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Abstract

In this paper we investigate the global convergence result, boundedness, and periodic-

ity of solutions of the recursive sequence

xn+1 = axn+
bxn−l + cxn−k

dxn−l+ exn−k

, n = 0,1, ...,

where the parameters a,b,c,d and e are positive real numbers and the initial conditions

x−k, x−k+1, ..., x−l , x−l+1, ..., x−1 and x0 are positive real numbers.
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1 Introduction

Difference equations appear as natural descriptions of observed evolution phenomena be-

cause most measurements of time evolving variables are discrete and as such these equa-

tions are in their own right important mathematical models. More importantly, difference

∗E-mail address: emelsayed@mans.edu.eg, emmelsayed@yahoo.com



118 E. M. Elsayed

equations also appear in the study of discretization methods for differential equations. Sev-

eral results in the theory of difference equations have been obtained as more or less natural

discrete analogues of corresponding results of differential equations.

The study of rational difference equations of order greater than one is quite challenging

and rewarding because some prototypes for the development of the basic theory of the

global behavior of nonlinear difference equations of order greater than one come from the

results for rational difference equations. However, there have not been any effective general

methods to deal with the global behavior of rational difference equations of order greater

than one so far. Therefore, the study of rational difference equations of order greater than

one is worth further consideration.

Recently there has been a lot of interest in studying the global attractivity, boundedness

character, periodicity and the solution form of nonlinear difference equations. For some

results in this area, for example: Agarwal et al. [2] studied the global stability, periodicity

character and gave the solution form of some special cases of the recursive sequence

xn+1 = a+
dxn−lxn−k

b− cxn−s

.

Aloqeili [3] obtained the form of the solution of the difference equation

xn+1 =
xn−1

a− xn xn−1

.

Elabbasy et al. [6] investigated the global stability character, boundedness and the

periodicity of solutions of the difference equation

xn+1 =
αxn +βxn−1+γxn−2

Axn+Bxn−1+Cxn−2

.

In [7] Elabbasy et al. studied the dynamics such that the global stability, periodicity

character and gave the solution of special case of the following recursive sequence

xn+1 = axn−
bxn

cxn −dxn−1

.

Elabbasy et al. [8] investigated the behavior of the difference equation especially global

stability, boundedness, periodicity character and gave the solution of some special cases of

the difference equation

xn+1 =
αxn−k

β+γ
∏k

i=0 xn−i

.

El-Metwally et al. [15] dealt with the following difference equation

yn+1 =
yn−(2k+1)+ p

yn−(2k+1)+qyn−2l

.

Saleh et al. [30] investigated the difference equation

yn+1 = A+
yn

yn−k

.



On the Dynamics of a Higher-Order Rational Recursive Sequence 119

Simsek et al. [32] obtained the solution of the difference equation

xn+1 =
xn−3

1+ xn−1

.

Yalçınkaya et al. [36], [39] considered the dynamics of the difference equations

xn+1 =
axn−k

b+ cx
p
n

, xn+1 = α+
xn−m

xk
n

.

Zayed et al. [41]-[42] studied the behavior of the following rational recursive sequences

axn −
bxn

cxn−dxn−k

, xn+1 =
α+βxn +γxn−1

A+Bxn+Cxn−1

.

Other related results on rational difference equations can be found in refs. [1-40].

Our goal in this paper is to investigate the global stability character and the periodicity

of solutions of the recursive sequence

xn+1 = axn+
bxn−l + cxn−k

dxn−l+ exn−k

, (1.1)

where the parameters a,b,c,d and e are positive real numbers and the initial conditions

x−k, x−k+1, ..., x−l , x−l+1, ..., x−1 and x0 are positive real numbers.

2 Some Basic Properties and Definitions

Here, we recall some basic definitions and some theorems that we need in the sequel.

Let I be some interval of real numbers and let

F : Ik+1→ I,

be a continuously differentiable function. Then for every set of initial conditions x−k, x−k+1, ...,x0 ∈

I, the difference equation

xn+1 = F(xn, xn−1, ..., xn−k ), n = 0,1, ..., (2.1)

has a unique solution {xn}
∞
n=−k

.

Definition 2.1. (Equilibrium Point) A point x ∈ I is called an equilibrium point of Eq.(2.1)

if

x = F(x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of Eq.(2.1), or equivalently, x is a fixed point of F.

