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1 Introduction

The concept of almost periodicity has acquired widespread diffusion in contemporary re-
search, the interest for it reaching more and more fields of investigation, in both pure and
applied mathematics.

This paper contains a few comments and results, related mainly to the classical aspects
of the theory, but also with incursions in the recent applications and newly generated con-
cepts, such as spaces of almost periodic functions or related concepts like pseudo-almost
periodic functions.

A growing number of authors have brought remarkable contributions related to almost
periodicity and its applications, and we indicate here a few classical references, other per-
taining particularly to authors who relatively recently have published books, survey papers
or extended articles treating various aspects concerning the almost periodicity and its related
fields.

For general references, see the books/monographs by H. Bohr [4], A.S. Besicovitch [3],
J. Favard [13], B.M. Levitan and V.V. Zhikov [17], L. Amerio and G. Prouse [1], C. Cor-
duneanu [5], [11], A.M. Fink [14], S. Zaidman [19], Ch. Zhang [20], and the vast literature
therein. Survey papers are numerous, and we send the reader to a recent one by A. Andres
et al. [2].

The applications of almost periodicity are numerous, usually scattered in various books
and monographs, not to mention those in journals (mathematical, science, engineering).
We shall quote here the books by M.A. Krasnoselskii et al. [16], by Y. Hino et al.[15], and
C. Corduneanu [11].

It is very significant, for applications to real phenomena, the fact that properties of
almost periodic functions are naturally extended to richer classes of functions, such as the

∗E-mail address: concord@uta.edu



6 C. Corduneanu

pseudo almost periodic functions. These functions, introduced and studied by Ch. Zhang
[20], and other authors, appear as perturbations of classical almost periodic functions, which
enables us to conclude that their behavior is ”mimicking” that of the latter.

2 A theorem “in the first approximation”

Let us begin with a result we have recently established, and show how it can be generalized
to other function spaces, whose relationship with the space AP(R,Rn) is rather close.

In our paper [10], the following theorem has been proven, and a few applications have
been indicated.

The result concerns functional equations of the form

ẋ(t) = (Lx)(t)+( f x)(t), t ∈ R, (1)

where L is a linear operator on AP(R,Rn), while f is acting on the same space, but is –
generally – nonlinear. The equation (1) is regarded as a perturbation of the linear equation

ẋ(t) = (Lx)(t)+ f (t), t ∈ R, (2)

with the operator L linear.
Since we have in mind solutions in AP(R,Rn), we do not associate with either equation

(1) or (2) an initial condition.

Theorem 1. Consider equation (1), under the following assumptions:

1. L : AP(R,Rn)→ AP(R,Rn) in a linear continuous operator, for fixed n ≥ 1.

2. Equation (2) has the property that for any f ∈ AP(R,Rn), there exists a unique solu-
tion x in AP(R,Rn).

3. f : AP(R,Rn) → AP(R,Rn) is an operator generally nonlinear, satisfying a global
Lipschitz condition

| f x− f y|AP ≤ L0|x− y|AP, (3)

on the whole space AP(R,Rn), with L0 a constant.

Then, equation (1) has a unique solution x ∈ AP(R,Rn), provided L0 is small enough.

The proof has been conducted by the Banach fixed point theorem, without any difficulty
after showing the continuity of the map f → x, where x is the unique solution in AP(R,Rn)
of equation (2).

The following notations are used above and in the sequel:

• AP(R,Rn) is the space of almost periodic functions in the sense of Bohr.

• BC(R,Rn) will denote the space of all continuous and bounded maps from R into Rn,
with the supremum norm:

‖x‖= sup{|x(t)|; t ∈ R}, (4)

where | · | stands for the Euclidean norm in Rn.
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• BUC(R,Rn) will designate the subspace of BC(R,Rn), consisting of those elements
which are uniformly continuous on R; and the norm (4).

• E(R,Rn) will stand for a subspace (hence, closed) of BC(R,Rn), such as AP(R,Rn),
PAP(R,Rn) or BUC(R,Rn).

• PAP(R,Rn) will be the space of pseudo almost periodic functions.

The following generalization of Theorem 1 above, can be proven in the same manner
as in our paper [10].

Theorem 2. Consider equation (1), under the following assumptions:

1. L : E(R,Rn) → E(R,Rn) is a linear continuous operator, where E is a subspace of
BC(R,Rn).

2. Equation (2) has a unique solution x ∈ E(R,Rn) for each f ∈ E(R,Rn).

3. The map f : E(R,Rn)→ E(R,Rn) is satisfying the global (i.e., on E) Lipschitz condi-
tion

‖ f x− f y‖ ≤ L0‖x− y‖, (5)

with L0 sufficiently small.

