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§1. In this note we examine some questions about closed geodesics on the modular surface
X which are suggested by the spectacular pictures from Ghys’ talk [G] as well as his paper
with Leys [G-L]. The discussion below follows closely my letter to Mozzochi [Sa1] and as is
done there we will only outline the proofs of the main results. Detailed proofs of the delicate
estimates that are needed will appear in Mozzochi’s article [Mo].

First we review the results from [G]. He shows that the non-compact 3-dimensional ho-
mogeneous quotient space Y = SL2(R)/SL2(Z) is homeomorphic to the 3-sphere S3 with the
trefoil knot τ removed. Y carries a number of flows and corresponding non-vanishing vector
fields and in particular the diagonal flow Gt, for t ∈ R,

Gt(y SL2(Z)) =

(

et/2 0
0 e−t/2

)

y SL2(Z) . (1)

This flow corresponds to the geodesic flow on the modular surface X=H/Γ with Γ=PSL2(Z)
and the primitive (i.e. once around) closed orbits of Gt correspond to oriented primitive (or
“prime”) closed geodesics on X. Such a periodic orbit of Gt yields a knot in S3 − τ . It is
known that these primitive closed orbits correspond to primitive hyperbolic conjugacy classes
{A}Γ of elements A in Γ (see [He]). A is primitive if it is not a nontrivial power of an element
B in Γ and A is hyperbolic means that |trace (A)| = t(A) > 2. In this way to each such
{A}Γ we get a knot kA in S3 − τ .

Figure 1 is taken from [G-L]. It depicts six knots corresponding to the A’s indicated and
how these wind around the trefoil. The question raised in [G] is to understand the function
which takes {A}Γ to kA. For example, which knots kA arise in this way and how do the linking
numbers of kA with τ vary with A? Ghys establishes some very interesting things about these
knots. Firstly, that the set of such knots, dubbed “modular knots”, coincides with the set of
“Lorenz knots”. The latter are the knots which are primitive periodic orbits of the non-linear
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Lorenz flow in R
3 (see [G-L] for definitions and pictures). Birman and Williams [B-W] give

an in depth study of Lorenz knots and while characterizing them appears to be difficult,
they establish a number of properties that these knots satisfy. Secondly, Ghys shows that if
link(kA, τ ) is the usual linking number of these knots in R

3 (see [G-L] for a friendly definition)

Figure 1: The orange knot is the trefoil the other knot is kA for A as indicated.



Linking Numbers of Modular Knots 138

then link(kA, τ ) = ψ(A) where ψ : Γ → Z is the Rademacher function (see [R-G] page 54
for a definition and for various of its properties). Since ψ(A) is easily calculated once A is

expressed as a product of U =

[

0 1
−1 0

]

and V =

[

1 −1
1 0

]

this allows one to compute

link(kA, τ ) quickly. The first homology Γ/[Γ,Γ] of Γ is finite and hence there are no non-
trivial morphisms f : Γ → Z. There are however quasimorphisms, that is f ’s satisfying
|f(xy) − f(x) − f(y)| ≤ cf for some cf < ∞ and ψ is such a function. It behaves like a
morphism in a number of respects. The third point that is relevant for us that Ghys notes is
that kA is the trivial knot iff {A}Γ is of the form {(UV )a(UV −1)b}Γ for some a, b ≥ 1.

Denote by Π the set of prime closed geodesics on X or as we have noted what is the
same, the set of primitive hyperbolic conjugacy classes in Γ. If {A}Γ is such a class then A

is conjugate in SL2(R) to ±
[

λ 0
0 λ−1

]

with λ > 1. Let N(A) := λ2, then the length `(A)

of the corresponding closed geodesic, or the period of the corresponding periodic orbit of the

geodesic flow, is logN(A). In terms of t(A), N(A) =

(

t(A)+
√
t(a)2−4

2

)2

. In what follows we

order the elements of Π according to their length. This is what is done in Figure 1 where the
size of A is compared with the complexity of the knot kA. The trefoil τ corresponds to the
cusp at infinity of Y and we will see that this is the source of the linking of kA with τ being
singularly large. Using hyperbolic geometry it follows from the definition of ψ that

|ψ(A)| � e`(A)/2 ∼ t(A) , (2)

and this bound is sharp (for example take A = (UV )m(UV −1)). That ψ(A) can be as large as
indicated in (2) should be compared to what happens if we order the elements of Γ by word
length `w relative to some generators (see [C] chapter 2 for a discussion). With respect to `w
the cusp plays no special role and

|ψ(A)| � `w(A) . (3)