Definition 2.2. (Periodicity) A sequence {xn}
∞
n=−k

is said to be periodic with period p if

xn+p = xn for all n ≥ −k.
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Definition 2.3. (Stability) (i) The equilibrium point x of Eq.(2.1) is locally stable if for

every ε > 0, there exists δ > 0 such that for all x−k, x−k+1, ..., x−1 ,x0 ∈ I with

|x−k − x|+ |x−k+1− x|+ ...+ |x0− x| < δ,

we have

|xn − x| < ε for all n ≥ −k.

(ii) The equilibrium point x of Eq.(2.1) is locally asymptotically stable if x is locally stable

solution of Eq.(2.1) and there exists γ > 0, such that for all x−k, x−k+1, ..., x−1 , x0 ∈ I with

|x−k − x|+ |x−k+1− x|+ ...+ |x0− x| < γ,

we have

lim
n→∞

xn = x.

(iii) The equilibrium point x of Eq.(2.1) is global attractor if for all x−k, x−k+1, ..., x−1 , x0 ∈

I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of Eq.(2.1) is globally asymptotically stable if x is locally

stable, and x is also a global attractor of Eq.(2.1).

(v) The equilibrium point x of Eq.(2.1) is unstable if x is not locally stable.

The linearized equation of Eq.(2.1) about the equilibrium x is the linear difference equa-

tion

yn+1 =

k
∑

i=0

∂F(x, x, ..., x)

∂xn−i

yn−i. (2.2)

Theorem A [26] Assume that pi ∈ R , i = 1,2, ... and k ∈ {0,1,2, ...}. Then

k
∑

i=1

|pi | < 1, (2.3)

is a sufficient condition for the asymptotic stability of the difference equation

yn+k+ p1yn+k−1+ ...+ pkyn = 0, n = 0,1, ...

Consider the following equation

xn+1 = g(xn, xn−1, xn−2). (2.4)

The following two theorems will be useful for the proof of our results in this paper.

Theorem B [27] Let [α,β] be an interval of real numbers and assume that

g : [α,β]3→ [α,β],

is a continuous function satisfying the following properties :

(a) g(x,y,z) is non-decreasing in x and y in [α,β] for each z ∈ [α,β], and is non-increasing

in z ∈ [α,β] for each x and y in [α,β];
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(b) If (m,M) ∈ [α,β]× [α,β] is a solution of the system

M = g(M,M,m) and m = g(m,m,M),

then

m = M.

Then Eq.(2.4) has a unique equilibrium x ∈ [α,β] and every solution of Eq.(2.4) converges

to x.

Theorem C [27] Let [α,β] be an interval of real numbers and assume that

g : [α,β]3→ [α,β],

is a continuous function satisfying the following properties :

(a) g(x,y,z) is non-decreasing in x and z in [α,β] for each y ∈ [α,β], and is non-increasing

in y ∈ [α,β] for each x and z in [α,β];

(b) If (m,M) ∈ [α,β]× [α,β] is a solution of the system

M = g(M,m,M) and m = g(m,M,m),

then

m = M.

Then Eq.(2.4) has a unique equilibrium x ∈ [α,β] and every solution of Eq.(2.4) converges

to x.

The paper proceeds as follows. In Section 3 we show that the equilibrium point of

Eq.(1.1) is locally asymptotically stable when 2 |(be−dc)| < (d+ e)(b+ c). In Section 4 we

prove that the solution is bounded when a < 1 and the solution of Eq.(1.1) is unbounded

if a > 1. In Section 5 we prove that the there exists a period two solution of Eq.(1.1). In

Section 6 we prove that the equilibrium point of Eq.(1.1) is global attractor. Finally, we

give numerical examples of some special cases of Eq. (1.1) and draw it by using Matlab.

3 Local Stability of the Equilibrium Point of Eq.(1.1)

This section deals with study the local stability character of the equilibriumpoint of Eq.(1.1).

Theorem 3.1. Assume that

2 |(be−dc)| < (d+ e)(b+ c).

Then the positive equilibrium point of Eq.(1.1) is locally asymptotically stable.

Proof. Eq.(1.1) has equilibrium point and is given by

x = ax+
b+ c

d+ e
.

