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Abstract

We study the structure of approximate solutions of a discrete-time control system with
a compact metric space of states which arises in economic dynamics. We are interested
in turnpike properties of the approximate solutions which are independent of the length
of the interval, for all sufficiently large intervals and are stable under perturbations of
an objective function.
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1 Introduction

The study of the existence and the structure of solutions of optimal control problems defined
on infinite intervals and on sufficiently large intervals has recently been a rapidly growing
area of research. See, for example, [2, 6, 8, 10-15] and the references mentioned therein.
In this paper we study the structure of solutions of a discrete-time optimal control system
describing a general model of economic dynamics [3, 7, 9, 13-15].

Let (X ,ρ) be a compact metric space and Ω be a nonempty closed subset of X ×X .
A sequence {xt}∞

t=0 ⊂ X is called a program if (xt ,xt+1) ∈ Ω for all integers t ≥ 0.
A sequence {xt}T2

t=T1
⊂ X where integers T1,T2 satisfy 0 ≤ T1 < T2 is called a program if

(xt ,xt+1) ∈Ω for all integers t ∈ [T1,T2−1].
In this paper we consider the problem

T−1

∑
i=0

v(xi,xi+1)→max (P)
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s. t. {(xi,xi+1)}T−1
i=0 ⊂Ω, x0 = z1, xT = z2,

where T is a natural number, z1,z2 ∈ X and v : Ω → R1 is a bounded function. In models
of economic growth the set X is the space of states, v is a utility function and v(xt ,xt+1)
evaluates consumption at moment t. The interest in discrete-time optimal problems of type
(P) also stems from the study of various optimization problems which can be reduced to
it, e.g., tracking problems in engineering [5], the study of Frenkel-Kontorova model related
to dislocations in one-dimensional crystals [1] and the analysis of a long slender bar of
a polymeric material under tension in [6]. Optimization problems of the type (P) with
Ω = X ×X were considered in [10-12].

We are interested in a turnpike property of the approximate solutions of (P) which is
independent of the length of the interval T , for all sufficiently large intervals. To have this
property means, roughly speaking, that the approximate solutions of the optimal control
problems are determined mainly by the cost function v, and are essentially independent of
T , z1 and z2. Turnpike properties are well known in mathematical economics. The term was
first coined by Samuelson in 1948 (see [9]) where he showed that an efficient expanding
economy would spend most of the time in the vicinity of a balanced equilibrium path (also
called a von Neumann path).

In the classical turnpike theory [3, 7, 9] the space X is a compact convex subset of
a finite-dimensional Euclidean space, the set Ω is convex and the function v is strictly
concave. Under these assumptions the turnpike property can be established and the turnpike
x̄ is a unique solution of the maximization problem v(x,x) → max, (x,x) ∈ Ω. In this
situation it is shown that for each program {xt}∞

t=0 either the sequence {∑
T−1
t=0 v(xt ,xt+1)−

T v(x̄, x̄)}∞
T=1 is bounded (in this case the program {xt}∞

t=0 is called (v)-good) or it diverges
to −∞. Moreover, it is also established that any (v)-good program converges to the turnpike
x̄. In the sequel this property is called as the asymptotic turnpike property.

In [14] we showed that the turnpike property follows from the asymptotic turnpike
property. More precisely, we assumed that any (v)-good program converges to a unique
solution x̄ of the problem v(x,x)→ max, (x,x) ∈ Ω and showed that the turnpike property
holds and x̄ is the turnpike. Note that we do not use convexity (concavity) assumptions. It
should be mentioned that in [13] analogous results were established for the problem

T−1

∑
i=0

v(xi,xi+1)→max, {(xi,xi+1)}T−1
i=0 ⊂Ω, x0 = z,

where T is a natural number and z ∈ X .
In the present paper we improve the turnpike results established in [13, 14] and show

that the turnpike property is stable under perturbations of the objective function v. Note that
the stability of the turnpike property is crucial in practice. One reason is that in practice
we deal with a problem which consists a perturbation of the problem we wish to consider.
Another reason is that the computations introduce numerical errors.

