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Abstract

We consider the invertibility of parabolic pseudodifferential operators in exponential
weighted Sobolev spaces. We suppose that the symbol a of the operator Op(a) is an-
alytically extended with respect to the impulse variable in an unbounded tube domain
Rn + iD and satisfies conditions of uniform parabolicity . We prove that under these
conditions the pseudodifferential operator Op(a) is invertible in admissible weighted
Sobolev spaces with weights connected with the domain D.

As an application we obtain exponential estimates of solutions (including estimates
of the fundamental solution) for parabolic differential operators.
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1 Introduction

We consider the invertibility of parabolic pseudodifferential operators Op(a) in exponential
weighted Sobolev spaces. We suppose that the symbol a of Op(a) is analytically extended
with respect to the impulse variables to an unbounded tube domain Rn+1+ iD and satisfies
conditions of uniform parabolicity. We prove that under these conditions the pseudodif-
ferential operator Op(a) is invertible in admissible weighted Sobolev spaces with weights
connected with the domainD.

As an application we obtain exponential estimates of solutions (including estimates for
the fundamental solutions) for parabolic differential operators.
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Various aspects of the Cauchy problem for differential and pseudodifferential operators
have been considered by many authors. See for instance the classical I. Petrovskiı̆ paper
[20], the well known paper of M.Agranovich and M.Vishik [1] and the references cited
there. A good survey of the state-of-art before 1990 see in [11]. Parabolic pseudodiffer-
ential Boutet de Monvel problems in the spaces without weights are considered in [10].
In the papers [12], [13] parabolic pseudodifferential boundary value problems have been
considered in domains with singular boundaries.

We note also the works of S. Gindikin and L. Volevich devoted to the well-posedness
classes for the Cauchy problems for exponentially correct differential operators of the con-
stant strength (see [4], [6], [7], [8] and references sited there). Our weighted classes are
closed to the well-posedness classes of these works.

The exponential estimates of solutions of elliptic pseudodifferential equations have been
studied in [17], [22], [23], [25]. The methods of these papers are based on formulas of the
composition of pseudodifferential operators with exponential weights. These results were
extended in the papers [18], [19] to parabolic differential and pseudodifferential operators
acting in the exponential weighted spaces with weights of the form

w(x) = exp(µx0+ v(x′)) (1.1)

where x0 ∈ R+ is the time variable and x′ ∈ Rn is the spatial variable. In the distinction from
[18], [19] we consider here the general weights of the form

w(x) = expv(x0, x′) (1.2)

connected with domainD.
The paper is organized as follows. In Section 2.1 we following [2], [3], [15] summarize

in a convenient for us form necessary facts of the calculus of pseudodifferential operators
acting in admissible Sobolev spaces.

Next, in Section 2.2 we formulate some results from [18], [19] concerning the invert-
ibility of parabolic pseudodifferential operators in Sobolev spaces with the simplest weights
ehx0 , h ≤ 0.

In Section 3, which is the main in the paper, we study parabolic pseudodifferential
operators in exponential weighted spaces. We introduce a classWb(D,q) of the weights of
the form (1.2), give examples of such weights, and prove the theorem on the composition of
pseudodifferential operators with weights inWb(D,q). Applying this theorem we reduce
the study of pseudodifferential operators in Sobolev spaces with general weights of the
form (1.2) to the investigation of pseudodifferential operators in Sobolev spaces with the
simplest weights ehx0 , and following [18], [19] obtain results on the invertibility of parabolic
pseudodifferential operators in general weighted Sobolev spaces on Rn+1

+ = R+×R
n.

In the Section 4 we illustrate the results of Section 3 by the uniformly parabolic differ-
ential operators of the form

p(x,D) = ∂x0 +
∑

0<|α|≤2m

aα(x)Dα
x′ +b (x) (1.3)

acting in weighted Sobolev spaces with general weights of form (1.2).
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2 Auxiliary result

2.1 Pseudodifferential operators on Rn+1

We use the following notations:

• x = (x0, x′) are the variables of Rn+1 where x0 ∈ R is the time variable and x′ =
(x1, ..., xn) ∈ Rn+1 are the spatial variables, R+ = {x0 ∈ R : x0 > 0} , Rn+1

+ = R+ ×R
n,

〈x〉 = (1+ |x|2)1/2.

• N0 = N∪{0} where N is the set of natural numbers;

∂ j =
∂

∂x j
,∇x′ =

(
∂

∂x1
, ...,

∂

∂xn

)
,∇ =

(
∂

∂x0
,∇x′

)
,

D j = −i
∂

∂ξ j
, j = 0,1, ...n, D = (D0,D1...,Dn) .

• Let α = (α0,α1, . . . ,αn) = (α0,α
′) ∈ Nn+1

0 be a multi-index, then |α| =
n∑

j=0
α j its length.

We set

ξα =

n∏
j=0

ξ
α j
j , ∂

α
x =

n∏
j=0

∂
α j
x j , Dα

x =

n∏
j=0

Dα j
j ;

p(α)
(β) (x, ξ) = ∂αξ Dβ

x p(x, ξ);

• Sometime we write a function a as a(x, ξ) and this expression have to explaine from
which variables the a depends, but not a value of a at the point (x, ξ). We think that it
does not lead to a misunderstanding.

• We denote by E(Rn+1) the class of function q ∈ C∞
(
Rn+1

)
satisfying the following

conditions : (a) q (x) ≥ 1 for all x ∈ Rn+1; (b) There exists L > 0 such that for every
multi-index β and every x,y ∈ Rn+1∣∣∣∂βq (x+ y)

∣∣∣ ≤Cβq (x) 〈y〉L , (2.1)

with some constants Cβ > 0. Important example of q ∈ E(Rn+1) is

q (x) = 1+
〈x′〉l

〈x0〉
m , l ≥ 0,m ≥ 0. (2.2)

Applying the elementary inequality

〈x+ y〉m ≤ 2
|m|
2 〈x〉m 〈y〉|m| , m ∈ R (2.3)

one can prove that this q satisfies conditions (a) and (b).
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• Further, we set
λq,b (x, ξ) = |ξ0|+

∣∣∣ξ′∣∣∣b+q (x) (2.4)

where b ∈ N, q ∈ E
(
Rn+1

)
. Applying (2.1) and (2.3) one can show that there exists

C > 0 and L > 0 such that∣∣∣∣∂βx∂αξ λm
q,b (x+ y, ξ+ω)

∣∣∣∣ ≤Cλm
q,b (x, ξ) (1+ |y|+ |ω|)L (2.5)

for every α,β, and m ∈ R.

Definition 2.1. Let a ∈C∞
(
Rn+1×Rn+1

)
,m ∈R.We say that a belongs to the class S m(λq,b)

if for all l1, l2,∈ N0

|a|l1,l2 =
∑

|α|≤l1,|β|≤l2

sup
(x,ξ)∈Rn+1×Rn+1

∣∣∣∣a(α)
(β) (x, ξ)

∣∣∣∣
λ

m−
(
α0+
|α′ |

b

)
q,b (x, ξ)

<∞. (2.6)

The constants |a|l1,l2 define the Frechet topology on S m(λq,b).