Our goal is to count prime geodesics which satisfy various conditions. For the full count
set for y ≥ 1,

π(y) = |{C ∈ Π : `(C) ≤ y}| . (4)

The prime geodesic theorem for X in its strongest presently known form [S-Y] asserts that

π(y) = Li(ey) + O(eαy) (5)

for any fixed α > 25
36

.
Here Li is the familiar logarithmic integral from the theory of prime numbers

Li (x) =

x
∫

2

dt

log t
∼ x

log x
as x→ ∞ . (6)
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We will also need the following variation on Li. For n ∈ Z and x ≥ 2 set

Li(x;n) =

x
∫

2

log t

(log t)2 +
(

πn
3

)2 dt (7)

As in the theory of prime numbers in progressions, Chebotarev’s theorem, their generalizations
and analogues for prime geodesics [Sa2], we define the counting function corresponding to a
given linking number n ∈ Z by

π(y;n) := |{C ∈ Π : `(C) ≤ y, link(kc, τ ) = n}| . (8)

According to (2), π(y;n) = 0 if |n| � ey/2. Our main result is

Theorem 1. For y ≥ 1, n ∈ Z

∑

`(C)≤ y

link (kc,τ) =n

`(C) =
1

3
Li (ey;n) + O(e3y/4) .

Besides identifying the main term a key point in Theorem 1 is the uniformity in n (the implied
constant is absolute) and in particular the main term is dominant for |n| as large as ey/8. As
an immediate consequence we have:

Corollary 2. For n fixed as y → ∞

π(y;n) ∼ π(y)

3y



1 +
2
(

1 −
(

πn
3

)2
)

y3
+ O(y−3)



 ,

or in terms of t(A)
∑

{A}Γ∈P

t(A) ≤x
link(kA,τ) =n

1 ∼ x2

12(log x)2
, as x → ∞ .

Thus, to leading order the number of prime geodesics with a given linking number is
independent of n. However, the next order term ensures that π(y;n) > π(y;m), if |n| < |m|
and y is large. Hence the most common linking number is 0. Among these elements of Π
with link(kc, τ ) = 0 are the reciprocal geodesics (see [Sa3] for a discussion and the relation to
elements of order 4 in Gauss’ composition group) which are the fixed points of the involution
r of Π given by {A}Γ → {A−1}Γ. As shown in [Sa3] the number of reciprocal geodesics whose
length is at most y is asymptotically 3/4 yey/2, so these constitute roughly square root of the

number of geodesics with zero linking number.
With the strong uniformity in Theorem 1 we determine the distribution of the numbers link(kA, τ)

by summing over n with |n| � y. The normal order of link(kA, τ) turns out to be `(A) and the

corresponding distribution a Cauchy distribution.
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Theorem 3. For −∞ ≤ a ≤ b ≤ ∞, as y → ∞

|{C ∈ Π : `(C) ≤ y, a ≤ link(kc,τ )
`(C) ≤ b}|

π(y)
→ arctan

(

πb
3

)

− arctan
(

πa
3

)

π
.

The analogues of Corollary 2 and Theorem 3 are known in the setting of compact hyperbolic
surfaces H/Γ and where in place of ψ we have a morphism Φ : Γ → Z (see [A-S], [P-S], [Sh], [P-R1]).

In that case, we are counting the winding numbers of closed geodesics in homology classes. The
notable differences in this compact morphism case are that Φ(C) � `(C), π(y; n) ∼ c(Φ)π(y)/

√
y as

y → ∞, the normal order of Φ(C) is
√

`(C) and the corresponding limiting distribution is Gaussian.

If H/Γ is a non-compact but finite area hyperbolic surface and Φ a morphism of Γ to Z then the
analogue of Corollary 2 is proven in [E]. If Φ is “noncuspidal” then the normal order of Φ is much
larger due to the winding around the cusp. According to Theorem 1, Corollary 2 and Theorem

3 this effect persists for our quasi-morphism ψ. The non-local Cauchy distribution in Theorem 3
has appeared before in related contexts. In [V] it came up in connection with questions about the

distribution of Dedekind sums while in [Gu-L] it appears in connection with the winding in homology
of a generic (in measure) geodesic on the unit tangent bundle of a non-compact hyperbolic surface

and in [F] in a similar analysis of the winding about τ of a generic orbit of Gt in Y . On the other
hand, in the recent book ([C] Chapter 6) it is shown that when ones orders the values of a quite

general integer valued quasimorphism (including our ψ!) by word length `w, the normal order is
√

`w(B) for B in the corresponding group and the limiting distribution is Gaussian. Thus ordering

combinationally by word length removes the singular behavior associated with the cusp (see also
[Ri] and [P-R2] for the case of morphisms and conjugacy classes).

