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1 Introduction

Consider the nonlinear nth-order differential equations with multiple deviating arguments
of the form

x(n)(t)+ f (t,x(n−1)(t))+
m

∑
i=1

gi(t,x(t− τi(t))) = e(t) (1.1)

where τi, e : R → R are continuous functions and T-periodic, f , gi : R×R → R are
continuous functions and T-periodic in their first arguments, n ≥ 2 is an integer, T > 0
and i = 1,2, · · · ,m. Clearly, when n = 2 and f (t,x(t)) = f (x(t)), Eq. (1.1) reduces to
which has been known as the delayed Rayleigh equation with multiple deviating arguments.
Therefore, Eq. (1.1) is also considered as a high-order Rayleigh equation with multiple
deviating arguments.

In applied sciences, some practical problems associated with the Rayleigh equation can
be found in the literature. For example, an excess voltage of ferro-resonance known as
some kind of nonlinear resonance having long duration arises from the magnetic saturation
of inductance in an oscillating circuit of a power system, and a boosted excess voltage can
give rise to some problems in relay protection. To probe this mechanism, a mathematical
model was proposed in [1, 2], which is a special case of the Rayleigh equation with multiple
delays. This implies that Eq. (1.1) with n = 2 can represent analog voltage transmission. In
a mechanical problem, f usually represents a damping or friction term, gi (i = 1,2, · · · ,m)
represent a series of the restoring forces, e is an externally applied force and τi is the time lag
of the restoring force [3]. Some other examples in practical problems concerning physics
and engineering technique fields can be found in [4, 5].

In such applications, it is well known that periodic phenomena and anti-periodic phe-
nomena are widespread, and that the existence of anti-periodic solutions play a key role in
characterizing the behavior of nonlinear differential equations[6, 7, 8, 9]. Hence, they have
been the object of intensive analysis by numerous authors[10, 11, 12, 13, 14, 15, 16, 17, 18,
19]. The literature [20] considered the anti-periodic solutions for Eq. (1.1) with n = 2 and
m = 2, the literature [21] considered the anti-periodic solutions for Eq. (1.1) with m = 1.
They obtained some sufficient conditions for the existence and uniqueness of anti-periodic
solutions of the equation.

Inspired by the above-mentioned literatures, this paper is to establish sufficient condi-
tions for the existence and uniqueness of anti-periodic solutions of Eq. (1.1). The obtaining
results are different from those of the references listed above. As application, an example
is also given to illustrate the effectiveness of the obtaining results.

2 Preliminary results

For convenience, one introduces a continuation theorem [22] as follows.

Lemma 2.1. Let Ω be open bounded in a linear normal space X. Suppose that F is a
complete continuous field on Ω. Moreover, assume that the Leray-Schauder degree

deg{F,Ω, p} 6= 0, for p ∈ X \F(∂Ω).

Then equation F(x) = p has at least one solution in Ω.
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Definition 2.2. Let u(t) : R→ R be continuous in t. u(t) is said to be anti-periodic on R if

u(t +T ) = u(t),u
(

t +
T
2

)
=−u(t), for all t ∈ R.

For ease of exposition, throughout this paper one will adopt the following notations

Ck
T ≡ {x ∈Ck(R,R) x is T-periodic}, k ∈ {0,1,2, · · ·};

|x|q =
(Z T

0
|x(t)|qdt

)1/q

; |x(k)|∞ = max
t∈[0,T ]

|x(k)(t)|;

C
k, 1

2
T ≡

{
x ∈Ck

T , x
(

t +
T
2

)
=−x(t) for all t ∈ R

}
,

which is a linear normal space endowed with the norm ‖ · ‖ defined by

‖x‖= max
t∈[0,T ]

{|x|∞, |x′|∞, · · · , |x(k)|∞}, for all x ∈k, 1
2

T .

The following lemma will be useful for proving the main results in Section 3.