We associate with a ∈ S m(λq,b) the pseudodifferential operator (ψdo)

Op(a)u(x) =
∫
Rn+1

d′ξ
∫
Rn+1

a(x, ξ)u(y)ei(x−y)·ξdy, u ∈ S (Rn+1), (2.7)

where d′ξ = (2π)−n dξ. We denote the class of such ψdo′s by OPS m(λq,b).
Note that the general classes of pseudodifferential operators have been studied in [2],

[3] [14], [15]. The class OPS m(λq,b) is contained among ψdo′s considered in the cited
works. We will give some definitions and results following these papers in a convenient for
us form.

Proposition 2.2. Let A1 = Op (a1) ∈ OPS m1(λq,b), A2 = Op (a2) ∈ OPS m2(λq,b). Then:
a) operator A = A1A2 ∈ OPS m1+m2(λq,b) and its symbol a is given as

a (x, ξ) =
∫ ∫
Rn+1×Rn+1

a1 (x, ξ+η)a2 (x+ y, ξ)eiy·ηdyd′η

b) for any natural N

a(x, ξ) =
∑
|α|<N

1
α!

a(α)
1 (x, ξ)a2(α) (x, ξ)+ rN (x, ξ) , (2.8)

where rN (x, ξ) ∈ S m1+m2−N/b(λq,b).

Definition 2.3. We denote by Hs(λq,b,R
n+1), s ∈ N the closure of C∞0 (Rn+1) in the norm

‖u‖Hs(λq,b,Rn+1) =

∑
|α|≤s

∥∥∥∥qs−|α|∂α0
x0 ∂

bα1
x1

. . .∂bαn
xn u

∥∥∥∥2

L2(Rn+1)


1
2

.
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For real s≥ 0 the space Hs(λq,b,R
n+1) is defined by means of the complex interpolation

(see [3]) and for the negative s by the duality with respect to the standard inner product in
L2

(
Rn+1

)
, i.e. Hs(λq,b,R

n+1) =
(
H−s(λq,b,R

n+1))
)∗
.

LetS
(
Rn+1

)
be the space of C∞-functions decreasing at infinity with all their derivatives

rapidly than |x|−N for every N ∈ N, and let S′
(
Rn+1

)
be the dual space of the tempered

distributions.

Proposition 2.4. The following statements hold:
a) H0(λq,b,R

n+1) ≡ L2
(
Rn+1

)
;

b) the embedding S
(
Rn+1

)
⊂ Hs(λq,b,R

n+1) ⊂ S′
(
Rn+1

)
are continuous and the left em-

bedding is dense;
c) if s1 ≥ s2 then Hs1(λq,b,R

n+1) ⊂ Hs2(λq,b,R
n+1).

d) there exists an operator Λ ∈ OPS s(λq,b) such that

Λ : Hs(λq,b,R
n+1)→ L2(Rn)

is a topological isomorphism and Λ−1 ∈ OPS −s(λq,b).

Proposition 2.5. Operator Op(a) ∈OPS m(λq,b) is bounded from Hs(λq,b,R
n+1) into Hs−m(λq,b,R

n+1)
and there exist constants C > 0 and l1, l2 ∈ N depending only on s and m such that

‖Op(a)‖Hs(λq,b,Rn+1)→Hs−m(λq,b,Rn+1) ≤C |a|l1,l2 . (2.9)

2.2 Invertibility of parabolic pseudodifferential operators on the half-space
Rn+1
+

Let:

• r− =
{
η ∈ Rn+1 : η = (η0,0, . . . ,0) , η0 < 0

}
be the ray in Rn+1,

• Π− = {ζ0 = ξ0+ iη0 ∈ C : ξ0 ∈ R, η0 < 0} be the lower complex half-plane,

•

λq,b,η0 (x, ξ) = |ξ0|+ |η0|+
∣∣∣ξ′∣∣∣b+q (x) , η0 ≤ 0 .

Definition 2.6. Let a ∈ S m(λq,b),m ∈R.We say that a ∈ S m(λq,b,Π−) if the symbol a (x, ξ0, ξ
′)

has an analytic extension with respect to the variable ξ0 in Π−, and for all l1, l2 ∈ N0

[a]l1,l2 = sup
(x,ξ0+iη0,ξ′)∈ Rn+1×Π−×Rn

∑
|α|≤l1,|β|≤l2

∣∣∣∣∂βx∂αξ a (x, ξ0+ iη0, ξ
′)
∣∣∣∣

λq,b,η0 (x, ξ)
m−

(
α0+
|α′ |

b

) <∞.

We denote the class of ψdo′s with symbols in S m(λq,b,Π−) by OPS m(λq,b,Π−), and by
S m(λq,b,R

n+1
+ ,Π−) the class of symbols which are the restrictions of symbols in S m(λq,b,Π−)

on Rn+1
+ , and by OPS m(λq,b,R

n+1
+ ,Π−) the associated class of ψdo′s.
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Proposition 2.7. Let A1 =Op (a1) ∈OPS m1(λq,b,R
n+1
+ ,Π−), A2 =Op (a2) ∈OPS m2(λq,b,R

n+1
+ ,Π−).

Then the operator A= A1 A2 ∈OPS m1+m2(λq,b,R
n+1
+ ,Π−), and for any natural N the symbol

a of A has the following representation

a(x, ξ) =
∑
|α|<N

1
α!

a(α)
1 (x, ξ)a2(α)(x, ξ)+ rN(x, ξ)

where rN (x, ξ) ∈ S m1+m2−N/b(λq,b,R
n+1
+ ,Π−).

Proposition 2.8. Let A=Op (a) ∈ S m(λq,b,R
n+1
+ ,Π−), and h< 0.We set ah(x, ξ)= a (x, ξ0+ ih, ξ′) .

Then
Ah = ehx0 Ae−hx0 = Op(ah) ∈ OPS m(λq,b,R

n+1
+ ,Π−).

We denote by Hs
0(λq,b,R

n+1
+ ) the closure of C∞0 (Rn+1

+ ) in the space Hs(λq,b,R
n+1), and

by Hs
0(λq,b,R

n+1
+ ,ehx0) (h ≤ 0) the space with norm

‖u‖Hs
0(λq,b,R

n+1
+ ,ehx0 ) =

∥∥∥ehx0u
∥∥∥

Hs
0(λq,b,R

n+1
+ ) .

Repeating the argument in [18], [19] and taking into account Propositions 2.5 and 2.8
we obtain the following statement.

Proposition 2.9. Let a ∈ S m(λq,b,R
n+1
+ ,Π−). Then the operator

Op(a) : Hs
0(λq,b,R

n+1
+ ,ehx0)→ Hs−m

0 (λq,b,R
n+1
+ ,ehx0) (2.10)

is bounded for all h ≤ 0 and

‖Op(a)‖Hs
0(λq,b,R

n+1
+ ,ehx0 )→Hs−m

0 (λq,b,R
n+1
+ ,ehx0 ) ≤C |ah|l1,l2 .

where C > 0, and l1, l2 ∈ N0 are independent of a.

