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Abstract

In this paper we establish the existence of solutions of infinite horizon optimal control
problems with time-dependent and non-concave objective functions. We also consider
an application of this problems to a forest management problem.

AMS Subject Classification: 49J99.

Keywords: Compact metric space, infinite horizon, overtaking optimal program.

1 Introduction and the main result

The study of the existence and the structure of solutions of optimal control problems defined
on infinite intervals and on sufficiently large intervals has recently been a rapidly growing
area of research. See, for example, [5-9, 12, 13, 36] and the references mentioned therein.
These problems arise in engineering [1, 17], in models of economic growth [2, 3, 10, 11,
14, 15, 19, 21, 22, 24-30, 36], in infinite discrete models of solid-state physics related
to dislocations in one-dimensional crystals [4, 31] and in the theory of thermodynamical
equilibrium for materials [18, 20]. In this paper we study a general class of discrete-time
optimal control problems which applications in a forest management problem studied in
[10, 24-29].

Let (∆,ρ) be a compact metric space and Ω be a nonempty closed subset of ∆×∆.
A sequence {xt}∞

t=0 is called a program if (xt ,xt+1) ∈Ω for all t = 0,1, . . .

Let integers T1,T2 satisfy 0 ≤ T1 < T2. A sequence {xt}T1
t=T1

is called a program if
(xt ,xt+1) ∈Ω for all integers t satisfying T1 ≤ t < T2.

For each integer t ≥ 0 let wt : Ω→ R1 be a bounded upper semicontinuous function.
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For each pair of integers T1,T2 satisfying 0 ≤ T1 < T2 and each y,z ∈ ∆ we consider the
optimization problems

T2−1

∑
i=T1

wi(xi,xi+1)→min,

{xi}T2
i=T1

⊂ ∆, xT1 = y, xT2 = z

and
T2−1

∑
i=T1

wi(xi,xi+1)→min,

{xi}T2
i=T1

⊂ K, xT1 = y.

The interest in discrete-time optimal problems of these types stems from the study of
various optimization problems which can be reduced to it, e.g., continuous-time control
systems which are represented by ordinary differential equations whose cost integrand con-
tains a discounting factor [9], tracking problems in engineering [17], the study of Frenkel-
Kontorova model related to dislocations in one-dimensional crystals [4, 31], the analysis of
a long slender bar of a polymeric material under tension in [18, 20] and models of economic
growth [3, 10, 12, 14, 15, 24-30]. See also [16, 32-35] where these problems were studied
with Ω = ∆×∆.

In this paper we suppose that the following assumptions hold.
(A1)

lim
t→∞

sup{|wt(z)| : z ∈Ω}= 0.

(A2) There exists a natural number L̄ such that for each y,z ∈ ∆ there is a program
{xt}L̄

t=0 such that x0 = y and xL̄ = z.
Note that in [16, 32-35] it was studied the case where L̄ = 1.
For each y ∈ ∆ and each natural number T put

U(y,T ) = sup{
T−1

∑
t=0

wt(xt ,xtt+1) : {xt}T
t=0 is a program and x0 = y}. (1.1)

By the upper semicontinuity of the functions wt , t = 0,1, . . . the following proposition
holds.

Proposition 1.1. For each y ∈ ∆ and each natural number T there is a program {x(y,T )
t }T

t=0
such that

x(y,T )
0 = y,

T−1

∑
t=0

wt(x
(y,T )
t ,x(y,T )

t+1 ) = U(y,T ). (1.2)

In the sequel for each y ∈ ∆ and each natural number T let {x(y,T )
t }T

t=0 be a program
satisfying (1.2).

In this paper we prove the following result.



68 A. J. Zaslavski

Theorem 1.2. For any y ∈ ∆ there exists a program {x(y)
t }∞

t=0 such that x(y)
0 = y and the

following property holds:
For each ε > 0 there exists a natural number τ such that for each y∈ ∆ and each integer

T ≥ τ,

|
T−1

∑
t=0

wt(x
(y)
t ,x(y)

t+1)−U(y,T )| ≤ ε.