Lemma 2.3 (Wirtinger Inequality, See[23]). If x ∈C2(R,R) with x(t +T ) = x(t), then∣∣x′(t)∣∣2 ≤ T
2π

∣∣x′′(t)∣∣2 . (2.1)

3 Main results and their proof

In this section, some sufficient conditions for the existence and uniqueness of anti-periodic
solutions are established for Eq. (1.1).

First, one considers the uniqueness of anti-periodic solutions for Eq. (1.1).

Theorem 3.1. Assume that one of the following conditions is satisfied :
(C1) Suppose that there exist a nonnegative constant L1 such that for all t, x1, x2 ∈ R,

| f (t,x1)− f (t,x2)| ≤ L1|x1− x2|

holds and there exists nonnegative constants Ni such that for all t, x1, x2 ∈ R,

L1
T
2π

+ ∑
m
i=1 Ni

2
T n

(2π)n−1 < 1 and |gi(t,x1)−gi(t,x2)| ≤ Ni|x1− x2|

hold;
(C2) Suppose that there exist nonnegative a constant L2 such that for all u, x1, x2 ∈ R,

f (t,u) = f (u), L2|x1− x2|2 ≤ (x1− x2)[ f (x1)− f (x2)] (3.1)
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hold and there exists nonnegative constants Ni such that for all t, x1, x2 ∈ R,

0 ≤
m

∑
i=1

Ni <
2L2(2π)n−2

T n−1 and |gi(t,x1)−gi(t,x2)| ≤ Ni|x1− x2|, i = 1,2, · · · ,m.

hold.
Then Eq.(1.1) has at most one anti-periodic solution.

Proof. Suppose that x1(t) and x2(t) are two anti-periodic solutions of Eq. (1.1). Then
Z(t) = x1(t)− x2(t) is a anti-periodic function on R and

Z T

0
Z(t)dt =

Z T
2

0
Z(t)dt +

Z T

T
2

Z(t)dt =
Z T

2

0
Z(t)dt +

Z T
2

0
Z
(

t +
T
2

)
dt = 0.

It follows that there exists a constant ξ ∈ [0,T ] such that

Z(ξ) = 0. (3.2)

Then, one has

|Z(t)|=
∣∣∣∣Z(ξ)+

Z t

ξ

Z′(s)ds
∣∣∣∣≤ Z t

ξ

|Z′(s)|ds, t ∈ [ξ,ξ+T ],

and

|Z(t)|= |Z(t−T )|=
∣∣∣∣Z(ξ)−

Z
ξ

t−T
Z′(s)ds

∣∣∣∣≤ Z
ξ

t−T
Z′(s)ds, t ∈ [ξ,ξ+T ],

Combining the above two inequalities, one obtains

|Z|∞ = max
t∈[0,T ]

|Z(t)|= max
t∈[ξ,ξ+T ]

|Z(t)|

≤ max
t∈[ξ,ξ+T ]

{
1
2

(Z t

ξ

|Z′(s)|ds+
Z

ξ

t−T
|Z′(s)|ds

)}
≤ 1

2

Z T

0
|Z′(s)|ds ≤ 1

2

√
T
∣∣Z′∣∣2 . (3.3)

On the other hand, one has

Z(n)(t)+ f (t,x(n−1)
1 (t))− f (t,x(n−1)

2 (t))+
m

∑
i=1

[gi(t,x1(t− τi(t)))−gi(t,x2(t− τi(t)))] = 0.(3.4)

Now suppose that (C1) (or (C2)) holds. One will consider two cases as follows.
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Case (i) Suppose that (C1) holds. Multiplying both sides of (3.4) by Z(n)(t) and inte-
grating them from 0 to T , one has∣∣∣Z(n)

∣∣∣2
2

=
Z T

0

∣∣∣Z(n)(t)
∣∣∣2 dt

= −
Z T

0

[
f
(

t,x(n−1)
1 (t)

)
− f

(
t,x(n−1)

2 (t)
)]