Let (X ,ρ) be a compact metric space and Ω be a nonempty closed subset of X ×X .
Denote by M the set of all bounded functions u : Ω→ R1. For each w ∈M set

||w||= sup{|w(x,y)| : (x,y) ∈Ω}. (1.1)
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For each x,y ∈ X , each integer T ≥ 1 and each u ∈M set

σ(u,T,x) = sup{
T−1

∑
i=0

u(xi,xi+1) : {xi}T
i=0 is a program and x0 = x}, (1.2)

σ(u,T,x,y) = sup{
T−1

∑
i=0

u(xi,xi+1) : {xi}T
i=0 is a program and x0 = x, xT = y}, (1.3)

σ(u,T ) = sup{
T−1

∑
i=0

u(xi,xi+1) : {xi}T
i=0 is a program}. (1.4)

(Here we use the convention that the supremum of an empty set is −∞).
Assume that v ∈ M is an upper semicontinuous function. Since in [13, 14] we assume

that objective functions are defined on the set X ×X in order to apply their results we set
v(x,y) =−||v||−1 for all (x,y) ∈ (X ×X)\Ω.

We suppose that there exist x̄ ∈ X and a constant c̄ > 0 such that the following assump-
tions hold.

(A1) (x̄, x̄) is an interior point of Ω (there is ε > 0 such that {(x,y) ∈ X ×X : ρ(x, x̄),
ρ(y, x̄)≤ ε} ⊂Ω) and v is continuous at (x̄, x̄).

(A2) σ(v,T )≤ T v(x̄, x̄)+ c̄ for all integers T ≥ 1.
It is easy to see that for each natural number T and each program {xt}T

t=0

T−1

∑
t=0

v(xt ,xt+1)≤ σ(v,T )≤ T v(x̄, x̄)+ c̄. (1.5)

Inequality (1.5) implies the following result.

Proposition 1.1. For each program {xt}∞
t=0 either the sequence

{
T−1

∑
t=0

v(xt ,xt+1)−T v(x̄, x̄)}∞
T=1

is bounded or limT→∞[∑T−1
t=0 v(xt ,xt+1)−T v(x̄, x̄)] =−∞.

A program {xt}∞
t=0 is called (v)-good if the sequence

{
T−1

∑
t=0

v(xt ,xt+1)−T v(x̄, x̄)}∞
T=1

is bounded [3, 4, 12].
In this paper we suppose that the following assumption holds.
(A3) (the asymptotic turnpike property) For any (v)-good program {xt}∞

t=0,

lim
t→∞

ρ(xt , x̄) = 0.

Note that (A3) holds for many important infinite horizon optimal control problems. See,
for example, [13-15]. In particular, (A3) holds for a general model of economic dynamics.
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By (A3) ||v|| > 0. For each M > 0 denote by XM the set of all x ∈ X for which there
exists a program {xt}∞

t=0 such that x0 = x and that for all integers T ≥ 1

T−1

∑
t=0

v(xt ,xt+1)−T v(x̄, x̄)≥−M. (1.6)

Clearly ∪{XM : M ∈ (0,∞)} is the set of all x ∈ X for which there exists a (v)-good
program {xt}∞

t=0 such that x0 = x.
Let T be a natural number. Denote by YT the set of all x ∈ X for which there exists a

program {xt}T
t=0 such that x0 = x̄ and xT = x.

Denote by Card(A) the cardinality of a set A.
The following two theorems which describe the structure of approximate solutions of

our discrete-time control system are our main results.

Theorem 1.2. Let M0, M1, ε be positive numbers and let L0 be a natural number. Then there
exist δ > 0 and a natural number L∗ > L0 such that for each u ∈M satisfying ||u−v|| ≤ δ,
each integer T > L∗ and each program {xt}T

t=0 which satisfies

x0 ∈ XM0 , xT ∈ YL0 ,

T−1

∑
t=0

u(xt ,xt+1)≥ σ(u,T,x0,xT )−M1

the following inequality holds:

Card({t ∈ {0, . . . ,T} : ρ(xt , x̄) > ε})≤ L∗.