The next corollary easily follows from Theorem 1.2.

Corollary 1.3. Let y ∈ ∆. Than for any program {xt}∞
t=0 satisfying x0 = y,

limsup
T→∞

T−1

∑
t=0

[wt(xt ,xt+1)−wt(x
(y)
t ,x(y)

t+1)]≤ 0.

Note that the program {xt}∞
t=0 which exists by Corollary 1.3 is called in the literature as

an overtaking optimal program [3, 9, 11, 30, 36].
Example. Let w : Ω → [0,∞) be a bounded upper semicontinuous function, {ρt}∞

t=0 ⊂
(0,1) satisfy

lim
t→∞

ρt = 0 (1.3)

and let wt = ρtw, t = 0,1, . . . . Then Assumption (A1) holds. In the literature it is also
considered an optimality criterion with ρt = αt , t = 0,1, . . . where α∈ (0,1). In this case for
any program {xt}∞

t=0, ∑
∞
t=0 αtw(xt ,xt+1) < ∞. This convergence does not hold in the general

case with {ρt}∞
t=0 ⊂ (0,1) satisfying (1.3). Therefore in the general case the existence

problem of an overtaking optimal program is more difficult and less understood.
The paper is organized as follows. Section 2 contains auxiliary results. Theorem 1.2 is

proved in Section 3. The forest management problem is discussed is Section 4.

2 An auxiliary result

For any integer t ≥ 0 set
||wt ||= sup{|wt(z)| : z ∈Ω}. (2.1)

Lemma 2.1. Let ε > 0. Then there exists a natural number τ such that for each y ∈ ∆ and
each pair of integers T1 ≥ τ and T2 ≥ τ+ L̄,

T1−1

∑
t=0

wt(x
(y,T2)
t ,x(y,T2)

t+1 )≥U(y,T1)− ε.

Proof. By (A1) and (2.1) there exists a natural number τ such that

||wt || ≤ ε(4L̄)−1 for all integers t ≥ τ. (2.2)

Assume that y ∈ ∆ and that integers

T1 ≥ τ, T2 ≥ T1 + L̄. (2.3)
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In view of (A2) there exists a program {xt}T1+L̄
t=T1

such that

xT1 = x(y,T1)
T1

, xT1+L̄ = x(y,T2)
T1+L̄ . (2.4)

Put
xt = x(y,T1)

t , t = 0, . . . ,T1−1, (2.5)

xt = x(y,T2)
t for all integers t satisfying T1 + L̄ < t ≤ T2.

Clearly, {xt}T2
t=0 is a program and

x(0) = y. (2.6)

By (2.6), (1.2), (1.1), (2.3), (2.1) and (2.2),

0≤
T2−1

∑
t=0

wt(x
(y,T2)
t ,x(y,T2)

t+1 )−
T2−1

∑
t=0

wt(xt ,xt+1)

=
T1+L̄−1

∑
t=0

wt(x
(y,T2)
t ,x(y,T2)

t+1 )−
T1+L̄−1

∑
t=0

wt(xt ,xt+1)

≤
T1−1

∑
t=0

wt(x
(y,T2)
t ,x(y,T2)

t+1 )−
T1−1

∑
t=0

wt(x
(y,T1)
t ,x(y,T1)

t+1 )+2
T1+L̄−1

∑
t=T1

||wt ||

≤
T1−1

∑
t=0

wt(x
(y,T2)
t ,x(y,T2)

t+1 )−U(y,T1)+2L̄(ε(4L̄)−1)

and
T1−1

∑
t=0

wt(x
(y,T2)
t ,x(y,T1)

t+1 )≥U(y,T1)− ε.

Lemma 2.1 is proved.

3 Proof of Theorem 1.2

Let y ∈ ∆. Using the diagonalization process and the compactness of ∆ we obtain a strictly
increasing sequence of natural numbers {Tk}∞

k=1 such that for any integer t ≥ 0 there exists

x(y)
t = lim

k→∞

x(y,Tk)
t . (3.1)

Clearly, {xy
t }∞

t=0 is a program for all y ∈ ∆.
Let ε > 0 and let a natural number τ be as guaranteed by Lemma 2.1. Assume that an

integer T ≥ τ and y ∈ ∆. Then for all sufficiently large natural numbers k

T−1

∑
t=0

wt(x
(y,Tk)
t ,x(y,Tk)

t+1 )≥U(y,T )− ε.