We impose further conditions on our counting of prime geodesics. Fix a knot κ in S3 and set

π(y; κ) = |{C ∈ Π : kc = κ, `(C) ≤ y}| (9)

and
π(y; κ, n) = |{C ∈ Π : kc = κ, link(kc, τ) = n, `(C) ≤ y}| . (10)

As noted before it appears difficult to characterize the κ’s for which π(y; κ) 6= 0 for some y

however once κ is known to appear then the asymptotics in (9) is more approachable. For example,
if κ0 is the trivial knot then using the third of Ghys’ results mentioned earlier, the following is

deduced using elementary number theoretic arguments.

Proposition 4.

(i) π(y; κ0) ∼ y
2 e

y/2 as y → ∞.

(ii) π(y; κ0, n) ∼ ey/4 for n fixed as y → ∞.

(iii) The normal order of link(kA, τ) when {A} is conditioned to have kA = κ0 is exponential in

`(A) with exponent ranging in [1/4, 1/2] and it has the following limit distribution: For I a

subinterval of R

|{C ∈ Π : `(C) ≤ y, kc = κ0,
log+ link(kc,κ0)

2y ∈ I}|
π(y; κ0)

→ λ(I ∩ I0), as y → ∞
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where λ is Lebesgue measure, I0 = [−1,−1
2 ] ∪ [ 12 , 1] and log+m=logm if m > 0, − log(−m)

if m < 0 and is 0 if m = 0.

The fixed points of the involution of Π given by {A}Γ → {w−1Aw}Γ where w =

[

−1 0
0 1

]

are

called ambiguous prime geodesics in [Sa3]. Via the natural identification of Π with primitive classes
of indefinite integral binary quadratic forms (see (27) in [Sa3]) the ambiguous geodesics correspond
to Gauss’ ambiguous classes of forms, that is the elements of order 2 in his class group. One checks

that any {A}Γ ∈ Π for which kA = κ0, is ambiguous. However, these don’t account for all ambiguous
geodesics since as shown in [Sa3] their number with length at most y is asymptotic to c1y

2ey/2, for

a non-zero constant c1.
Perhaps the simplest prime geodesics C in terms of their knots kc, are those for which kc = κ0

and link(kc, τ) = 0. The first knot in Figure 1 is such an example. Their count is given by (ii) in
Proposition 4 and they have an algebraic description in terms of the class group. They correspond via

the identification and notations in [Sa3] to [1, a,−1] with a ≥ 1 and whose discriminant d = a2 + 4.
For each such d the above class is the identity class in Gauss’ class group of that discriminant.

An interesting problem is to investigate the analogue of Proposition 4 for nontrivial knots K.

§2. Outline of proofs:

To prove the main Theorem 1 we will use the Selberg trace formula for the group SL2(Z) with

suitable multiplier systems whose weights are real numbers r. In order to relate ψ to these we use
the allied function Φ : Γ → Z (see page 49 equation 60 of [R-G]) which is defined via the Dedekind

eta function η(z): For

[

a b

c d

]

∈ PSL2(Z)

log η

(

az + b

cz + a

)

− log η(z) =
1

2
sgn2(c) log

(

cz + d

isign(c)

)

+
πi

12
Φ

([

a b
c d

])

. (11)

From this we can relate Φ to the multiplier system v1/2 of the eta function that is;

η(Az) = v1/2(A)(cz + d)1/2 η(z) for A ∈ SL2(Z) . (12)

(Note that v1/2 is defined on SL2(Z) and not PSL2(Z) unlike Φ and Ψ). From (11) and (12) and
the relation between Φ and Ψ (see page 54 of [R-G]) we have that for A ∈ SL2(Z) and trace(A) > 0

v1/2(A) = eiπΨ(A)/12. (13)

Hence for any r ∈ R the multiplier system for SL2(Z) of weight r given by (v1/2)
r/2 satisfies

vr(A) = eiπrψ(A)/6 (14)

for A ∈ SL2(Z) and trace(A) > 0.

Consider now the spectral problem for the Laplacian 4r on L2(H/SL2(Z), vr, r) (we use the
definitions and notations of [He]) that is for functions on H transforming by

f(γz) = vr(γ)

(

cz + d

|cz + d|

)r

f(z) , for γ ∈ SL2(Z) . (15)
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We restrict to −6 < r ≤ 6 with the critical interval being −1 ≤ r ≤ 1. In the last range the bottom

eigenvalue λ0(r) of 4r is equal to
|r|
2 (1 − |r|

2 ) and this is the only eigenvalue in [0, 1/4), see [Br].
This smallest eigenvalue and in particular its singular behavior near r = 0 is responsible for the
shape of the main term in Theorem 1 and for the large linking of the modular knots with the trefoil.

