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Abstract

We show that if for any initial point there exists a trajectory of a nonexpansive set-
valued mapping attracted by a given set, then this property is stable under small per-
turbations of the mapping.
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1 Introduction and statement of the main result

The study of the convergence of iterations of mappings of contractive type has been an
important topic in Nonlinear Functional Analysis since Banach’s seminal paper [1] on the
existence of a unique fixed point for a strict contraction. It is well known that Banach’s fixed
point theorem also yields convergence of iterates to the unique fixed point. During the last
fifty years or so, many developments have taken place in this area. Interesting results have
also been obtained regarding set-valued mappings, where the situation is more difficult and
less understood. See, for example, [2, 6, 9-13] and the references cited therein. As already
mentioned above, one of the methods used for proving the classical Banach theorem is to
show the convergence of Picard iterations, which holds for any initial point. In the case
of set-valued mappings, we do not have convergence of all trajectories of the dynamical
system induced by the given mapping. Convergent trajectories have to be constructed in a
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special way. For example, in [6], if at the moment t = 0,1, . . . we have reached a point xt,
then we choose an element of T (xt) (here T is the mapping) such that xt+1 approximates
the best approximation of xt from T (xt). Since our mapping acts on a general complete
metric space we cannot, in general, choose xt+1 as the best approximation of xt by elements
of T (xt). Instead, we choose xt+1 to approximate the best approximation up to a positive
number εt, such that the sequence {εt}∞t=0 is summable. This method allowed Nadler [6] to
obtain the existence of a fixed point of a strictly contractive set-valued mapping and the
authors of [2] to obtain more general results. In view of this state of affairs, it is important
to study convergence of the iterates of both single- and set-valued mappings in the presence
of errors.

In particular, it is natural to ask if convergence of the iterates of nonexpansive mappings
will be preserved in the presence of computational errors. In [3] we provide affirmative
answers to this question. Related results can be found, for example, in [4, 5, 7, 8]. More
precisely, in [3] we show that if all exact iterates of a given nonexpansive mapping converge
(to fixed points), then this convergence continues to hold for inexact orbits with summable
errors. In [8] we continued to study the influence of computational errors on the conver-
gence of iterates of nonexpansive mappings in both Banach and metric spaces. We show
there that if all the orbits of a nonexpansive self-mapping of a metric space X converge to
some closed subset F of X, then all inexact orbits with summable errors also converge to F.
On the other hand, we also construct examples which show that the convergence of inexact
orbits no longer holds when the errors are not summable.

In this paper we study the existence of convergent iterations in the presence of com-
putational errors for a nonexpansive set-valued mapping. We show that if for any initial
point there exists a trajectory of a nonexpansive set-valued mapping attracted by a given
set, then this property is stable under small perturbations of the mapping. More precisely,
we prove two assertions. In the first assertion we show that for a given positive number δ, if
the perturbations are small enough, then for any initial state there exists a trajectory which
is attracted by a δ-neighborhood of the attractor. In the second assertion we show that under
the same assumptions for any initial state there exists a trajectory with a subsequence which
is attracted by the attractor.

Let (X,ρ) be a metric space. For each x ∈ X and each nonempty set A ⊂ X, put

ρ(x,A) = inf{ρ(x,y) : y ∈ A}.

For each pair of nonempty sets A,B ⊂ X, set

H(A,B) =max{sup
x∈A
ρ(x,B), sup

y∈B
ρ(y,A)}.

Let T : X→ 2X \ {∅} satisfy

H(T (x),T (y)) ≤ ρ(x,y) for all x,y ∈ X. (1.1)

Theorem 1.1. Assume that F is a nonempty subset of X and that for each x ∈ X, there is a
sequence {xi}

∞
i=0 ⊂ X such that x0 = x and xi+1 ∈ T (xi) for all integers i ≥ 0, and

lim
i→∞
ρ(xi,F) = 0.
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Assume further that

{εi}
∞
i=0 ⊂ (0,∞),

∞∑
i=0

εi <∞. (1.2)

For each integer i ≥ 0, let Ti : X→ 2X \ {∅} satisfy

H(Ti(x),T (x)) ≤ εi, x ∈ X. (1.3)

Then the following two assertions hold.
1. Let δ > 0. For each x ∈ X, there exists a sequence {xi}

∞
i=0 such that x0 = x, for each

integer i ≥ 0,
xi+1 ∈ Ti(xi),

and
ρ(xi,F) ≤ δ for all sufficiently large integers i ≥ 0.