If a < 1, then the only positive equilibrium point of Eq.(1.1) is given by

x =
b+ c

(1−a)(d+ e)
.
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Let f : (0,∞)3 −→ (0,∞) be a continuous function defined by

f (u,v,w) = au+
bv+ cw

dv+ ew
. (3.1)

Therefore it follows that

∂ f (u,v,w)

∂u
= a,

∂ f (u,v,w)

∂v
=

(be−dc)w

(dv+ ew)2
,

∂ f (u,v,w)

∂w
=

(dc−be)u

(dv+ ew)2
.

Then we see that

∂ f (x, x, x)

∂u
= a = −a2,

∂ f (x, x, x)

∂v
=

(be−dc)

(d+ e)2x
=

(be−dc)(1−a)

(d+ e)(b+ c)
= −a1,

∂ f (x, x, x)

∂w
=

(dc−be)

(d+ e)2x
=

(dc−be)(1−a)

(d+ e)(b+ c)
= −a0.

Then the linearized equation of Eq.(1.1) about x is

yn+1+a2yn+a1yn−l +a0yn−k = 0, (3.2)

whose characteristic equation is

λk+1+a2λ
k−1+a1λ

k−l+a0 = 0. (3.3)

It follows by Theorem A that, Eq.(3.2) is asymptotically stable if all roots of Eq.(3.3) lie in

the open disc |λ| < 1 that is if

|a2|+ |a1|+ |a0| < 1.

|a|+

∣

∣

∣

∣

∣

(be−dc)(1−a)

(d+ e)(b+ c)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(dc−be)(1−a)

(d+ e)(b+ c)

∣

∣

∣

∣

∣

< 1,

and so

2

∣

∣

∣

∣

∣

(be−dc)(1−a)

(d+ e)(b+ c)

∣

∣

∣

∣

∣

< (1−a), a < 1,

or

2 |be−dc| < (d+ e)(b+ c).

The proof is complete. �
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4 Existence of Bounded and Unbounded Solutions of Eq.(1.1)

Here we study the boundedness nature of solutions of Eq.(1.1).

Theorem 4.1. Every solution of Eq.(1.1) is bounded if a < 1.

Proof. Let {xn}
∞
n=−k

be a solution of Eq.(1.1). It follows from Eq.(1.1) that

xn+1 = axn+
bxn−l + cxn−k

dxn−l + exn−k

= axn+
bxn−l

dxn−l + exn−k

+
cxn−k

dxn−l + exn−k

.

Then

xn+1 ≤ axn+
bxn−l

dxn−l

+
cxn−k

exn−k

= axn +
b

d
+

c

e
for all n ≥ 1.

By using a comparison, we can write the right hand side as follows

yn+1 = ayn+
b

d
+

c

e
,

then

yn = any0+ constant,

and this equation is locally asymptotically stable because a < 1, and converges to the equi-

librium point y =
be+ cd

de(1−a)
.

Therefore,

limsup
n→∞

xn ≤
be+ cd

de(1−a)
.

Thus the solution is bounded. �

Theorem 4.2. Every solution of Eq.(1.1) is unbounded if a > 1.

Proof. Let {xn}
∞
n=−k

be a solution of Eq.(1.1). Then from Eq.(1.1) we see that

xn+1 = axn +
bxn−l + cxn−k

dxn−l + exn−k

> axn for all n ≥ 1.

We see that the right hand side can write as follows

yn+1 = ayn ⇒ yn = any0,

and this equation is unstable because a> 1, and lim
n→∞

yn =∞. Then by using ratio test {xn}
∞
n=−k

is unbounded from above. �

5 Existence of Periodic Solutions

In this section we study the existence of periodic solutions of Eq.(1.1). The following the-

orem states the necessary and sufficient conditions that this equation has periodic solutions

of prime period two.
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Theorem 5.1. Eq.(1.1) has positive prime period two solutions if and only if

(i) (b− c)(d− e)(1+a)+4(bae+ cd) > 0, d > e, b > c and l−odd, k− even.

(ii) (c−b)(e−d)(1+a)+4(acd+be) > 0, e > d, c > b and k−odd, l− even.

Proof. We prove that when l−odd, k−even and when l−even, k−odd is similar and will be

omitted.