For r = −4,−2, 2, 4, 6 the multiplier system corresponds to each of the 5 non-trivial characters of Γ
and we set up our multiplier system on intervals of width 2 about these and with adjusted weights

in [-1,1]. For each of these it follows from [Br] that there are no exceptional eigenvalues, that is
eigenvalues below 1/4. With this input and the general trace formula derived in [He] for this space

for each fixed r, one derives the analogue of a “twisted” prime geodesic theorem. Using the technique
in [Sa2] to derive these with a careful analysis of the dependence in r, one shows that uniformly for

−6 ≤ r ≤ 6 and x ≥ 5;

∑

{γ}SL2(Z)
trace(γ)> 2
N(γ)≤x
γ primitive

logN (γ) vr(γ) =















x1−
|r|
2

1− |r|
2

+ O
(

x3/4 log 1
|r|

)

, if |r| ≤ 1
2

O(x3/4) otherwise

. (16)

Integrating both sides of (16) against e−iπnr/6 with respect to r over (- 6 , 6] and using (14) the left

hand side becomes
12

∑

{γ}Γ ∈Π

N(γ)≤x
ψ(γ) =n

log N (γ) . (17)

The right hand side is equal to

1/2
∫

−1/2

x1− |r|
2

1 − |r|
2

e−iπnr/6 dr + O(x3/4) = 4 Li (x; n) + O(x3/4) uniformly in x ≥ 2 and ∈ Z , (18)

or
∑

`(C)≤ y

ψ(c)=n

`(C) =
1

3
Li (ey; n) + O(e3y/4) . (19)

This proves Theorem 1. Corollary 2 is an immediate consequence of the theorem and Theorem 3

follows by summing over n as indicated above.
We turn to Proposition 4. The conjugacy classes {(UV )a (UV −1)b}Γ for a, b ≥ 1 are all primitive

and distinct elements of Π. This can be seen from the fact that Γ = 〈U〉 ∗ 〈V 〉 where 〈U〉 = Z/2Z

and 〈V 〉 = Z/3Z, so that for each a, b ≥ 1 (UV UV · · ·UV ) (UV −1 · · ·UV −1) is cyclically reduced.

Hence its length 2(a + b) and ψ((UV )a(UV −1)b) = a − b are determined by {(UV )a (UV −1)b}Γ

and hence so is (a, b). A similar consideration with the free product shows that these classes are

primitive. Thus according to Ghys [G page 272] the map

(a, b) −→ {(UV )a (UV −1)b}Γ =

{[

1 −b
−a ab+ 1

]}

Γ
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is a bijection from N × N to the elements C of Π with kc = κ0. Hence

∑

{A}Γ ∈Π
t(A)≤ x
kA=κ0

1 =
∑

ab+2 ≤x
a,b≥ 1

1 . (20)

It goes back at least to Dirichlet that the right hand side of (20) is asymptotic to x logx which

proves part (i) of Proposition 4. (ii) is even easier as it the same count as in (20) but with a− b = n
fixed. As for (iii) we are counting say for 0 ≤ α ≤ 1

∑

ab≤x
a≤ b

xα ≤ b−a

1 =
∑

a≤√
x

∑

xα+a≤b≤ x
a

1 . (21)

For α ≤ 1
2 this is asymptotic to 1/2x logx. While for 1

2 ≤ α ≤ 1 it is

∼
∑

a≤x1−α

x

a
∼ (1 − α) x logx,

which proves part (iii) of the Proposition.

Finally, note that

[

1 b

0 1

]−1 [

1 −b
−a 1 + ab

] [

1 b

0 1

]

=

[

1 + ab −b
−a 1

]

and hence
{[

1 −b
−a 1 + ab

]}

Γ

=

{

w−1

[

1 −b
−a 1 + ab

]−1

w

}

Γ

,

that is

{[

1 −b
−a 1 + ab

]}

Γ

is ambiguous. When a = b, the elements Ca =

{[

1 −a
−a 1 + a2

]}

Γ

are

those for which kc = κ0 and link(kca , τ) = 0 (these geodesics are both ambiguous and reciprocal)
and the corresponding class of binary forms according to the identification (27) of [Sa3], is [1, a,−1].

This is the identity class in the Gauss class group of discriminant a2 + 4.
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