Z(n)(t)dt

−
m

∑
i=1

Z T

0
[gi(t,x1(t− τi(t)))−gi(t,x2(t− τi(t)))]Z(n)(t)dt

≤ L1

Z T

0

∣∣∣x(n−1)
1 (t)− x(n−1)

2 (t)
∣∣∣ |Z(n)(t)|dt

+
m

∑
i=1

Ni

Z T

0

∣∣∣x(n−1)
1 (t− τi(t))− x(n−1)

2 (t− τi(t))
∣∣∣ ∣∣∣Z(n)(t)

∣∣∣dt (3.5)

From (2.1), (3.3) and the Schwarz inequality, (3.5) implies that

∣∣∣Z(n)
∣∣∣2
2

≤ L1

[Z T

0

∣∣∣x(n−1)
1 (t)− x(n−1)

2 (t)
∣∣∣2 dt

] 1
2
[Z T

0

∣∣∣Z(n)(t)
∣∣∣2 dt

] 1
2

+
m

∑
i=1

Ni|Z|∞
Z T

0
1×
∣∣∣Z(n)(t)

∣∣∣dt

≤ L1

∣∣∣Z(n−1)
∣∣∣
2

∣∣∣Z(n)
∣∣∣
2
+

m

∑
i=1

Ni|Z|∞
[Z T

0
12dt

] 1
2
[Z T

0

∣∣∣Z(n)(t)
∣∣∣2 dt

] 1
2

≤ L1

∣∣∣Z(n−1)
∣∣∣
2

∣∣∣Z(n)
∣∣∣
2
+

m

∑
i=1

Ni|Z|∞
√

T
∣∣∣Z(n)

∣∣∣
2

≤ L1
T
2π

∣∣∣Z(n)
∣∣∣2
2
+ ∑

m
i=1 Ni

2

√
T |Z′|2

√
T
∣∣∣Z(n)

∣∣∣
2

≤
[

L1
T
2π

+ ∑
m
i=1 Ni

2
T n

(2π)n−1

]∣∣∣Z(n)
∣∣∣2
2

It follows from L1
T
2π

+ ∑
m
i=1 Ni

2
T n

(2π)n−1 < 1 that

Z(n)(t)≡ 0 for all t ∈ R. (3.6)

Since Z(n−2)(0) = Z(n−2)(T ), there exists a constant ξn−1 ∈ [0,T ] such that Z(n−1)(ξn−1) =
0, in view of (3.6), one gets

Z(n−1)(t)≡ 0 for all t ∈ R. (3.7)

By using a similar argument as in the proof of (3.7), in view of (3.2), one can show

Z(t)≡ Z′(t)≡ ·· · ≡ Z(n−2)(t)≡ 0 for all t ∈ R.

Thus, x1(t)≡ x2(t), for all t ∈R. Therefore, Eq.(1.1) has at most one anti-periodic solution.
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Case (ii) Suppose that (C2) holds. Multiplying both sides of (3.4) by Z(n−1)(t) and
integrating them from 0 to T , together with (3.3), one has

L2

∣∣∣Z(n−1)
∣∣∣2
2

= L2

[Z T

0

∣∣∣x(n−1)
1 (t)− x(n−1)

2 (t)
∣∣∣2 dt

]
≤

Z T

0

[
f
(

x(n−1)
1 (t)

)
− f

(
x(n−1)

2 (t)
)](

x(n−1)
1 (t)− x(n−1)

2 (t)
)

dt

= −
Z T

0
Z(n)(t)Z(n−1)(t)dt

−
m

∑
i=1

Z T

0
[gi(t,x1(t− τi(t)))−gi(t,x2(t− τi(t)))]Z(n−1)(t)dt

= −
m

∑
i=1

Z T

0
[gi(t,x1(t− τi(t)))−gi(t,x2(t− τi(t)))]Z(n−1)(t)dt

≤
m

∑
i=1

Ni

Z T

0
|x1(t− τi(t))− x2(t− τi(t))| |Z(n−1)(t)|dt

=
m

∑
i=1

Ni|Z|∞
√

T
∣∣∣Z(n−1)

∣∣∣
2

≤ ∑
m
i=1 Ni

2
T n−1

(2π)n−2

∣∣∣Z(n−1)
∣∣∣2
2

(3.8)

By using a similar argument as in the proof of Case (i), in view of (3.2), (C2) and (3.8),
one obtains

Z(t)≡ Z′(t)≡ ·· · ≡ Z(n−2)(t)≡ 0 for all t ∈ R.