Definition 2.10. We say that Op (a) ∈ OPS m(λq,b,R
n+1
+ ,Π−) is a uniformly parabolic pseu-

dodifferential operator if

lim
η0→−∞

inf
(x,ξ)∈ Rn+1

+ × R
n+1

|a(x, ξ0+ iη0, ξ
′)|

λq,b,η0 (x, ξ)m > 0. (2.11)

The following result gives the sufficient conditions for the invertibility of uniformly
parabolic pseudodifferential operators in the spaces Hs

0(λq,b,R
n+1
+ ,ehx0) for h < 0 with |h| is

large enough.

Theorem 2.11. Let Op (a) ∈ OPS m(λq,b,R
n+1
+ ,Π−) be a uniformly parabolic ψdo. Then for

any s ∈ R there exists h0 = h0 (s) < 0 such that for all h < h0

Op(a) : Hs
0(λq,b,R

n+1
+ ,ehx0)→ Hs−m

0 (λq,b,R
n+1
+ ,ehx0) (2.12)

is invertible.

Theorem 2.11 is proved following [18], [19], applying Propositions 2.7-2.9.
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3 Parabolic pseudodifferntial operators in exponential weighted
spaces

3.1 Weight functions

Definition 3.1. Let D be a convex unbounded domain in Rn, q ∈ E
(
Rn+1

)
. We say that

the weight function w(x) = ev(x), x ∈ Rn+1
+ belongs to the class Wb(D,q) if the following

conditions holds:
(i) ∇v(x) ∈ D for every x ∈ Rn+1

+ ;
(ii) there are constants γ1,γ2 > 0 and γ̃ ≥ 0 such that

−γ1q(x) ≤ ∂x0v(x) ≤ −γ2q(x)+ γ̃; (3.1)

(iii) v ∈C∞
(
Rn+1
+

)
, and for every multi-index α there exist constants Cα > 0 and C̃α > 0

such that for every x ∈ Rn+1
+ ∣∣∣∂α (∂x0v(x)

)∣∣∣ ≤Cαq(x)b,

|∂α (∇x′v(x))| ≤ C̃αq(x).
(3.2)

3.1.1 Examples of weight functions

In this section we construct weight functions in the class Wb(D,q) applying the theory of
convex functions.

Let χ(η′), η′ ∈ Rn be a differentiable strictly convex function(see [27],pp.253,259). We
suppose also that χ is co-finite, that is

lim
η→∞

χ(η′)
|η′|
= +∞.

We associate with the function χ the convex domain ([4], p.39)

Dχ =
{
(η0,η

′) ∈ Rn+1 : η0 < −χ(η′)
}
, (3.3)

and the function
χ∗(x′) = sup

η′∈Rn

{
x′ ·η′−χ(η′)

}
, x ∈ Rn (3.4)

which is called the conjugate ([27], p.104) or the Young dual ([4], p.11) function for χ. The
function χ∗ (see [27], Theorems 26.5, 26.6) has the following properties:

• the function χ∗is differentiable, strictly convex, and co-finite;

• the gradient mapping ∇χ : Rn→ Rn is invertible, and (∇χ)−1 = ∇χ∗.

• Moreover,
χ∗(x′) = x′ · ∇χ∗

(
x′
)
−χ

(
∇χ∗

(
x′
))
. (3.5)
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Let χ be a strictly convex and co-finite function. We set

v(x) = (x0+δ)χ∗
(

x′

x0+δ

)
, x = (x0, x′) ∈ Rn+1

+ , δ > 0, (3.6)

and
vh(x) = v(x)+hx0, h < 0.

Then,
∂v(x)
∂x0

=
(
χ∗

(
y′
)
− y′ ·

(
∇y′χ

∗
) (

y′
))
|
y′= x′

x0+δ
(3.7)

and
∇x′v(x) =

(
∇y′χ

∗
) (

y′
)
|y′= x′

x0+δ
. (3.8)

Equalities (3.5), (3.7) and (3.8) yield that for every h < 0

∂vh(x)
∂x0

=
∂v(x)
∂x0

+h <
∂v(x)
∂x0

=

−χ(∇x′v(x)) = −χ(∇x′vh(x)), x ∈ Rn+1
+ .

Hence ∇vh(x) ∈ Dχ for every x ∈ Rn+1
+ and h < 0. Moreover if conditions (3.1), (3.2) hold

then w(x) = ev(x) ∈Wb(Dχ,q).

Example 3.2. Let χ(η′)= 1
2 Aη′ ·η′ where A is a positively defined symmetric matrix. Hence

([27], page 108)

χ∗(x′) =
1
2

A−1x′ · x′,

and

Dχ =

{
(η0,η

′) ∈ Rn+1 : η0 < −
1
2

Aη′ ·η′
}
.

The associated weight is

v(x0, x′) =
1

2(x0+δ)
(A−1x′ · x′), δ > 0.

Then ∇vh(x) ∈ Dχ for every x = (x0, x′) ∈ Rn+1
+ and h < 0. Note if q (x) = 1 + 〈x

′〉

〈x0〉
then

wh(x) = evh(x) ∈W2(Dχ,q).

Let
(
R+

)n
= R+× ...×R+, and a function χ ∈C1(Rn) be of the form

χ
(
η′

)
= g (|η1| , ..., |ηn|) , (3.9)

where
(a) g ∈C1

(
(R+)n

)
∩C∞ ((R+)n) be strictly convex and co-finite;

(b) g satisfies the condition

det
(
∂2g (t′)
∂ti∂t j

)n

i, j=1
, 0, (3.10)
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for every t′ ∈ (R+)n;
Then χ(η′) ∈ C1 (Rn)∩C∞ ((R+)n) is a strictly convex, co-finite function on Rn, and

∂χ(η′)
∂η j

> 0, j = 1, ...,n for all η′ ∈ (R+)n. One can see that the mapping

∇χ : (R+)n→ (R+)n

is well defined.
The function χ∗(x) conjugate to function χ(η′) is (see [27], p.111) a strictly convex and

co-finite function of the form

χ∗(x′) = g+ (|x1| , ..., |xn|) ,

where
g+(z′) = sup

t′∈
(
R+

)n

{
z′ · t′−g(t′)

}
, z′ ∈

(
R+

)n

is the monotone conjugate function of g (t′) . Moreover

(∇χ)−1 = ∇χ∗ : (R+)n→ (R+)n. (3.11)

Condition 3.10 provides that∇χ : (R+)n→ (R+)n, and∇χ∗ : (R+)n→ (R+)n are C∞−diffeomorphisms.
Let 〈y〉ν = (ν2 + y2)1/2, ν > 0, y ∈ R, and χ be of the form (3.9), and satisfy condition

(3.10). We introduce a function v : Rn+1
+ → R as

v(x) = (x0+δ)χ∗
(
〈x1〉ν

x0+δ
, ...,
〈xn〉ν

x0+δ

)
= (x0+δ)g+

(
〈x1〉ν

x0+δ
, ...,
〈xn〉ν

x0+δ

)
,

x = (x0, x′) ∈ Rn+1
+ , δ > 0.