By the inequality above, (3.1) and upper semicontinuity of the functions wt , t = 0,1, . . . ,

T−1

∑
t=0

wt(x
(y)
t ,x(y)

t+1)≥U(y,T )− ε.

Theorem 1.2 is proved.
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4 The forest management problem

We consider a discrete time model for the optimal management of a forest of total area
S occupied by k species I = {1, . . . ,k} with maturity ages of n1, . . . ,nk years respectively.
This model was studied in [10, 24-28]. Mitra and Wan [24, 25] studied the problem of
the optimal harvesting of a multi-aged single species forest. The optimal management of
a one-species forest was also studied by Rapaport, Sraidi and Terreaux [28] using a model
where only mature trees older than a certain age may be harvested, addressing some of the
effects of delay in the management of natural resources. In [10, 27] and here it is studied
the optimal harvesting of a mixed forest composed of multiple species, each one having a
different maturity age, where only mature trees can be harvested.

For each period t = 0,1, . . . we denote x j
i (t) ≥ 0 the area covered by trees of species i

that are j years old with j = 1, . . . ,ni and x̄i(t) ≥ 0 the area occupied by over-mature trees
(older than ni). We must decide how much land ui(t) ≥ 0 to harvest and how to reallocate
this land to new seedlings.

Assuming that only mature trees can be harvested we must have

ui(t)≤ x̄i(t)+ xni
i (t), (4.1)

and then the area not harvested in that period will comprise the over-mature trees at the next
step, namely

x̄t(t +1) = x̄i(t)+ xni
i (t)−ui(t). (4.2)

The fact that immature trees cannot be harvested is represented by

x j+1
i (t +1) = x j

i (t), j = 1, . . . ,ni−1. (4.3)

The total harvested area ∑i∈I ui(t) is allocated to new seedlings which is expressed by
the equation

∑
i∈I

x1
i (t +1) = ∑

i∈I
ui(t). (4.4)

In the sequel we use the notation

xni+1
i = x̄i, i ∈ I. (4.5)

A representation of the forest in terms of the age distribution at time t is provided by the
state x(t) = (x1(t), . . . ,xk(t)) where xi(t) = (x1

i (t), . . . ,x
ni
i (t),xni+1

i (t)) describes the areas
occupied in year t by trees of species i with ages 1,2, . . . ,ni and over ni. The first and last
components of each vector xi(t) are controlled by the sowing and harvesting policies. Note
that we do not control x(0) which corresponds to the initial state reflecting the age class
composition of the forest at time t = 0.

Let Rm
+ = {x = (x1, . . . ,xm) ∈ Rm : xi ≥ 0, i = 1, . . . ,m}.

Let N = ∑i∈I(ni + 1). Every vector x ∈ RN is represented as x = (x1, . . . ,xk), where
xi = (x1

i , . . . ,x
ni
i ,xni+1

i ) ∈ Rni+1 for all integers i = 1, . . . ,k.
Denote by ∆ the set of all x ∈ RN

+ such that

∑
i∈I

[
ni+1

∑
j=1

x j
i ] = S. (4.6)
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Now we give a formal description of the model.
A sequence {x(t)}∞

t=0 ⊂ ∆ is called a program if for all integers t ≥ 0 and all i ∈ I
(4.1)-(4.4) hold (see (4.5)) with some u(t) = (u1(t), . . . ,uk(t)) ∈ Rk

+.
Let integers T1,T2 satisfy 0 ≤ T1 < T2. A sequence {x(t)}T2

t=T1
is called a program if

(4.1)-(4.4) hold for all i ∈ I and for all integers t = T1, . . . ,T2 − 1 (see (4.5)) with some
u(t) = (u1(t), . . . ,uk(t)) ∈ Rk