Thus, x1(t) ≡ x2(t), for all tt ∈ R. Therefore, Eq. (1.1) has at most one anti-periodic
solution. The proof of Theorem 3.1 is now complete.

Remark 3.2. If f ′(x) > L2 for all t ∈R, one can see that f (x) satisfies the assumption (3.1).

Second, one considers the existence of anti-periodic solutions for Eq. (1.1).

Theorem 3.3. Assume that for all t, x ∈ R, i = 1,2, · · · ,m,

f
(

t +
T
2

,−x
)

=− f (t,x), gi

(
t +

T
2

,−x
)

=−gi(t,x),

e
(

t +
T
2

)
=−e(t), τi

(
t +

T
2

)
= τi(t)

hold and the condition (C1) or the condition (C2) is satisfied. Then Eq. (1.1) has a unique
anti-periodic solution.

Proof. Consider the auxiliary equation of Eq. (1.1) as the following

x(n)(t) = −λ f (t,x(n−1)(t))−λ

m

∑
i=1

gi(t,x(t− τi(t)))+λe(t)

= λQ(t,x(t),x(n−1)(t)), λ ∈ (0,1]. (3.9)
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By Theorem 3.1, together with (C1) and (C2), it is easy to see that Eq. (1.1) has at most one
anti-periodic solution. Thus, to prove Theorem 3.2, it suffices to show that Eq. (1.1) has at
least one anti-periodic solution. To do this, one will apply Lemma 2.1.

First, one will claim that the set of all possible anti-periodic solutions of Eq. (3.9) is

bounded. Let x(t) ∈ C
k, 1

2
T be an arbitrary anti-periodic solution of Eq. (3.9). By using a

similar argument as that in the proof of (3.3), one has

|x|∞ ≤
1
2

√
T |x′|2 (3.10)

In view of (C1) and (C2), one considers two cases as follows.
Case (i) Suppose that (C1) holds. Multiplying both sides of Eq. (3.9) by x(n)(t) and then

integrating them from 0 to T , in view of (2.1), (3.10), (C1) and the inequality of Schwarz,
one obtains∣∣∣x(n)

∣∣∣2
2

=
Z T

0

∣∣∣x(n)
∣∣∣2 dt

= −λ

Z T

0
f
(

t,x(n−1)(t)
)

x(n)(t)dt

−λ

Z T

0

m

∑
i=1

gi(t,x(t− τi(t)))dt +λ

Z T

0
e(t)dt

≤
Z T

0

∣∣∣ f (t,x(n−1)(t)
)
− f (t,0)+ f (t,0)

∣∣∣ ∣∣∣x(n)(t)
∣∣∣dt

+
m

∑
i=1

Z T

0
|gi(t,x(t− τi(t)))−gi(t,0)+gi(t,0)|

∣∣∣x(n)(t)
∣∣∣dt

+
Z T

0
|e(t)|

∣∣∣x(n)(t)
∣∣∣dt

≤ L1|
∣∣∣x(n−1)

∣∣∣
2

∣∣∣x(n)
∣∣∣
2
+

m

∑
i=1

Ni

Z T

0
|x(t− τi(t))|

∣∣∣x(n)(t)
∣∣∣dt

+
Z T

0

[
| f (t,0)|+

m

∑
i=1

|gi(t,0)|

]∣∣∣x(n)(t)
∣∣∣dt +

Z T

0
|e(t)|

∣∣∣x(n)(t)
∣∣∣dt

≤ L1
T
2π

∣∣∣x(n)
∣∣∣2
2
+

m

∑
i=1

Ni|x|∞
√

T
∣∣∣x(n)