Note that v ∈C∞
(
Rn+1
+

)
.

Let the domainDχ be defined by (3.4) and vh(x) = v(x)+hx0, h < 0. Now we will prove
that ∇vh(x) ∈ Dχ. Indeed, applying (3.3), and (3.5) we obtain

∂vh(x)
∂x0

< ∂v(x0,x′)
∂x0

=

g+
(
〈x1〉ν
x0+δ

, ...,
〈xn〉ν
x0+δ

)
−

∑n
j=1 y j

∂g+(y)
∂y j
|
y=

(
〈x1〉ν
x0+δ

,...,
〈xn〉ν
x0+δ

)=(
g+ (y)− y · ∇g+(y)

)
|
y=

(
〈x1〉ν
x0+δ

,...,
〈xn〉ν
x0+δ

)=
−g

(
∇yg+ (y)

)
|
y=

(
〈x1〉ν
x0+δ

,...,
〈xn〉ν
x0+δ

) .
(3.12)

Further,
∂v(x0, x′)
∂x j

=
x j〈
x j

〉
ν

·
∂g+(y)
∂y j

|
y=

(
〈x1〉ν
x0+δ

,...,
〈xn〉ν
x0+δ

) .
Hence ∣∣∣∣∣∣∂v(x0, x′)

∂x j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∂g+(y)
∂y j

|
y=

(
〈x1〉ν
x0+δ

,...,
〈xn〉ν
x0+δ

)∣∣∣∣∣∣ . (3.13)
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The monotonic property of g and (3.13) imply that

−g
(
∇yg+ (y)

)
|
y=

(
〈x1〉ν
x0+δ

,...,
〈xn〉ν
x0+δ

)≤
−g(∇x′v(x0, x′)) = −χ(∇x′v(x0, x′)) = −χ(∇x′vh(x0, x′))

. (3.14)

Applying formulas (3.12) and (3.14) we obtain

∂vh(x)
∂x0

< −χ(∇x′vh(x)), x ∈ Rn+1
+ .

Therefore ∇vh(x) ∈ Dχ for every x ∈ Rn+1
+ , h < 0.

Example 3.3. Let
p(ξ) = iξ0+

∑
|α|=2m

aα′ξ′
α′

≡ iξ0+Q2m(ξ′)

be a 2m-parabolic polynomial ([9], p.12),m ≥ 1, that is

inf
ξ′∈Rn�{0}

R(Q2m(ξ′))

|ξ′|2m = ν > 0.

Following [4], pp. 39-40 and [5] we introduce the function

χp0

(
η′

)
= sup
ξ′∈Rn

{
−R(Q2m(ξ′+ iη′))

}
.

The function χp0 (η′) is a convex, continuous, homogeneous of the degree 2m and there
exist positive constants C1 and C2 such that

C1
∣∣∣η′∣∣∣2m

≤ χp0

(
η′

)
≤C2

∣∣∣η′∣∣∣2m
, η′ ∈ Rn.

(see [5] ,Theorem 1.1). Moreover ([5], Theorem 1.16) χ∗p0
(x′) is a convex, co-finite, ho-

mogeneous of the order 2m
2m−1 function and there exist positive constants c1 and c2, such

that
c1

∣∣∣x′∣∣∣ 2m
2m−1 ≤ χ∗p0

(
x′
)
≤ c2

∣∣∣x′∣∣∣ 2m
2m−1 .

Let χp0 be of the form (3.9) and the conditions (a), (b) hold. Then the function v defined by
(3.6) is of the form

v(x) =
χ∗p0

(〈x1〉ν , ..., 〈xn〉ν)

(x0+δ)
1

2m−1

∈C∞
(
Rn+1
+

)
, δ > 0, (3.15)

and ∇v(x) ∈ Dχ. Moreover there exist constants γ1,γ2 > 0, γ̃ ≥ 0, such that

−γ1
[̂
qm (x)

]2m
≤ ∂0v (x) ≤ −γ2

[̂
qm (x)

]2m
+ γ̃ (3.16)

and for every multi-index α ∣∣∣∂α (∂x0v(x)
)∣∣∣ ≤Cα

[̂
qm (x)

]2m ,

|∂α (∇x′v(x))| ≤ C̃αq̂m (x)
(3.17)
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where q̂m (x) =
(
1+ 〈x

′〉

〈x0〉

) 1
2m−1 if m > 1 and q̂1 (x) ≡ q̂ (x) = 1+ 〈x

′〉

〈x0〉
. Hence the weight function

wh(x) = evh(x) ∈W2m(Dχ, q̂m), h < 0.
Consider the parabolic symbols of the form

p0(ξ) = iξ0+a(ξ2
1 + ...+ ξ

2
n)m.

In this case (see [5])
χ(η′) = a(η2

1+ ...+η
2
n)m,m ∈ N,

χ∗(x′) = cm
(
x2

1+ ...+ x2
n

) m
2m−1 (3.18)

where cm = a−
1

2m−1 (2m−1)(2m)2m−1 , and

v(x) = cm

(
1+ x2

1+ ...+ x2
n

) m
2m−1

(x0+δ)
1

2m−1

.

Thus wh(x) = evh(x) ∈W2m(Dχ, q̂m), h < 0.

3.2 Composition of pseudodifferential operators and exponential weights

LetD be a convex unbounded domain in Rn. We suppose thatD contains the ray

r− =
{
η ∈ Rn+1 : η = (η0,0, . . . ,0) , η0 < 0

}
.

Definition 3.4. Let a ∈ S m(λq,b,R
n+1
+ ,Π−), m ∈ R. We say that a ∈ S m(λq,b,R

n+1
+ ,D) if for

any fixed point x ∈ Rn+1
+ the function a (x, ξ) has an analytic extension with respect to the

variable ξ in the tube domain TD = Rn+ iD, and for all l1, l2 ∈ N0

{a}l1,l2 =
∑

|α|≤l1,|β|≤l2

sup
(x,ξ+iη)∈Rn+1

+ ×TD

∣∣∣∣a(α)
(β) (x, ξ+ iη)

∣∣∣∣
λq,b,η (x, ξ)

m−
(
α0+
|α′ |

b

) <∞ (3.19)

where
λq,b,η (x, ξ) = |ξ0|+ |η0|+

∣∣∣ξ′∣∣∣b+ ∣∣∣η′∣∣∣b+q (x) .

We denote by OPS m(λq,b,R
n+1
+ ,D) the corresponding class of ψdo′s.

Note that S m(λq,b,R
n+1
+ ,D) ⊂ S m(λq,b,R

n+1
+ ,Π−) because the ray r− ⊂D.