2. For each x ∈ X, there exists a sequence {xi}
∞
i=0 such that x0 = x and liminfi→∞ ρ(xi,F)=

0.

2 Proof of Theorem 1.1

Lemma 2.1. Let q ≥ 0 be an integer. Let the sequence {xi}
∞
i=q ⊂ X satisfy

xi+1 ∈ T (xi) (2.1)

for each integer i ≥ q.
Then there is a sequence {yi}

∞
i=q ⊂ X such that

yq = xq, yi+1 ∈ Ti(yi) for all integers i ≥ q, (2.2)

and for all integers j ≥ q+1,

ρ(y j, x j) ≤
j−1∑
i=q

2εi. (2.3)

Proof. We construct the sequence {yi}
∞
i=q ⊂ X by induction. Set

yq = xq. (2.4)

By (2.1) and (1.3),
ρ(xq+1,Tq(xq)) ≤ H(T (xq),Tq(xq)) ≤ εq

and there is
yq+1 ∈ Tq(yq) (2.5)

such that
ρ(xq+1,yq+1) ≤ 2εq. (2.6)

By (2.6), (2.3) holds with j = q+1.
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Assume that s ≥ q+1 is an integer and that the elements of {yi}
s
i=q ⊂ X satisfy

yi+1 ∈ Ti(yi), i = q, . . . , s−1,

yq = xq, and that (2.3) holds for j = q+1, . . . , s. (Clearly this assumption holds for s = q+1
(see (2.4)-(2.6)). By (1.3), (2.1), (1.1) and (2.3) (with j = s),

ρ(xs+1,Ts(ys)) ≤ ρ(xs+1,T (ys))+H(T (ys),Ts(ys))

≤ ρ(xs+1,T (ys))+ εs ≤ H(T (xs),T (ys))+ εs ≤ ρ(xs,ys)+ εs ≤
s−1∑
i=q

2εi+ εs.

By the above relations there is
ys+1 ∈ Ts(ys)

such that

ρ(xs+1,ys+1) <
s∑

i=q

2εi.

Clearly, the assumption we made concerning s is now seen to hold for s+1 too. Therefore
the sequence {yi}

∞
i=q has indeed been constructed by induction. Lemma 2.1 is proved. �

Proof of Assertion 1. Let x ∈ X. By (1.2) there is a natural number k0 such that

∞∑
i=k0

εi < δ/8. (2.7)

There is a sequence {xi}
k0
i=0 ⊂ X such that

x0 = x, xi+1 ∈ Ti(xi), i = 0, . . . ,k0−1. (2.8)

By the assumptions of the theorem, there is a sequence {zi}
∞
i=k0
⊂ X such that

zk0 = xk0 ,

zi+1 ∈ Ti(zi), i = k0,k0+1, . . . ,

and
lim
i→∞
ρ(zi,F) = 0. (2.9)

By Lemma 2.1, (2.7) and (2.9), there exists a sequence {xi}
∞
i=k0
⊂ X such that

xi+1 ∈ Ti(xi) for all integers i ≥ k0, (2.10)

and for all integers j ≥ k0+1,

ρ(z j, x j) ≤
j−1∑

i=k0

2εi < δ/4. (2.11)
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By (2.9) and (2.11), there is a natural number k1 > k0 such that for all integers j ≥ k1,

ρ(z j,F) ≤ δ/4.

It follows from this inequality that

ρ(x j,F) ≤ ρ(x j,z j)+ρ(z j,F) < δ/4+δ/4 < δ

for all integers j ≥ k1. Assertion 1 is proved. �
Proof of Assertion 2. Let x ∈ X. Set

S 0 = 0, x0 = x. (2.12)

Assume that q ≥ 0 is an integer and that we have already defined a strictly increasing se-
quence of nonnegative integers S i, i = 0, . . . ,q, and a sequence {xi}

S q

i=0 ⊂ X such that (2.12)
holds,

xi+1 ∈ Ti(xi) (2.13)

for all integers i satisfying 0 ≤ i < S q,

and for all integers j satisfying 1 ≤ j ≤ q,

ρ(xS j ,F) ≤ 1/ j. (2.14)

(Note that for q = 0 this assumption holds). By (1.2) there is a natural number T1 > S q +4
such that

∞∑
i=T1

εi < (4(q+1))−1. (2.15)