+.
An alternative equivalent definition of a program can be give with the help of the tran-

sition possibility. Put

Ω = {(x,y) ∈ ∆×∆ : y j+1
i = x j

i for all i ∈ I and all j = 1, . . . ,ni−1

and for all i ∈ I, xni+1
i + xni

i − yni+1
i ≥ 0}. (4.7)

Clearly, if (x,y) ∈Ω, then

∑
i∈I

y1
i = ∑

i∈I
(xn(i)+1

i + xni
i − yn(i)+1

i ). (4.8)

It is easy to see that a sequence {x(t)}∞
t=0 is a program if and only if (x(t),x(t +1)) ∈Ω for

all integers t ≥ 0.
Let integers T1,T2 satisfy 0 ≤ T1 < T2. It is easy to see that a sequence {x(t)}T2

t=T1
⊂ ∆

is a program if and only if (x(t),x(t +1)) ∈Ω for all t = T1, . . . ,T2−1.
For each (x,y) ∈Ω put

U(x,y) = (u1(x,y), . . . ,uk(x,y)),

where for i = 1, . . . ,k,
ui(x,y) = xni+1

i + xni
i − yni+1

i .

Put

∆0 = {u ∈ Rk
+ :

k

∑
i=1

ui ≤ S}.

In the present paper we assume that a benefit at moment t = 0,1, . . . is represented by
an upper semicontinuous function wt : ∆0 → R1 and at a moment t = 0,1, . . . , wt(U(x,y))
is the benefit obtained today if the forest today is x and the forest tomorrow is y, where
(x,y) ∈Ω.

Remark. Note that usually in the literature it is assumed that for t = 0,1, . . . ,

wt(U(x,y)) = α
t

k

∑
i=1

W (i)(ui(x,y)), (x,y) ∈Ω

where W i : [0,∞) → R1, i = 1, . . . ,k are strictly concave, smooth and increasing functions
and α ∈ (0,1) [10].

Clearly, ∆ is a compact set in RN , Ω is a closed subset of ∆×∆ and wt ◦U : Ω → R1 is
an upper semicontinuous function for all integers t ≥ 0. Put

n̄ = max{ni : i ∈ I}. (4.9)

It is known that for our model (A2) holds [23]. For the reader’s convenience we prove
here the following result.
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Proposition 4.1. Let x,y ∈ ∆. Then there exists a program {x(t)}N+n̄+1
t=0 such that x(0) = x

and x(N ++n̄+1) = y.

Proof. Put x(0) = x. For all integers t = 0, . . . ,N−1 define

x j+1
i (t +1) = x j

i (t), i ∈ I, j = 1, . . . ,ni−1, (4.10)

x1
i (t +1) = 0, i ∈ I,

xni+1
i (t +1) = xni+1

i (t)+ xni
i (t), i ∈ I.

It is easy to see that x(t) ∈ ∆ for all t = 0, . . . ,N, {x(t)}N
t=0 is a program and

x j
i (N) = 0, i ∈ I, j = 1, . . . ,ni,

∑
i∈I

xni+1
i (N) = S. (4.11)

For each s = 1, . . . , n̄ put
Is = {i ∈ I : ni = s} (4.12)

(Note that for some integers s we can have Is = /0.)
We assume that sum over empty set is zero.
Define x(N +1) ∈ ∆ as follows. Set

x1
i (N +1) = yni+1

i , i ∈ In̄, (4.13)

x1
i (N +1) = 0, i ∈ I \ In̄.

For i ∈ I and all integers j satisfying 1 < j ≤ ni set

x j
i (N +1) = 0. (4.14)

Clearly, there exist
ui ∈ [0,xni+1

i (N)], i ∈ I (4.15)

such that
∑
i∈I

ui = ∑
i∈In̄

x1
i (N +1). (4.16)

Put
xni+1

i (N +1) = xni+1
i (N)−ui, i ∈ I. (4.17)

By (4.13)-(4.17), x(N +1) ∈ ∆ and

(x(N),x(N +1)) ∈Ω.