Remark 3.5. Since r− ⊂ D, it follows from [27] ( Theorem 8.3) that for each η = (η0,η
′) ∈

D and h < 0 the point (η0+h,η′) ∈ D also. Therefore if a (x, ξ) ∈ S m(λq,b,R
n+1
+ ,D), then

Definitions 2.6 and 3.4 imply that the symbol a(x, ξ + iη) ∈ S m(λq,b,R
n+1
+ ,Π−) for each

η ∈ D.

Theorem 3.6. Let q1,q2 ∈ E(Rn+1), a ∈ S m(λq1,b,R
n+1
+ ,D) and w(x) ∈ Wb(D,q2) . Then

the operator Aw ≡ wOp(a)w−1 ∈ OPS m(λq,b,R
n+1
+ ,Π−) where q = q1 + q2 and it symbol

aw(x, ξ) can be represented of the form

aw(x, ξ) = a(x, ξ+ i∇v(x))+ r(x, ξ), (3.20)

where a (x, ξ+ i∇v(x)) ∈ S m(λq,b,R
n+1
+ ,Π−) and r ∈ S m− 1

b (λq,b,R
n+1
+ ,Π−).
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Proof. Following to the papers [23], see (also [25], [26]) we obtain the representation

Awu(x) =
∫
Rn+1

d′ξ
∫
Rn+1
+

ei(x−y)·ξag(x,y, ξ)u(y)dy, u ∈C∞0 (Rn+1
+ )

where ag(x,y, ξ) = a(x, ξ+ igv(x,y)), and

gv(x,y) =

1∫
0

∇v((1− θ)x+ θy)dθ. (3.21)

Because the domainD is convex, gv(x,y) ∈ D for every points x,y ∈ Rn+1
+ . The operator Aw

can be represented as a ψdo of the form

Awu(x) =
∫
Rn+1

d′ξ
∫
Rn+1
+

ei(x−y)·ξaw(x, ξ)u(y)dy, u ∈C∞0 (Rn+1
+ )

where
aw(x, ξ) =

∫
Rn+1×Rn+1

+

ag(x, x+ y, ξ+ω)e−iy·ωdyd′ω (3.22)

and the double integral is understood as oscillatory (see for instance [14], [15], [26]). The
Lagrange formula imply

ag(x, x+ y, ξ+ω) = ag(x, x+ y, ξ)+ r(x,y, ξ,ω), (3.23)

where

r(x,y, ξ,ω) =
n∑

j=0

[∫ 1

0
∂ξ jag(x, x+ y, ξ+ tω)dt

]
ω j. (3.24)

It follows from (3.22)- (3.24) that

aw(x, ξ) =
∫

Rn+1×Rn+1
+

ag(x, x+ y, ξ)e−iy·ωdyd′ω+ r(x, ξ), (3.25)

where

r(x, ξ) =
n∑

j=0

∫ 1

0
rt, j(x, ξ)dt. (3.26)

and
rt, j(x, ξ) =

∫
Rn+1×Rn+1

+

∂ξ j Dy jag(x, x+ y, ξ+ tω)e−iy·ωdyd′ω. (3.27)

Now, applying the well known properties of the oscillatory integral (see for instance [14],
[15], [26]) we obtain∫

Rn+1×Rn+1
+

ag(x, x+ y, ξ)e−iy·ωdyd′ω = ag(x, x, ξ) = a(x, ξ+ i∇v(x)) (3.28)



On the Invertibility of Parabolic Pseudodifferential Operators 87

By Definitions 3.1, 3.4 and Remark 3.5

a (x, ξ+ i∇v(x)) ∈ S m(λq,b,R
n+1
+ ,Π−). (3.29)

For the estimate of the symbol r we use the following regularization of the oscillatory
double integral

rt, j(x, ξ) =
∫

Rn+1×Rn+1
+

∂ξ j Dy jag(x, x+ y, ξ+ tω)e−iyωdyd′ω =∫
Rn+1×Rn+1

+

〈y〉−2k1
〈
Dξ

〉2k1
{
〈ξ〉−2k2

〈
Dy

〉2k2 bt, j(x,y, ξ,ω)
}

e−iy·ωdyd′ω,

j = 1, . . .n, t ∈ [0.1]

(3.30)

where 2k1, 2k2 ∈ 2N are large enough, and

bt, j(x,y, ξ,ω) = ∂ξ j Dy jag(x, x+ y, ξ+ tω) =
∂ξ j Dy ja(x, ξ+ tω+ igv(x, x+ y)).

In light of (2.1) there exist L such that for every α∣∣∣∂αq2(x+ y)
∣∣∣ ≤Cαq2(x) 〈y〉L

Therefore it follows from Definition 3.1 and (3.21) that

|gv(x, x+ y)| ≤

1∫
0

|∇v(x+ θy)|dθ ≤Cq2(x) 〈y〉L1

for some constants C and L1.

Applying estimates (3.1) (3.2) and (3.29) we obtain∣∣∣∣∣〈y〉−2k1
〈
Dξ

〉2k1
{
〈ξ〉−2k2

〈
Dy

〉2k2 bt, j(x,y, ξ,ω)
}∣∣∣∣∣ ≤

Cλq,b (x, ξ)m− 1
b 〈y〉L|m−

1
b |−2k1 〈ω〉b|m−

1
b |−2k2

Let 2k1 > L
∣∣∣m− 1

b

∣∣∣+n , 2k2 > b
∣∣∣m− 1

b

∣∣∣+n, then (3.26) and (3.30) imply that

|r(x, ξ)| ≤Cλq,b (x, ξ)m− 1
b .

In the same way we obtain the estimates∣∣∣∣∂βx∂αξ r(x, ξ)
∣∣∣∣ ≤Cγβ(q(x)+ |ξ0|+ |ξ|)m− 1

b−|α0 |−
|α′ |

b .

Hence Remark 3.5 implies that r ∈ S m− 1
b (λq,b,R

n+1
+ ,Π−). Hence (3.25), (3.28) and (3.29)

imply that (3.20) holds and Aw ∈ OPS m(λq,b,R
n+1
+ ,Π−). �

Remark 3.7. Let a ∈ S m(Rn+1
+ ,λq,b), m ≥ 0 be a polynomial with respect to the variable

ξ. Then representation (3.20) holds for every weight w (x) = expv (x) if ∇v (x) satisfies
estimates (3.1) and (3.2).
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3.3 Invertibility of parabolic pseudodifferntial operators in exponential weighted
spaces

Let w be a weight. We denote by Hs
0(λq,b,R

n+1
+ ,w) the weighted Sobolev space with the

norm
‖u‖Hs

0(λq,b,R
n+1
+ ,w) = ‖wu‖Hs

0(λq,b,R
n+1
+ ) .

Let
wh(x) = evh(x) ≡ ev(x)+hx0 , x =

(
x0, x′

)
∈ Rn+1
+ , h ≤ 0. (3.31)

Proposition 3.8. Let the conditions of Theorem 3.6 be fulfilled. Then the operator

Op(a) : Hs
0(λq,b,R

n+1
+ ,wh)→ Hs−m

0 (λq,b,R
n+1
+ ,wh) (3.32)

is bounded for every h ≤ 0.