Then equation (1) has a unique solution x in E(R,Rn).

Proof. It is completely similar to the proof of Theorem 2 in [10], and we shall present it
concisely. �

First, let us denote by E(1)(R,Rn) the space (Banach) of those x ∈ E(R,Rn), such that
ẋ ∈ E(R,Rn), the norm being defined by

‖x‖1 = ‖x‖+‖ẋ‖, (6)

as it is usually considered (with ‖ · ‖ defined by (4)). Then we consider the operator T ,
given by

(T x)(t) = ẋ(t)− (Lx)(t) (7)

from E(1) into E, and notice that the inverse operator T−1 : E → E(1), x = T−1 f , is well
defined on E if we agree that x and f are related by equation (2), taking into account the
uniqueness assumption.

From (7) one derives
‖T x‖ ≤ ‖ẋ‖+‖Lx‖, x ∈ E91), (8)

which combined with
‖Lx‖ ≤ K‖x‖, x ∈ E, (9)

for some K > 0 (the continuity of L!), leads to

‖T x‖ ≤ K1(‖ẋ‖+‖x‖), (10)
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where K1 = max{1,K}. One can rewrite (10) as

‖T x‖ ≤ K1‖x‖1, x ∈ E(1), (11)

from which we obtain the continuity of T : E(1) → E.
Hence, T is a continuous operator from E(1) to E (because (2) is soluble for each f ∈E),

and it is one to one.
According to a well known theorem of Banach, the operator T−1 is also continuous.

Therefore, from x = T−1 f , one obtains ‖x‖1 ≤ M‖ f‖, f ∈ E, for some M > 0, which leads
on behalf of (6) to

‖x‖ ≤ M‖ f‖, f ∈ E. (12)

This is what we need to apply the Banach contraction principle, to derive existence and
uniqueness for the nonlinear equation (1).

Indeed, one can define on E(R,Rn) the operator U , by letting x = Uy iff

ẋ(t)− (Lx)(t) = ( f y)(t), t ∈ R, (13)

with x = x(t) the unique solution in E to equation (13). With x1 and x2 given by x1 = Uy1
and x2 = Uy2, one an write

(x1− x2)·−L(x1− x2) = f y1− f y2, (14)

which combined with (12) provides

‖Uy1−Uy2‖ ≤ M‖ f y1− f y2‖, y1,y2 ∈ E1,

and relying on (5)

‖Uy1−Uy2‖ ≤ ML0‖y1− y2‖, (15)

from which we find that U is a contraction on E, as soon as

L0 < M−1. (16)

Theorem 2 is thereby proven, the inequality (16) showing the smallness of L0.

Remark 3. The result established in [10], stated in Theorem 1 above, corresponds to the
choice E = AP = AP(R,Rn), i.e., to the case when E is the space of Bohr almost periodic
functions (also known as uniformly almost periodic).

Remark 4. The case E = PAP(R,Rn) leads to pseudo almost periodic functions, whose
theory can be found in C. Zhang [20] as well as in [12] by Toka Diagana, in the Banach
space framework.
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3 Discussion of the second hypothesis in Theorem 2

The most important assumption in Theorem 2 is the second one, stating the existence of
a unique solution to equation (2), for each f ∈ E. While it appears to be a rather difficult
problem in the general case (i.e., when the operator L is arbitrary), we must stress the fact
that there are several useful results available when E is a particular space, or L has a special
form.

A first example, also historically, is when (Lx)(t) = Ax(t), with A a constant matrix
of type n×n, while E = AP(R,Rn). As a corollary of the Bohr–Neugebauer Theorem (see
Corduneanu [5], for instance), in the case det(iλI−A) 6= 0 for λ ∈ R, the equation/system
ẋ(t) = Ax(t)+ f (t) has a unique solution x ∈ AP(R,Rn).

A second example, that has been treated by J.L. Massera, regards the linear systems for
which (Lx)(t) = A(t)x(t), with A(t) an upper diagonal matrix with almost periodic entries
(i.e., in AP(R,R)). If M{aii(t)} 6= 0 for i = 1,2, ...,n, then (2) also satisfies the requirements
of Theorem 2. The case n = 1 has been treated by R.H. Cameron.