First suppose that there exists a prime period two solution

..., p,q, p,q, ...,

of Eq.(1.1). We will prove that Condition (i) holds.

We see from Eq.(1.1) when l−odd, k−even that

p = aq+
bp+ cq

dp+ eq
,

and

q = ap+
bq+ cp

dq+ ep
.

Then

dp2+ epq = adpq+aeq2+bp+ cq, (5.1)

and

dq2+ epq = adpq+aep2+bq+ cp. (5.2)

Subtracting (5.1) from (5.2) gives

d(p2 −q2) = −ae(p2 −q2)+ (b− c)(p−q).

Since p , q, it follows that

p+q =
(b− c)

(d+ae)
. (5.3)

Again, adding (5.1) and (5.2) yields

d(p2 +q2)+2epq = 2adpq+ae(p2+q2)+ (b+ c)(p+q),

(d−ae)(p2+q2)+2(e−ad)pq = (b+ c)(p+q). (5.4)

It follows by (5.3), (5.4) and the relation

p2+q2 = (p+q)2−2pq for all p,q ∈ R,

that

2(e−d)(1+a)pq =
2(bae+ cd)(b− c)

(d+ae)2
.

Thus

pq =
(bae+ cd)(b− c)

(d+ae)2(e−d)(1+a)
. (5.5)
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Now it is clear from Eq.(5.3) and Eq.(5.5) that p and q are the two distinct roots of the

quadratic equation

t2−

(

(b− c)

(d+ae)

)

t+

(

(bae+ cd)(b− c)

(d+ae)2(e−d)(1+a)

)

= 0,

(d+ae)t2− (b− c)t+

(

(bae+ cd)(b− c)

(d+ae)(e−d)(1+a)

)

= 0, (5.6)

and so

[b− c]2−
4(bae+ cd)(b− c)

(e−d)(1+a)
> 0,

or

[b− c]2+
4(bae+ cd)(b− c)

(d− e)(1+a)
> 0.

(b− c)(d− e)(1+a)+4(bae+ cd) > 0.

Therefore inequalities (i) holds.

Second suppose that inequalities (i) is true. We will show that Eq.(1.1) has a prime

period two solution.

Assume that

p =
b− c+ ζ

2(d+ae)
,

and

q =
b− c− ζ

2(d+ae)
,

where ζ =

√

[b− c]2−
4(bae+ cd)(b− c)

(e−d)(1+a)
.

We see from inequalities (i) that

(b− c)(d− e)(1+a)+4(bae+ cd) > 0, b > c, d > e,

which equivalents to

(b− c)2 >
4(bae+ cd)(b− c)

(e−d)(1+a)
.

Therefore p and q are distinct real numbers.

Set

x−2 = q, x−1 = p and x0 = q.

We wish to show that

x1 = x−1 = p and x2 = x0 = q.

It follows from Eq.(1.1) that

x1 = aq+
bp+ cq

dp+ eq
= a

(

b− c− ζ

2(d+ae)

)

+

b

(

b− c+ ζ

2(d+ae)

)

+ c

(

b− c− ζ

2(d+ae)

)

d

(

b− c+ ζ

2(d+ae)

)

+ e

(

b− c− ζ

2(d+ae)

) .
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Dividing the denominator and numerator by 2(d+ae) gives

x1 =
ab−ac−aζ

2(d+ae)
+

b (b− c+ ζ)+ c (b− c− ζ)

d (b− c+ ζ)+ e (b− c− ζ)

=
ab−ac−aζ

2(d+ae)
+

(b− c)
[

(b+ c)+ ζ
]

(d+ e)(b− c)+ (d− e)ζ
.