This proposition is a corollary of Theorem 3.6 and Proposition 2.9.

Theorem 3.9. Let the conditions of Theorem 3.6 be fulfilled, and

lim
h→−∞

inf
(x,ξ)∈Rn+1

+ ×R
n+1

∣∣∣a(x, ξ0+ i
(
∂x0v(x)+h

)
, ξ′+ i∇x′v(x))

∣∣∣
λm

q,b,h(x, ξ)
> 0. (3.33)

Then for every s ∈ R there exists h0 = h0 (s) < 0 such that for all h ≤ h0 operator (3.32) is
invertible.

Proof. The invertibility of (3.32) is equivalent to the invertibility of the operator

Op(aw) = wOp(a)w−1 : Hs
0(λq,b,R

n+1
+ ,ehx0)→ Hs−m

0 (λq,b,R
n+1
+ ,ehx0). (3.34)

It follows from (3.20) that

aw(x, ξ) = a(x, ξ+ i∇v(x))+ r(x, ξ),

where r(x, ξ) ∈ S m− 1
b (λq,b,R

n+1
+ ,Π−). Therefore

lim
h→−∞

inf
(x,ξ)∈Rn+1

+ ×R
n+1

|r(x, ξ0+ ih, ξ′)|
λm

q,b,h(x, ξ)
= 0

and applying condition (3.33) we obtain

lim
h→−∞

inf
(x,ξ)∈Rn+1

+ ×R
n+1

|aw(x, ξ0+ ih, ξ′)|
λm

q,b,h(x, ξ)
> 0.

Hence by Theorem 2.11 the operator (3.34) is invertible for all h < −h0 where |h0| > 0 is
large enough. �

Now we apply the previous results for exponential estimates of fundamental solutions
of differential operators.

We recall that a distribution gy (x) (∈ S′(Rn+1
+ )) is called a fundamental solution of a

differential operator a(x,D) if

a (x,D)gy (x) = δ (x− y) , x = (x0, x′), y =
(
y0,y′

)
∈ Rn+1
+

where δ is the Dirac distribution.
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Theorem 3.10. Let a differential operator a(x,D) ∈ OPS k(λq1,b,R
n+1
+ ,D), s > n+b

2b , and the
conditions of Theorem 3.9 be fulfilled. Then there exists h0 < 0 such that the differential
operator a(x,D) has an unique fundamental solution gy in the space H−s+k

0 (λq,b,R
n+1,wh)

where wh ∈Wb(D,q2) and h ≤ h0.

Proof. Easy calculations show that δ(·−y) ∈H−s
0 (λq,b,R

n+1,wh) if s> n+b
2b . Hence Theorem

3.9 yields that gy ∈ H−s+k
0 (λq,b,R

n+1
+ ,wh) for every y ∈ Rn+1

+ if s > n+b
2b , and h ≤ h0. �

4 Parabolic differential operators in general exponential weighted
spaces

4.1 Convex functions corresponding to parabolic differential operators

Let p0(x,D) differential operator of the form

p0(x,D) = iD0+Q2m(x,D′) (4.1)

with symbol
p0(x, ξ) = iξ0+Q2m(x, ξ′) (4.2)

where
Q2m(x, ξ′) =

∑
|α|=2m

aα(x)ξ′α. (4.3)

We suppose that the coefficients aα ∈C∞b (Rn+1) the class of functions in C∞(Rn+1) bounded
with all their partial derivatives.

We suppose that the differential operator p0(x,D) is uniformly parabolic. It implies
([9], p.74) that there exists a constant ν > 0 such that

inf
x∈Rn

+, ξ
′∈Rn�{0}

{R(Q2m(x, ξ′))}
|ξ′|2m = ν > 0. (4.4)

For every fixed x ∈ Rn+1
+ we introduce the function

χp0

(
x,η′

)
= sup
ξ′∈Rn

{
−R(Q2m(x, ξ′+ iη′))

}
, . (4.5)

It follows from Example 3.3) the function χp0 (x,η′) is a convex continuous and homoge-
neous of the degree 2m with respect to η′ ∈ Rn for every fixed x ∈ Rn+1

+ . Moreover there
exist constants C j(x) ≥C0

j > 0, j = 1,2 such that

C1(x)
∣∣∣η′∣∣∣2m

≤ χp0

(
x,η′

)
≤C2(x)

∣∣∣η′∣∣∣2m
,η′ ∈ Rn. (4.6)

We set
χp0

(
η′

)
= sup

x∈Rn+1
+

χp0

(
x,η′

)
. (4.7)
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Lemma 4.1. Let the polynomial Q2m(x, ξ′) satisfy condition (4.4). Then
a) χp0 (η′) is a convex continuous and homogeneous of order 2m function;
b) there exist positive constants d1 and d2 such that

d1
∣∣∣η′∣∣∣2m

≤ χp0

(
η′

)
≤ d2

∣∣∣η′∣∣∣2m
, η′ ∈ Rn; (4.8)

c) χ∗p0
(η′) is a convex, continuous, homogeneous of the order 2m

2m−1 function, and there
exist positive constants c1 and c2 such that

c1
∣∣∣x′∣∣∣ 2m

2m−1 ≤ χ∗p0

(
η′

)
≤ c2

∣∣∣x′∣∣∣ 2m
2m−1 , x′ ∈ Rn (4.9)

Proof. a) It follows from [27] (Theorem 5.5) that the function χp0 is a convex, homogeneous
of the order 2m function, and (4.8) holds. Further, we will prove that χp0 is a finite on Rn

function. It implies (see [27], Corollary10.1.1) that χp0 is a continuous function. Indeed, it
follows from 2m−homogeneity of Q2m (x, ξ′) , with respect to ξ′ that∣∣∣∣DκξQ2m

(
x, ξ′

)∣∣∣∣ <Cκ
∣∣∣ξ′∣∣∣2m−|κ′ |

,
(
x, ξ′

)
∈ Rn+1
+ ×R

n (4.10)

for all multi-indices κ. Then applying the decomposition of Q(x, ξ′ + iη′) for fixed η′ ∈ Rn

in the Taylor’s series

Q2m(x, ξ′+ iη′) =
∑

0≤|κ|≤2m

1
α!
∂κQ2m(x, ξ′)

∂ξ′κ
(
iη′

)κ
and condition (4.4) we obtain

Q2m(x, ξ′+ iη′) = Q2m(x, ξ′)(1+G(x, ξ′,η′))

where G(x, ξ′,η′) is such that for every η′ ∈ Rn

lim
ξ′→∞

G(x, ξ′,η′) = 0

uniformly with respect to x ∈ Rn+1
+ . It yields that there exist R = R(η′) and δ = δ (η′) > 0

such that
R(Q2m(x, ξ′+ iη′)) ≥ δ

for all ξ′ : |ξ′| > R and for all x ∈ x ∈ Rn+1
+ .

sup
{ξ′:|ξ′ |≥R}

{
−R(Q2m(x, ξ′+ iη′))