Theorem 1.3. Let M0, M1, ε be positive numbers. Then there exist δ > 0 and a natural
number L∗ such that for each u ∈M satisfying ||u− v|| ≤ δ, each integer T > L∗ and each
program {xt}T

t=0 which satisfies

x0 ∈ XM0 ,
T−1

∑
t=0

u(xt ,xT+1)≥ σ(u,T,x0)−M1

the following inequality holds:

Card({t ∈ {0, . . . ,T} : ρ(xt , x̄) > ε})≤ L∗.

Theorems 1.2 and 1.3 establish the turnpike property for approximate solutions of the
optimal control problems with an objective function u which belongs to a small neighbor-
hood of v. They extend the main results of [15] which were obtained in the case when M1
is sufficiently small and depends of M0 and ε.

Note that examples of pairs (v,Ω) for which the assumptions made in this paper hold
are presented in [15].

The paper is organized as follows. Section 2 contains auxiliary results. Theorem 1.2
and 1.3 are proved in Section 3.
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2 Auxiliary Results

By (A1) there exists r̄ ∈ (0,1) such that

{(x,y) ∈ X ×X : ρ(x, x̄), ρ(y, x̄)≤ r̄} ⊂Ω. (2.1)

Clearly, for each w ∈ M , for each x,y ∈ X satisfying ρ(x, x̄),ρ(y, x̄) ≤ r̄ and any integer
T ≥ 1, σ(w,T,x,y) is finite.

In order to prove our main results we need the following lemmas obtained in [15].

Lemma 2.1 (15, Lemma 2.4). . Let ε > 0. Then there exists δ ∈ (0, r̄) such that for each
w ∈M satisfying ||w− v|| ≤ δ, each integer T ≥ 1 and each program {xt}T

t=0 satisfying

ρ(x0, x̄), ρ(xT , x̄)≤ δ,
T−1

∑
t=0

w(xt ,xt+1)≥ σ(w,T,x0,xT )−δ

the inequality ρ(xt , x̄)≤ ε holds for all t = 0, . . . ,T .

Lemma 2.2 (15, Lemma 2.5). Let M0,M1,ε be positive numbers and let L0 be a natural
number. Then there exist a natural number L∗ > L0 + 2 and δ ∈ (0,ε) such that for each
w ∈M satisfying ||w− v|| ≤ δ, each integer T ≥ L∗, each program {xt}T

t=0 satisfying

min{ρ(xt , x̄) : t = 1, . . . ,T −1}> ε,

each z0 ∈ XM0 and each z1 ∈ YL0 there exists a program {yt}T
t=0 such that

y0 = z0, yT = z1,
T−1

∑
t=0

w(yt ,yt+1)≥
T−1

∑
t=0

w(xt ,xt+1)+M1.

3 Proof of Theorems 1.2 and 1.3

We prove Theorems 1.2 and 1.3 simultaneously. Let r̄ ∈ (0,1) satisfy (2.1). We may assume
that M0 > 2 and that

|v(x,y)− v(x̄, x̄)| ≤ 1/4 for all x,y ∈ X satisfying ρ(x, x̄),ρ(y, x̄)≤ r̄. (3.1)

By Lemma 2.1 there exists a positive number

δ1 < min{ε, r̄} (3.2)

such that the following property holds:
(P1) for each w ∈ M satisfying ||w− v|| ≤ δ1, each integer T ≥ 1 and each program

{xt}T
t=0 satisfying

ρ(x0, x̄), ρ(xT , x̄)≤ δ1,
T−1

∑
t=0

w(xt ,xt+1)≥ σ(w,T,x0,xT )−δ1

the inequality ρ(xt , x̄)≤ ε holds for all t = 0, . . . ,T .
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In the case of Theorem 1.2 the natural number L0 is given. In the case of Theorem 1.3
put L0 = 4.