Assume that q is an integer, 1 ≤ q < n̄ and we have defined a program {x(t)}N+q
t=0 such

that the following properties hold:
(P1) If an integer

i ∈ ∪{Is : an integer s satisfies 1≤ s≤ n̄−q},

then x j
i (N +q) = 0 for all integers j satisfying 1≤ j ≤ ni;
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(P2) If an integer s satisfies n̄≥ s > n̄−q and i ∈ Is, then

xp
i (N +q) = yni+1+p−(q+s−n̄)

i , p = 1, . . . ,q+ s− n̄, (4.18)

xp
i (N +q) = 0 for all integers p satisfying q+ s− n̄ < p≤ ni. (4.19)

(Note that for q = 1 our assumptions holds.)
Define x(N +q+1) ∈ ∆ as follows. Let i ∈ I. If i ∈ Is, where 1≤ s≤ n̄−q−1, then set

x j
i (N +q+1) = 0 for all integers j satisfying 1≤ j ≤ ni. (4.20)

If i ∈ In̄−q, then set
x1

i (N +q+1) = yni+1, xp
i (N +q+1) = 0 (4.21)

for all integers p satisfying 1 < p≤ ni.
If i ∈ Is, where n̄≥ s > n̄−q, then set (see (4.18))

xp+1
i (N +q+1) = xp

i (N +q) = yni+1+p−(q+s−n̄)
i , p = 1, . . . ,q+ s− n̄, (4.22)

x1
i (N +q+1) = yni+1−(q+s−n̄)

i , (4.23)

xp
i (N +q+1) = 0 for all integers p satisfying q+1+ s− n̄ < p≤ ni. (4.24)

It is not difficult to see that

∑
i∈I

x1
i (N +q+1)≤∑

i∈I
xni+1(N +q) (4.25)

Therefore there exists

xni+1(N +q+1) ∈ [0,xni+1(N +q)], i ∈ I. (4.26)

such that
∑
i∈I

[xni+1
i (N +q)− xni+1

i (N +q+1)] = ∑
i∈I

x1
i (N +q+1). (4.27)

Clearly,
x(N +q+1) ∈ ∆, (x(N +q),x(N +q+1)) ∈Ω

and the assumption made for q holds also for q+1. Thus by induction we have constructed
a program {x(t)}N+n̄

t=0 such that (P1) and (P2) hold for all q = 1, . . . , n̄.
Consider the state x(N + n̄). Let i ∈ Is where 1≤ s≤ n̄. By (P1) and (P2),

xp
i (N + n̄) = yp+1

i , p = 1, . . . ,ni. (4.28)

Put
x(N + n̄+1) = y. (4.29)

By (4.28) and (4.29),
x(N + n̄),x(N + n̄+1)) ∈Ω.

Proposition 4.1 is proved.
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Assume that
sup{|wt(z)| : z ∈ ∆0}→ 0 as t → ∞.

It is easy now to see that we can apply the results of Section 1 to our model.
For each z ∈ ∆ and each natural number T put

U(z,T ) = sup{
T−1

∑
t=0

wt(U(x(t),x(t +1))) : {x(t)}T
t=0 is a program and x(0) = z}.

Then Theorem 1.2 and Corollary 1.3 imply the following results.

Theorem 4.2. For any y ∈ ∆ there exists a program {x(y)(t)}∞
t=0 such that x(y)(0) = y and

the following property holds:
For each ε > 0 there exists a natural number τ such that for each y∈ ∆ and each integer

T ≥ τ,

|
T−1

∑
t=0

wt(U(x(y)(t),x(y)(t +1))−U(y,T )| ≤ ε.

Corollary 4.3. Let y ∈ ∆. Than for any program {x(t)}∞
t=0 satisfying x(0) = y,

limsup
T→∞

T−1

∑
t=0

[wt(U(x(t),x(t +1)))−wt(x(y)(t),x(y)(t +1))]≤ 0.

Theorem 4.2 generalizes to the case of non-concave benefit function the existence the-
orem presented in [27]. Note that an analog of Theorem 4.2 for the Robinson-Solow-
Srinivasan model was established in [15].
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