}
< 0

Since χp0 (x,η′) is a positive function, there exists constant K (η′) such that

χp0

(
x,η′

)
= sup
{ξ′:|ξ′ |≤R}

{
−R(Q2m

(
x, ξ′+ iη′

)}
≤ K

(
η′

)
, ∀x ∈ Rn+1

Hence applying (4.7)we obtain that χp0 (η′) <∞, for every η′ ∈ Rn.

b) Because χ is a continuous homogeneous function of the degree 2m on Rn the restric-
tion of χ |S n−1 is a continuous function. Hence there exist constants d1,d2 such that

d1
∣∣∣η′∣∣∣2m

≤ χp0

(
η′

)
≤ d2

∣∣∣η′∣∣∣2m
, η′ ∈ Rn. (4.11)



On the Invertibility of Parabolic Pseudodifferential Operators 91

Further by the definition of χp0 (η′) and formula (4.6) we obtain that for every fixed point
x0 ∈ R

n+1
+

χp0

(
η′

)
≥ χp0

(
x0,η

′) ≥C1(x0)
∣∣∣η′∣∣∣2m

where C1(x0) > 0. Hence d1 > 0.
Assertion c) follows from [27] (Corollary 15.3.1), (4.8), (3.18), and ([27], p.104): the

inequality f1 ≤ f2 implies the inequality f ∗2 ≤ f ∗1 . �

Remark 4.2. a) Let

Dχp0

(
x,η′

)
=

{(
η0,η

′) ∈ Rn+1 : η0 < −χp0

(
x,η′

)}
and

Dχp0
=

{(
η0,η

′) ∈ Rn+1 : η0 < −χp0

(
η′

)}
. (4.12)

Then
Dχp0

=
⋂

x∈Rn+1
+

Dχp0

(
x,η′

)
. (4.13)

b) Note that for every point η = (η0,η
′) ∈ Dχp0

\{0} and for every ε ∈ (0,1) the point
(εη0, εη

′) ∈ Dχp0
.

It is easy to prove the following Lemma.

Lemma 4.3. Let operator (4.1) be uniformly 2m− parabolic. Then for any ε ∈ [0,1) there
exists a constant C =C (ε) such that the follows inequality holds

|p0 (x, ξ+ iεη)| ≥C
(
|η0|+ |ξ0|+

∣∣∣η′∣∣∣2m
+

∣∣∣ξ′∣∣∣2m
)

(4.14)

where (x, ξ+ iη) ∈Ω+× TDχp0
holds.

4.2 Invertibility of parabolic differential operators in exponential weighted
spaces

We consider the differential operator of the form

p(x,D) = ∂x0 +
∑

0<|α′ |≤2m

aα′(x)D′α
′

+b (x) , (4.15)

with symbol
p(x, ξ) = iξ0+

∑
0<|α′ |≤2m

aα′(x)ξ′α
′

+b (x) .

As above (see (4.1)-(4.3)) we set

p0(x, ξ) = iξ0+
∑
|α′ |=2m

aα′(x)ξ′α
′

= iξ0+Q2m(x, ξ′). (4.16)

We say that a polynomial of the form (4.15) belongs to the class P2m (q1) , where q1 ∈

E
(
Rn+1

)
if the following conditions holds:

(1) p0(x,D) is uniformly 2m− parabolic (see (4.4));
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(2) aα ∈C∞b (Rn+1
+ );

(3) b ∈C∞(Rn+1
+ ),

inf
x∈Ω+

b (x)
q1 (x)

= b0 > 0, (4.17)

and ∣∣∣∂βb (x)
∣∣∣ <Cβq1 (x) (4.18)

for all multi-indices β.

Remark 4.4. It follows from condition (1) and (4.18), that p(x,D) ∈OPS 1(λq1,2m,R
n+1
+ ,D) and

p(x,D)− p0(x,D) ∈ OPS 1−1/2m(λq1,2m,R
n+1
+ ,D),

for any convex domainD.

Let the function χp0 be defined by (4.7) and χ∗p0
be conjugate for χp0 . It follows from

Lemma 4.1, c) that the above defined function v is of the form

v(x) =
χ∗p0

(〈x1〉ν , ..., 〈xn〉ν)

(x0+δ)
1

2m−1

, (4.19)

Let
wε,h(x) = evε,h(x), ε ∈ [0,1) ,h > 0.

where vε,h (x) = εv (x)+hx0 and v(x) defined by (4.19).

Theorem 4.5. Let p (x,D) ∈ P2m (q1) , wε,h(x) ∈W2m(Dχp0
, q̂m), ε ∈ (0,1) , h< 0 and q (x)=

q1 (x)+
[̂
qm (x)

]2m . Then for every s ∈R there exists h0 = h0 (s) < 0 such that the operator

p(x,D) : Hs
0(λq,2m,R

n+1
+ ,wε,h (x))→ Hs−1

0 (λq,2m,R
n+1
+ ,wε,h (x)) (4.20)

is an isomorphism for all h ≤ h0.

Proof. The case ε = 0 was studied in Section 2, hence we suppose that ε ∈ (0,1) .In light
of Remark 4.4, and Theorem 3.6 to prove the invertibility of operator (4.20) it is enough to
prove the inequality:∣∣∣p0(x, ξ+ i∇

(
vε,h (x))

)∣∣∣ ≥Cλq,2m,h, (x, ξ) ∈ Rn+1
+ ×R

n+1, (4.21)

with a constant C =C (ε) > 0, and

λq,2m,h (x, ξ) = 1+h+ |ξ0|+
∣∣∣ξ′∣∣∣2m

+q (x) .

Since wε,h(x) ∈W2m(Dχp0
, q̂) then for every ε ∈ (0,1) and h < 0, Remark (4.2) a) implies

that ∇vε,h (x) ∈Dχp0
for every x ∈Rn+1

+ . It follows from estimate (3.16) that ∂0µ (x) < 0, then
Lemma 4.3 yields that ∣∣∣p0

(
x, ξ+ i∇

(
vε,h (x)

))∣∣∣ =
|p0 (x, ξ0+ i (ε (∂0µ (x))+h) , ξ′+ iε∇′ (µ (x))))| ≥

C1

(
h+ |ξ0|+ |ξ

′|
2m+

[
〈x′〉
〈x0〉

] 2m
2m−1

)
, (x, ξ) ∈ Rn+1

+ ×R
n+1,

(4.22)

for some constants C1 =C1 (ε) . Hence (4.17) and (4.22) imply (4.21) �
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As an application of Theorem 4.5 we consider the differential operator

p(x,D) = iD0+
∑

1≤ j<l

a j(x)D2m
j +al (x)

 n∑
j=l

D2
j


m

+b (x) (4.23)

where
min

j=1,...,l
inf

x∈Rn+1
+

a j(x) > 0.

Note that in the case l = 1 we obtain the operator

p(x,D) = iD0+a1 (x)

 n∑
j=1

D2
j


m

+b (x)

and in the casel = nwe obtain the operator

p(x,D) = iD0+

n∑
j=1

a j (x) D2m
j +b (x) .