∣∣∣
2

+

[
max

t∈[0,T ]

{
| f (t,0)|+

m

∑
i=1

|gi(t,0)|

}
+ |e|∞

]
√

T
∣∣∣x(n)

∣∣∣
2

≤ L1
T
2π

∣∣∣x(n)
∣∣∣2
2
+ ∑

m
i=1 Ni

2

√
T |x′|2

√
T
∣∣∣x(n)

∣∣∣
2

+

[
max

t∈[0,T ]

{
| f (t,0)|+

m

∑
i=1

|gi(t,0)|

}
+ |e|∞

]
√

T
∣∣∣x(n)

∣∣∣
2

≤ L1
T
2π

∣∣∣x(n)
∣∣∣2
2
+ ∑

m
i=1 Ni

2
T n

(2π)n−1

∣∣∣x(n)
∣∣∣2
2

+

[
max

t∈[0,T ]

{
| f (t,0)|+

m

∑
i=1

|gi(t,0)|

}
+ |e|∞

]
√

T
∣∣∣x(n)

∣∣∣
2
, (3.11)
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together with (C1), which implies that there exists a positive constant D1

∣∣∣x( j)
∣∣∣
2
≤
(

T
2π

)n− j ∣∣∣x(n)
∣∣∣
2
< D1, j = 1,2, · · · ,n. (3.12)

Since x( j)(0) = x( j)(T )( j = 0,1,2, · · · ,n− 1), it follows that there exists a constant ξ j ∈
[0,T ] such that

x( j+1)(ξ j) = 0

and

∣∣∣x( j+1)(t)
∣∣∣= ∣∣∣∣x( j+1)(ξ j)+

Z t

ξ j

x( j+2)(s)ds
∣∣∣∣≤ Z T

0
x( j+2)(t)dt ≤

√
T
∣∣∣x( j+2)

∣∣∣
2
, (3.13)

where j = 0,1,2, · · · ,n−2, t ∈ [0,T ].

Together with (3.10) and (3.12), (3.13) implies that there exists a positive constant D2
such that

∣∣∣x( j)
∣∣∣
∞

≤
√

T
∣∣∣x( j+1)

∣∣∣
2
< D2, j = 0,1,2, · · · ,n−1,

which implies that, for all possible anti-periodic solutions x(t) of (3.9), there exists a con-
stant M1 such that

max
1≤ j≤n

∣∣∣x( j)
∣∣∣
∞

< M1.

Case (ii) Suppose that (C2) holds. Multiplying both sides of Eq. (3.9) by x(n)(t) and
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then integrating them from 0 to T , by (C2), (3.10) and the inequality of Schwarz, one has

L2

∣∣∣x(n−1)
∣∣∣2
2

= L2

Z T

0
x(n−1)(t)x(n−1)(t)dt

≤
Z T

0

[
f
(

x(n−1)(t)
)
− f (0)

]
x(n−1)(t)dt

= −
Z T

0

m

∑
i=1

gi(t,x(t− τi(t)))x(n−1)(t)dt

+
Z T

0
e(t)x(n−1)(t)dt−

Z T

0
f (0)x(n−1)(t)dt

≤
Z T

0

m

∑
i=1

|gi(t,x(t− τi(t)))−gi(t,0)|
∣∣∣x(n−1)(t)

∣∣∣dt

+
Z T

0
|e(t)|

∣∣∣x(n−1)(t)
∣∣∣dt +

Z T

0

[
| f (0)|+

m

∑
i=1

|gi(t,0)|

]∣∣∣x(n−1)(t)
∣∣∣dt

≤
m

∑
i=1

Ni

Z T

0
|x(t− τi(t))|

∣∣∣x(n−1)(t)
∣∣∣dt

+
Z T

0
|e(t)|

∣∣∣x(n−1)(t)
∣∣∣dt +

Z T

0

[
| f (0)|+

m

∑
i=1

|gi(t,0)|

]∣∣∣x(n−1)(t)
∣∣∣dt

≤
m

∑
i=1

Ni|x|∞
√

T
∣∣∣x(n−1)