By Lemma 2.2 there exist a natural number L1 > L0 + 2 and δ ∈ (0,δ1) such that the
following property holds:

(P2) for each w∈M satisfying ||w−v|| ≤ δ, each integer T ≥ L1, each program {xt}T
t=0

satisfying
min{ρ(xt , x̄) : t = 1, . . . ,T −1}> δ1,

each z0 ∈ XM0 and each z1 ∈ YL0 there exists a program {yt}T
t=0 such that

y0 = z0, yT = z1,
T−1

∑
t=0

w(yt ,yt+1)≥
T−1

∑
t=0

w(xt ,xt+1)+M1 +4.

By (2.1), the choice of r̄ and (3.1)

{z ∈ X : ρ(x, x̄)≤ r̄} ⊂ X1∩Y1 ⊂ XM0 ∩YL0 . (3.3)

Choose a natural number
L2 > 4+L1 (3.4)

and a natural number

L∗ > 8(L0 +L1 +L2 +2)+L2(2+M1δ
−1
1 ). (3.5)

Assume that u ∈M satisfies
||u− v|| ≤ δ, (3.6)

an integer T > L∗ and a program {xt}T
t=0 satisfies

x0 ∈ XM0 , xT ∈ YL0 ,

T−1

∑
t=0

u(xt ,xt+1)≥ σ(u,T,x0,xT )−M1 (3.7)

in the case of Theorem 1.2 and

x0 ∈ XM0 ,
T−1

∑
t=0

u(xt ,xt+1)≥ σ(u,T,x0)−M1 (3.8)

in the case of Theorem 1.3.
Let an integer

τ ∈ [0,T −L2]. (3.9)

We show that
min{ρ(xt , x̄) : t = τ+1, . . . ,τ+L2} ≤ δ1. (3.10)

Assume the contrary. Then

ρ(xt , x̄) > δ1, t = τ+1, . . . ,τ+L2. (3.11)
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By (3.7) and (3.8) there is an integer S1 such that

0≤ S1 ≤ τ, xS1 ∈ XM0 , (3.12)

xt 6∈ XM0 for all integers t satisfying S1 < t ≤ τ.

By (3.2), (3.3) and (3.12) for all integers t satisfying S1 < t ≤ τ

ρ(xt , x̄) > r̄ > δ1. (3.13)

We show that there is an integer S2 such that

τ+L2 ≤ S2 ≤ T, xS2 ∈ YL0 . (3.14)

In the case of Theorem 1.2 the existence of an integer S2 satisfying (3.14) follows from
(3.7). Consider the case of Theorem 1.3 and show that in this case an integer S2 satisfying
(3.14) also exists.

Assume the contrary. Then

xt 6∈ YL0 , t = τ+L2, . . . ,T

and in view of (3.2) and (3.3)

ρ(xt , x̄) > r̄ > δ1, t = τ+L2, . . . ,T.

Combined with (3.13) and (3.11) this implies that

ρ(xt , x̄) > δ1, t = S1 +1, . . . ,T. (3.15)

By (3.4), (3.9) and (3.12)
T −S1 ≥ T − τ≥ L2 > L1. (3.16)

By (3.6), (3.12), (3.15), (3.16) and (P2) there exists a program {yt}T
t=S1

such that

yS1 = xS1 , yT = x̄,
T−1

∑
t=S1

u(yt ,yt+1)≥
T−1

∑
t=S1

u(xt ,xt+1)+M1 +4. (3.17)

Put
yt = xt , t = 0, . . . ,S1.

Clearly, {yt}T
t=0 is a program and in view of (3.17) and the equation above

y0 = x0,

T−1

∑
t=0

u(yt ,yt+1)−
T−1

∑
t=0

u(xt ,xt+1) =
T−1

∑
t=S1

u(yt ,yt+1)−
T−1

∑
t=S1

u(xt ,xt+1)≥M1 +4.