Multiplying the denominator and numerator of the right side by (d+e)(b−c)− (d−e)ζ gives

x1 =
ab−ac−aζ

2(d+ae)
+

(b− c)
[

(b+ c)+ ζ
] [

(d+ e)(b− c)− (d− e)ζ
]

[

(d+ e)(b− c)+ (d− e)ζ
] [

(d+ e)(b− c)− (d− e)ζ
]

=
ab−ac−aζ

2(d+ae)

+
(b− c)

{

(d+ e)
(

b2− c2
)

+ ζ [(d+ e)(b− c)− (d− e)(b+ c)]− (d− e)ζ2
}

(d+ e)2(b− c)2− (d− e)2ζ2

=
ab−ac−aζ

2(d+ae)

+
(b− c)

{

(d+ e)
(

b2− c2
)

+2ζ(eb− cd)− (d− e)
(

[b− c]2−
4(bae+cd)(b−c)

(e−d)(1+a)

)}

(d+ e)2(b− c)2 − (d− e)2

(

[b− c]2−
4(bae+ cd)(b− c)

(e−d)(1+a)

)

=
ab−ac−aζ

2(d+ae)

+
(b− c)

{

(d+ e)
(

b2− c2
)

+2ζ(eb− cd)− (d− e) (b− c)2−
4(bae+cd)(b−c)

(1+a)

}

(d+ e)2(b− c)2 − (d− e)2

(

[b− c]2−
4(bae+ cd)(b− c)

(e−d)(1+a)

)

=
ab−ac−aζ

2(d+ae)
+

(b− c)

{

2(b− c)

[

dc+ eb−
2(bae+ cd)

(1+a)

]

+2ζ(eb− cd)

}

4(b− c)

[

ed(b− c)+
(e−d)(bae+ cd)

(1+a)

] .

Multiplying the denominator and numerator of the right side by (1+a) we obtain

x1 =
ab−ac−aζ

2(d+ae)
+

(b− c) [(dc+ eb)(1+a)−2(bae+ cd)] + ζ(1+a)(eb− cd)

2 [ed(b− c)(1+a)+ (e−d)(bae+ cd)]

=
ab−ac−aζ

2(d+ae)
+

(b− c)(eb−dc)(1−a)+ ζ (1+a)(eb− cd)

2 [ed(b− c)(1+a)+ (e−d)(bae+ cd)]

=
ab−ac−aζ

2(d+ae)
+

(eb−dc) {(b− c)(1−a)+ ζ(1+a)}

2(eb− cd)(d+ae)

=
ab−ac−aζ

2(d+ae)
+

(b− c)(1−a)+ ζ(1+a)

2(d+ae)

=
ab−ac−aζ + (b− c)(1−a)+ ζ(1+a)

2(d+ae)
=

b− c+ ζ

2(d+ae)
= p.
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Similarly as before one can easily show that

x2 = q.

Then it follows by induction that

x2n = q and x2n+1 = p for all n ≥ −1.

Thus Eq.(1.1) has the prime period two solution

...,p,q,p,q,...,

where p and q are the distinct roots of the quadratic equation (5.6) and the proof is complete.

�

6 Global Attractivity of the Equilibrium Point of Eq.(1.1)

In this section we investigate the global asymptotic stability of Eq.(1.1).

Lemma 6.1. For any values of the quotient
b

d
and

c

e
, the function f (u,v,w) defined by

Eq.(3.1) has the monotonicity behavior in its two arguments.

Proof. The proof follows by some computations and it will be omitted. �

Theorem 6.2. The equilibrium point x is a global attractor of Eq.(1.1) if one of the follow-

ing statements holds

(1) be ≥ dc and c ≥ b. (6.1)

(2) be ≤ dc and c ≤ b. (6.2)

Proof. Let α and β be a real numbers and assume that g : [α,β]3 −→ [α,β] be a function

defined by

g(u,v,w) = au+
bv+ cw

dv+ ew
.

Then

∂g(u,v,w)

∂u
= a,

∂g(u,v,w)

∂v
=

(be−dc)w

(dv+ ew)2
,

∂g(u,v,w)

∂w
=

(dc−be)u

(dv+ ew)2
.

We consider the two cases:-

Case (1) Assume that (6.1) is true, then we can easily see that the function g(u,v,w)

increasing in u,v and decreasing in w.

Suppose that (m,M) is a solution of the system M = g(M,M,m) and m= g(m,m,M).Then

from Eq.(1.1), we see that

M = aM+
bM+ cm

dM+ em
, m = am+

bm+ cM

dm+ eM
,
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or

M(1−a) =
bM+ cm

dM+ em
, m(1−a) =

bm+ cM

dm+ eM
,

then

d(1−a)M2+ e(1−a)Mm = bM+ cm, d(1−a)m2+ e(1−a)Mm = bm+ cM.