It follows from [5] ( p.528) that for every fixed x ∈ Rn+1
+

χp0

(
x,η′

)
=

∑
1≤ j<l

ã j (x)η2m
j + ãl (x)

 n∑
j=l

η2
j


m

,

where

ã j (x) = a j(x)
(
sin

π

2(2m−1)

)1−2m

, j = 0, . . . , l.

We introduce the function

χp0

(
η′

)
= sup

x∈Rn+1
+

χp0

(
x,η′

)
=

∑
1≤ j<l

ã jη
2m
j + ãl

 n∑
j=l

η2
j


m

,

where
ã j = sup

x∈Rn+1
+

ã j (x) , j = 0, . . . , l.

Then

χ∗
(
x′
)
=

∑
0< j<l

a∗j
∣∣∣x j

∣∣∣ 2m
2m−1
+a∗l+1

 n∑
j=l

x2
j


2m

2m−1

where
a∗j =

(̃
a j

) 1
1−2m (2m−1)(2m)

2m
1−2m

, j = 0, . . . , l,

and

v (x) =
(

1
x0+d

) 1
2m−1


∑

0< j<l

a∗j
〈
x j

〉 2m
2m−1 +a∗l+1

1+ n∑
j=l

x2
j


2m

2m−1
 , x ∈ Rn+1

+ .
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Theorem 4.6. Let ε ∈ [0,1), h < 0, and

λq,2m (x, ξ) = 1+ |ξ0|+
∣∣∣ξ′∣∣∣2m

+q (x)

where q (x) = q1 (x)+
[̂
qm (x)

]2m . Then:
a) for every s ∈ R there exists h0 = h0 (s) < 0 such that the operator p(x,D) defined

by formula (4.23) is invertible from Hs(λq,2m,R
n+1
+ ,wε,h) into Hs−1(λq,R

n+1
+ ,wε,h) for all

h < h0;
b) if s > n+b

2b then there exists h0 = h0 (s) < 0 such that p(x,D) has the unique funda-
mental solution gy ∈ H−s+1

0 (λq,2m,R
n+1,wε,h) where wε,h (x) ∈W2m(Dχp0

, q̂m) and h ≤ h0.

References

[1] M.S. Agranovich, M.I. Vishik, Elliptic problems with parameter and parabolic prob-
lems of general type. Uspekhi Math. Nauk, v. 19 No.3, p.53-161, 1964 (In Russian).
(Russian); Engl. translation: Amer. Math. Soc. Transl. of Math. Monographs, vol. 41,
Providence, R.I., 1974.

[2] R. Beals, A general calculus of pseudo-differential operators, Duke Math. J., 42,
(1975), 1 -42.

[3] R. Beals, Weighted distribution spaces and pseudodifferential operators, Jorn.
d’Analyse Math. 39, (1981), 131- 187.

[4] S. Gindikin, Tube Domain and the Cauchy Problem, Translation of Math. Mono-
graphs, vol.111, AMS, 1992.

[5] M.F. Fedoryuk, S.G. Gindikin, Asimptotic behavior of the fundamental solution of
a differntial equations with constant coefficients which is parabolic in the Petrovskiı̆
sense, Math. USSR-Sb. 20 (1973). p. 500–524.

[6] S. Gindikin, L.R. Volevich, Pseudodifferential operators and the Cauchy problem for
differential equations with variable coefficients, Funkcionalniy Analiz i ego Prilojenia,
V.1, No.4, p.8–25 (1967) (In Russian).

[7] S. Gindikin, L.R. Volevich, The Cauchy problem for pluri-parabolic differential equa-
tions, I, Mat. Sb. 75 (1968), no.1, 71-112; II Mat.Sb. 78 (1968), no 8. 215-235, English
transl.I in Math. USSR-Sb. 4 (1968), II Math. USSR-Sb. 7 (1968).

[8] S.G. Gindikin, L.R. Volevich, Distributions and Convolution Equations, Gordon and
Breach, London New York, 1991.

[9] S.G. Gindikin, L.R. Volevich, Mixed Problem for Partial Differential Equations with
Quasi-Homogeneous Principal Part, Amer. Math. Soc. Translations of Math. Mono-
graphs 147, Providence, R.I. 1996.

[10] G.Grubb, Parabolic pseudodifferential boundary problems and applications, Lect.
Notes in Math. vol 1495, p. 46-117, 1991, Springer-Verlag, Berlin-Heidelberg-New
York.



On the Invertibility of Parabolic Pseudodifferential Operators 95

[11] S. D. Eidel’man, Parabolic Equations, In ”Itogi Nauki i Tecniki”, ser. ” Sovremennie
Problemi Matematiki. Fundamentalnie Napravlenia, vol. 63, Moscow, 1990

[12] T. Krainer, On the inverse of parabolic boundary value problems for large times,
Japanes J. Math. 30, 1 (2004), 91–163.

[13] T. Krainer, B.-W. Schulze, On the inverse of parabolic systems of partial differential
equations of general form in an infinite space-time cylinder, In Parabolicity, Volterra
Calculus, and Conical Singularities (Advances in Part. Dif. Equations: Operator The-
ory Adv. Appl., Birkhauser Verlag, Basel-Boston-Berlin, (2003), pp 93–278.

[14] Kumano-go H., Taniguchi K., Oscillatory integrals of symbols of pseudodifferential
operators on Rn and operators of Fredholm Type, Proc. Japan Acad., 49, (1973).

[15] Kumano-go H., Pseudodifferential Operators, MIT Press, Cambrige, MA, 1982.

[16] Levendorskii, S., Degenerate Elliptic Equations. Kluwer Academic Publisher, vol.
258, 1994.

[17] Ya. Lutsky and V.S. Rabinovich, Pseudodifferential operators on spaces of functions
of exponential behavior at infinity. Funct. Anal. i ego Prilojenia, No. 4,(1977), p. 79–
80.

[18] Ya. Lutsky and V.S. Rabinovich, Parabolic pseudodifferential operators in exponential
weighted spaces, Contemporary Mathematics, vol. 455 (2008), 278–295.

[19] Ya. Lutsky and V.S. Rabinovich, Invertibility of parabolic pseudodifferential opera-
tors with rapidly increasing symbols, Russian J. of Math. Physics, vol. 15,(2008)
No.2, 267–279.

[20] Petrovskiı̆, I.G. On the Cauchy’s problem for systems of partial linear equations in the
domains of non-analytic functions, Bull. Moscow Univ. Ser. Math. 1 (1938), no. 6, pp
1–6.

[21] B.P. Paneah, L.R. Volevich, Some spaces of generalized functions and embbeding
theorems, Uspekhi Math. Nauk, V.20, (1965) No.1, p.3-74 (In Russian).

[22] V.S. Rabinovich, Pseudodifferential operators with analytic symbols and some of
its applications. Linear Topological Spaces and Complex Analysis 2(1995), 79-98,
METU-TÜBITAK.
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