This contradicts (3.8). The contradiction we have reached proves that there is an integer S2
satisfying (3.14). Thus in the case of Theorem 1.2 and in the case of Theorem 1.3 there
exists an integer S2 such that (3.14) holds.
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We may assume without loss of generality that for all integers t satisfying τ+L2 < t < S2

xt 6∈ YL0 . (3.18)

Together with (3.2) and (3.3) this implies that for all integers t satisfying τ+L2 < t < S2

ρ(xt , x̄) > r̄ > δ1. (3.19)

By (3.14), (3.12), (3.11), (3.13) and (3.19)

S2−S1 ≥ L2, xS1 ∈ XM0 , xS2 ∈ YL0 ,

ρ(xt , x̄) > δ1, t = S1 +1, . . . ,S2−1. (3.20)

By (3.4), (3.6), (3.20) and property (P2) there exists a program {yt}S2
t=S1

such that

yS1 = xS1 , yS2 = xS2 ,

S2−1

∑
t=S1

u(yt ,yt+1)≥
S2−1

∑
t=S1

u(xt ,xt+1)+M1 +4. (3.21)

Put
yt = xt for all integers t satisfying 0≤ t < S1 (3.22)

and for all integers t satisfying S2 < t ≤ T.

Clearly, {yt}T
t=0 is a program and

y0 = x0, yT = xT . (3.23)

By (3.21) and (3.22)

T−1

∑
t=0

u(yt ,yt+1)−
T−1

∑
t=0

u(xt ,xt+1) =
S2−1

∑
t=S1

u(yt ,yt+1)−
S2−1

∑
t=S1

u(xt ,xt+1)≥M1 +4.

Together with (3.23) this contradicts (3.7). The contradiction we have reached proves
(3.10).

Thus we have shown that the following property holds:
(P3) for each integer τ ∈ [0, . . . ,T −L2]

min{ρ(xt , x̄) : t = τ+1, . . . ,τ+L2} ≤ δ1.

Using (P3) by induction we construct a sequence of natural numbers {Si}q
i=1 such that

S1 ∈ [1,L2], for each integer i satisfying 1≤ i≤ q−1, (3.24)

Si+1−Si ∈ [1,L2[, 0≤ T −Sq < L2,

ρ(xSi , x̄) < δ1, i = 1, . . . ,q. (3.25)
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By (3.5) and (3.24) q≥ 6. Set

E1 = {i ∈ {1, . . . ,q−1} :
Si+1−1

∑
t=Si

u(xi,xi+1)≥ σ(u,Si+1−Si,xSi ,xSi+1)−δ1}, (3.26)

E2 = {1, . . . ,q−1}\E1. (3.27)

By (3.6), (3.25), (3.26) and (P1) for each i ∈ E1

ρ(xt , x̄)≤ ε, t = Si, . . . ,Si+1.

Together with (3.2), (3.24) and (3.27) this implies that

{t ∈ {0, . . . ,T} : ρ(xt , x̄) > ε}

⊂ {0, . . . ,S1−1}∪{t : t is an integer such that Sq < t ≤ T}

∪i∈E2{t : t is an integer such that Si < t < Si+1}.

Combined with (3.24) this implies that

Card({t ∈ {0, . . . ,T} : ρ(xt , x̄) > ε})≤ 2L2 +L2Card(E2). (3.28)

By (3.7), (3.8), (3.24), (3.26) and (3.27)

M1 ≥ σ(u,T,x0,xT )−
T−1

∑
t=0

u(xi,xi+1)

≥ ∑
i∈E2

[σ(u,Si+1−Si,xSi ,xSi+1)−
Si+1−1

∑
t=Si

u(xi,xi+1)]≥ δ1Card(E2)

and
Card(E2)≤ δ

−1
1 M1.

Together with (3.5) and (3.28) this implies that

Card({t ∈ {0, . . . ,T} : ρ(xt , x̄) > ε})≤ 2L2 +L2M1δ
−1 < L∗.

This completes the proof of Theorems 1.2 and 1.3.
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