|q


p/q

< ωp

then (5.13) has a unique solution x ∈ Cb(R, `p) for any h ∈ Cb(R, `p), and thus (5.11) has
an exponential dichotomy on `p (note that in the above computations |x|∞ = supt∈R |x(t)|p
strongly depends on p ∈ [1,∞]).
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Finally we consider a second-order ODE

ẍ = A(t)x (5.16)

with (A(t)x)i =
∑i+s

j=i−s ai j(t)x j, i ∈Z for s ∈N and a uniformly bounded sequence {ai j(t)}
| j−i|≤s
i, j∈Z

of T -periodic continuous functions. By following [7, Theorem 5.1 p. 32, Theorem 2.4
p. 208] and a method partition of unity on [0,T ], we know that (5.16) is exponentially
dichotomous on `2 if<σ(A(t)) > 0 for any t ∈ R. Next if<aii(t) > 0 for all i ∈ Z, t ∈ R then
using |λ− aii(t)| ≥ <aii(t) for all i ∈ Z, t ∈ R and any λ ∈ C with <λ ≤ 0 we see from the
above arguments (see (5.10)) that<σ(A(t)) > 0 for any t ∈ R if the following holds

ω := inf
i∈Z,t∈R

<aii(t) > 0 and sup
i∈Z

i+s∑
k=i−s

∑k+s
j=k−s, j,k |ak j(t)|2

<akk(t)2 < 1 for all t ∈ R.

Countable systems of ODE are also studied in [3, 8, 19].
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