Subtracting this two equations we obtain

(M −m){d(1−a)(M+m)+ (c−b)} = 0,

under the conditions c ≥ b, a < 1, we see that

M = m.

It follows by Theorem B that x is a global attractor of Eq.(1.1) and then the proof is com-

plete.

Case (2) Assume that (6.2) is true, let αand β be a real numbers and assume that g :

[α,β]3 −→ [α,β] be a function defined by g(u,v,w) = au+
bv+ cw

dv+ ew
, then we can easily see

that the function g(u,v,w) increasing in u,w and decreasing in v.

Suppose that (m,M) is a solution of the system M = g(M,m,M) and m= g(m,M,m).Then

from Eq.(1.1), we see that

M = aM+
bm+ cM

dm+ eM
, m = am+

bM+ cm

dM+ em
,

or

M(1−a) =
bm+ cM

dm+ eM
, m(1−a) =

bM+ cm

dM + em
,

then

d(1−a)Mm+ e(1−a)M2 = bm+ cM, d(1−a)mM+ e(1−a)m2 = bM+ cm.

Subtracting we obtain

(M−m){e(1−a)(M +m)+ (b− c)} = 0,

under the conditions b ≥ c, a < 1, we see that

M = m.

It follows by Theorem C that x is a global attractor of Eq.(1.1) and then the proof is com-

plete. �



On the Dynamics of a Higher-Order Rational Recursive Sequence 129

0 5 10 15 20 25 30
2

4

6

8

10

12

n

x
(n

)

plot of x(n+1)= ax(n)+(bx(n−l)+cx(n−k))/(dx(n−l)+ex(n−k))

Figure 1.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

n

x
(n

)

plot of x(n+1)= ax(n)+(bx(n−l)+cx(n−k))/(dx(n−l)+ex(n−k))

Figure 2.

0 5 10 15
0

0.5

1

1.5

2

2.5
x 10

4

n

x
(n

)

plot of x(n+1)= ax(n)+(bx(n−l)+cx(n−k))/(dx(n−l)+ex(n−k))

Figure 3.



130 E. M. Elsayed

0 2 4 6 8 10 12 14 16 18 20
2

3

4

5

6

7

8

n
x
(n

)

plot of x(n+1)= ax(n)+(bx(n−l)+cx(n−k))/(dx(n−l)+ex(n−k))

 

 

Figure 4.

0 2 4 6 8 10 12 14 16 18 20
−0.04

−0.02

0

0.02

0.04

0.06

0.08

n

x
(n

)

plot of x(n+1)= ax(n)+(bx(n−l)+cx(n−k))/(dx(n−l)+ex(n−k))

Figure 5.

7 Numerical Examples

For confirming the results of this paper, we consider numerical examples which represent

different types of solutions to Eq. (1.1).

Example 1. We assume l = 3, k = 4, x−4 = 2, x−3 = 8, x−2 = 5, x−1 = 11, x0 = 7, a =

0.4, b = 1.5, c = 0.2, d = 0.3, e = 0.6. See Fig. 1.

Example 2. See Fig. 2, since l = 3, k = 4, x−4 = 4, x−3 = 13, x−2 = 9, x−1 = 15, x0 = 2, a =

0.9, b = 5, c = 2, d = 3, e = 1.

Example 3. We consider l = 2, k = 3, x−3 = 2, x−2 = 8, x−1 = 5, x0 = 11, a = 2, b = 5, c =

2, d = 3, e = 6. See Fig. 3.

Example 4. See Fig. 4, since l = 1, k = 2, x−2 = 2, x−1 = 8, x0 = 5, a = 0.7, b = 5, c =

2, d = 3, e = 6.

Example 5. Fig. 5. shows the solutions when l = 1, k = 2, a = 0.8, b = 0.5, c = 0.2, d =

5, e = 0.6, x−2 = q, x−1 = p, x0 = q.


































Since p,q =

b− c±

√

[b− c]2−
4(bae+ cd)(b− c)

(e−d)(1+a)

2(d+ae)



































.
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[37] I. Yalçınkaya, C. Cinar and M. Atalay, On the solutions of systems of difference

equations. Advances in Difference Equations. Vol. 2008, Article ID 143943, doi:

10.1155/2008/ 143943, 9 pages.
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