∣∣∣
2
+

[
max

t∈[0,T ]

{
| f (0)|+

m

∑
i=1

|gi(t,0)|

}
+ |e|∞

]
√

T
∣∣∣x(n−1)

∣∣∣
2

≤ ∑
m
i=1 Ni

2
T |x′|2

∣∣∣x(n−1)
∣∣∣
2
+

[
max

t∈[0,T ]

{
| f (0)|+

m

∑
i=1

|gi(t,0)|

}
+ |e|∞

]
√

T
∣∣∣x(n−1)

∣∣∣
2

≤ ∑
m
i=1 Ni

2
T n

(2π)n−2

∣∣∣x(n−1)
∣∣∣2
2
+

[
max

t∈[0,T ]

{
| f (0)|+

m

∑
i=1

|gi(t,0)|

}
+ |e|∞

]
√

T
∣∣∣x(n−1)

∣∣∣
2

This implies that there exists a constant D2 > 0 such that

|x( j)(t)| ≤
√

T |x( j+1)|2 < D2. (3.14)

Multiplying x(n)(t) and Eq. (3.9) and integrating it from 0 to T , by (C2), (3.10), (3.11),
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(3.14) and the inequality of Schwarz, one obtains∣∣∣x(n)
∣∣∣2
2

=
Z T

0

∣∣∣x(n)(t)
∣∣∣2 dt

≤
Z T

0

m

∑
i=1

[|gi(t,x(t− τi(t)))−gi(t,0)|+ |g(t,0)|]
∣∣∣x(n)(t)

∣∣∣dt +
Z T

0
|e(t)|

∣∣∣x(n)(t)
∣∣∣dt

≤
Z T

0

m

∑
i=1

Ni|x(t− τi(t))|
∣∣∣x(n)(t)

∣∣∣dt +
Z T

0

m

∑
i=1

|gi(t,0)|
∣∣∣x(n)(t)

∣∣∣dt +
Z T

0
|e(t)|

∣∣∣x(n)(t)
∣∣∣dt

≤ ∑
m
i=1 Ni

2

√
T |x′|2

√
T
∣∣∣x(n)

∣∣∣
2
+

[
max

t∈[0,T ]

{
m

∑
i=1

|gi(t,0)|

}
+ |e|∞

]
√

T
∣∣∣x(n)

∣∣∣
2

≤ ∑
m
i=1 Ni

2
T D2

∣∣∣x(n)
∣∣∣
2
+

[
max

t∈[0,T ]

{
m

∑
i=1

|gi(t,0)|

}
+ |e|∞

]
√

T
∣∣∣x(n)

∣∣∣
2
,

it follows from (3.13) that that there exists a positive constant D1 such that∣∣∣x(n−1)(t)
∣∣∣≤√

T
∣∣∣x(n)

∣∣∣
2
< D1. (3.15)

Therefore, in view of (3.14) and (3.15), for all possible anti-periodic solutions x(t) of
(3.9), there exists a constant M1 such that

max
1≤ j≤n−1

∣∣∣x( j)
∣∣∣
∞

< M1 (3.16)

together with (3.16), which implies that

max
1≤ j≤n−1

∣∣∣x( j)
∣∣∣
∞

< M1 +M1 +1 := M. (3.17)

Set

Ω =
{

x ∈C
n−1, 1

2
T = X | max

1≤ j≤n−1

∣∣∣x( j)
∣∣∣
∞

< M
}

.

One knows that Eq. (3.9) has no anti-periodic solution on ∂Ω as λ ∈ (0,1].

Now, one considers the Fourier series expansion of a function x(t) ∈C
n−1, 1

2
T . One has

x(t) =
∞

∑
i=0

[
a2i+1 cos

2π(2i+1)t
T

+b2i+1 sin
2π(2i+1)t

T

]
.