There is a sequence {xi}
T1
i=S q
⊂ X such that

xi+1 ∈ Ti(xi), i = S q, . . . ,T1−1. (2.16)

By the assumption of the theorem, there is a sequence {zi}
∞
i=T1
⊂ X such that

zT1 = xT1 ,

zi+1 ∈ T (zi) for all integers i ≥ T1

and
lim
i→∞
ρ(zi,F) = 0. (2.17)

By Lemma 2.1, (2.17) and (2.15), there is a sequence {yi}
∞
i=T1
⊂ X such that

yT1 = zT1 ,

yi+1 ∈ Ti(yi) for all integers i ≥ T1, (2.18)

and for all integers j > T1,

ρ(y j,z j) ≤
j−1∑

i=T1

2εi < 2
∞∑

i=T1

εi < (2(q+1))−1. (2.19)
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By (2.17) there is an integer S q+1 > T1+4 such that

ρ(zS q+1 ,F) < (4(q+1))−1. (2.20)

By (2.19),

ρ(yS q+1 ,F) ≤ ρ(yS q+1 ,zS q+1)+ρ(zS q+1 ,F) ≤ (2(q+1))−1+ (4(q+1))−1. (2.21)

For integers i = T1+1, . . . ,S q+1, set
xi = yi. (2.22)

By (2.22), (2.13), (2.16), (2.18) and (2.17),

xi+1 ∈ Ti(xi), i = 0, . . . ,S q+1−1.

By (2.21) and (2.22),
ρ(xS q+1 ,F) ≤ (q+1)−1.

Thus the assumption we made regarding q also holds for q+ 1. Therefore we have con-
structed by induction a strictly increasing sequence of nonnegative integers {S q}

∞
q=0 and a

sequence {xi}
∞
i=0 ⊂ X such that

xi+1 ∈ Ti(xi) for all integers i ≥ 0

and
ρ(xS q ,F) ≤ q−1 for all integes q ≥ 1.

This completes the proof of Assertion 2 and of Theorem 1.1 itself.
�
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équations intégrales. Fund. Math. 3 (1922), pp 133-181.

[2] F. S. de Blasi, J. Myjak, S. Reich and A. J. Zaslavski, Generic existence and approx-
imation of fixed points for nonexpansive set-valued maps. Set-Valued and Variational
Analysis 17 (2009), pp 97-112.

[3] D. Butnariu, S. Reich and A. J. Zaslavski, Convergence to fixed points of inexact
orbits of Bregman-monotone and of nonexpansive operators in Banach spaces. Fixed
Point Theory and its Applications, Yokohama Publishers, Yokohama, 2006, pp 11-32.



Convergence to Attractors 63

[4] D. Butnariu, S. Reich and A. J. Zaslavski, Asymptotic behavior of inexact orbits for
a class of operators in complete metric spaces. Journal of Applied Analysis 13 (2007),
pp 1-11.

[5] D. Butnariu, S. Reich and A. J. Zaslavski, Stable convergence theorems for infinite
products and powers of nonexpansive mappings. Numerical Func. Anal. Optim. 29
(2008), pp 304-323.

[6] S. B. Nadler, Jr., Multi-valued contraction mappings. Pacific J. Math. 30 (1969),
pp 475-488.

[7] A. M. Ostrowski, The round-off stability of iterations. Z. Angew. Math. Mech. 47
(1967), pp 77-81.

[8] E. Pustylnik, S. Reich and A. J. Zaslavski, Inexact orbits of nonexpansive mappings.
Taiwanese J. Math. 12 (2008), pp 1511-1523.

[9] S. Reich and A. J. Zaslavski, Convergence of iterates of nonexpansive set-valued
mappings. Set Valued Mappings with Applications in Nonlinear Analysis, Taylor and
Francis, London, 2002, pp 411-420.

[10] S. Reich and A. J. Zaslavski, Generic existence of fixed points for set-valued map-
pings. Set-Valued Anal. 10 (2002), pp 287-296.

[11] S. Reich and A. J. Zaslavski, Two results on fixed points of set-valued nonexpansive
mappings. Revue Roumaine Math. Pures Appl. 51 (2006), pp 89-94.

[12] S. Reich and A. J. Zaslavski, Generic aspects of fixed point theory for set-valued
mappings. Advances in Nonlinear Analysis: Theory, Methods and Applications, Cam-
bridge Scientific Publishers, Cambridge, 2009, pp 23-35.
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