Define a operator L : C
k, 1

2
T →C

k+1, 1
2

T by setting

(Lx)(t) =
Z t

0
x(s)ds− T

2π

∞

∑
i=0

b2i+1

2i+1

=
T
2π

∞

∑
i=0

[
a2i+1

2i+1
sin

2π(2i+1)t
T

− b2i+1

2i+1
cos

2π(2i+1)t
T

]
.
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Then

d(Lx)(t)
dt

= x(t),

and

|(Lx)(t)| ≤
Z T

0
|x(s)|ds+

T
2π

∞

∑
i=0

|b2i+1|
2i+1

≤ T‖T‖+
T
2π

(
∞

∑
i=0

b2
2i+1

) 1
2 ( 1

(2i+1)2

) 1
2

.

In view of [
1

(2i+1)2

] 1
2

=
π

2
√

2
,

and the Parseval equalityZ T

0
|x(s)|2ds =

T
2

∞

∑
i=0

(a2
2i+1 +b2

2i+1),

one obtains

|(Lx)(t)| ≤ T‖x‖+
T

4
√

2

(
∞

∑
i=0

(a2
2i+1 +b2

2i+1)

) 1
2

≤ T‖x‖+
T

4
√

2

(
2
T

Z T

0
|x(s)|2ds

) 1
2

≤
(

T +
T
4

)
‖x‖, ∀ t ∈ [0,T ].

Thus, |(Lx)(t)| ≤
(
T + T

4

)
‖x‖ and the operator L is continuous.

For all t ∈C
n−1, 1

2
T , from (C1), one gets

Q1

(
t +

T
2

,x
(

t +
T
2

)
,x(n−1)

(
t +

T
2

))
=−Q1

(
t,x(t),x(n−1)(t)

)
.

Therefore, Q1 (t,x(t),x′(t)) ∈C
0, 1

2
T . Define a operator Fµ : Ω →C

n, 1
2

T ⊂ X by setting

Fµ(x) = µL(· · ·L(L(Q1(x)))) = µLn(Q1(x)),µ ∈ [0,1].

It is easy to see from the Arzela-Ascoli Lemma that Fµ is a compact homotopy, and the fixed
point of F1 on Ω is the anti-periodic solution of Eq. (1.1). Define the homotopic continuous
field as follows

Hµ(x) : Ω× [0,1]→C
n−1, 1

2
T , Hµ(x) = x−Fµ(x).
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Together with (3.17), one has

Hµ(∂Ω) 6= 0, µ ∈ [0,1].

Hence, using the homotopy invariance theorem, we obtain

deg{x−F1x,Ω,0}= deg{x,Ω,0} 6= 0.

By now one knows that satisfies all the requirement in Lemma 2.1, and then x−F1x = 0
has at least one solution in the Ω, i.e., F1 has a fixed point on Ω. So, one has proved that Eq.
(1.1) has a unique anti-periodic solution. This completes the proof of Theorem 3.3.

4 Example

In this section, one gives an example to demonstrate the results obtained in previous sec-
tions.

Example 4.1. Let g1(t,x) = g2(t,x) = (1+ cos4(t)) 1
12π

cosx. Then the Rayleigh equation

x(3)(t)+
1
8

x′′(t)+
1
8

e−|cos t| cosx′′(t)

+g1(t,x(t− cos2 t))+g2(t,x(t− sin2 t)) =
1

6π
sin t, (4.1)

has a unique anti-periodic solution with period 2π.

Proof. One has f (t,x) = 1
8 x(t)+ 1

8 e−|cos t| cosx(t), then

| f (t,x1)− f (t,x2)| ≤
1
4
|x1− x2|, for all t,x1,x2 ∈ R.

Thus, N1 = N2 = 1
6π

, L1 = 1
4 , τ1(t) = cos2 t, τ2(t) = sin2 t and e(t) = 1

6π
sin t. It is obvious

that the assumptions (C1) holds. Therefore, in view of Theorem 3.3, Eq.(4.1) has a unique
anti-periodic solution with period 2π.
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