The third example is given in Ch. Zhang [20], and is concerned with the case
(Lx)(t) = Ax(t), with constant A = (ai j), i, j = 1,2, ...,n, while E = PAP(R,Rn). Pro-
ceeding by a linear transformation T , which reduces to the case of upper triangular ma-
trix (T−1AT ) = (bi j), bi j = 0 for i > j, the discussion is brought to the case n = 1, i.e., to
deal with a single equation ẏ = λy + f (t), with Reλ 6= 0. Since f (t) = g(t) + h(t), with
f ∈ AP(R,R) and h such that

lim
t→∞

(2t)−1
Z t

−t
|h(s)|ds = 0, (17)

it can be seen that hypothesis 2 of Theorem 2 holds, when E = PAP(R,Rn). Actually, as
shown in [20], the property remains valid even in case of spaces AP(R,H), with H a Hilbert
space, but under stronger assumptions on the linear part.

A fourth case, that needs some consideration, is A = A(t), with almost periodic or
pseudo almost periodic entries, and has the upper triangular form. The conditions
M{aii(t)} 6= 0, i = 1,2, ...,n, which are sufficient for the validity of hypothesis 2 in case
of almost periodicity, could be also sufficient in the case of the space PAP(R,Rn). Or,
maybe something else should be added in order to obtain the validity of condition 2 for
equation (2). This problem is open, and its investigation could lead to another important
case of validity for condition 2 in Theorem 2.

Of course, it would be interesting to extend the investigation to the case of infinite-
dimensional spaces. See J.L. Massera and J.J. Schäffer [18] for suggestions and back-
ground.

A fifth situation is treated in our paper [6], when the space under consideration is the
space BC(R,Rn). After reducing the matrix of the linear system ẋ(t) = A(t)x(t)+ f (t), one
obtains necessary and sufficient conditions for existence of a solution in BC(R,Rn), for each
f ∈ BC(R,R). The conditions involved are extension to the real axis R, of some classical
results of O. Perron for the semi-axis R+.
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4 The case of functional equations

In this section we shall investigate equations of the form

x(t) = (Lx)(t)+( f x)(t), t ∈ R, (18)

with the same meaning for L and f as in the preceding sections, related to the linear asso-
ciate

x(t) = (Lx)(t)+ f (t), t ∈ R, (19)

looking for existence of solutions and the connection between (18) and (19).
We have investigated the problem in [7], but we have limited our considerations to the

case when the interval of definition is finite. This time we shall try to obtain some results
when the solutions are defined on the whole real axis R, as it is the case with almost periodic
functions or pseudo almost periodic functions.

If one considers the existence of solutions to equation (19), say in the case
L : AP(R,Rn) → AP(R,Rn), we do not have a general result, i.e., valid for any continuous
operator. Excepting, perhaps, the obvious statement that the operator I−L is invertible on
AP(R,Rn). Moreover, the inverse should be continuous in order to further the investigation
to the nonlinear case of equation (18). Certainly, this property for (19) holds in the case the
norm of L is less than 1, which guarantees the existence and continuity of (I−L)−1.

We will discuss in the sequel cases when the existence to (19) is assumed for any f ∈AP.
Or, if we want a result similar to the one in Theorem 2, for each f ∈ E, with E(R,Rn) a
subspace of BC(R,Rn).

Consequently, we shall use again a hypothesis similar to condition 2 in Theorem 2,
related this time to equation (19).

The following result can be proven using the Banach contraction principle.

Theorem 5. Consider equation (18), under the following hypotheses:

1. The operator L : E(R,Rn)→ E(R,Rn) is a linear continuous operator, with E a sub-
space of BC(R,Rn).

2. Equation (19) is uniquely soluble in E, for each f ∈ E(R,Rn).

3. The same as in Theorem 2.

Proof. It can be conducted exactly as in the case of Theorem 2. We must only prove the
continuity of the operator (I−L)−1 on E. This is again the immediate consequence of the
Banach theorem on the continuity of the inverse operator (when it exists). We leave details
to the reader. �

Remark 6. As noticed above, the condition 2 holds true when the operator L is such that
‖L‖ < 1 (on the space E, which is a subspace of BC(R,Rn)). Of course, it is sufficient to
assume that ‖L‖< 1, the norm being that corresponding to L on the Banach space E (i.e., a
closed subspace of BC(R,Rn), with the same norm as in the latter space).

The above restriction on L represents a rare occurrence in applications, and this feature
makes desirable to describe other cases when the continuity of the inverse is assured.
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Remark 7. The following result is part of Theorem 14.1 in our book [7].

Consider the convolution equation

x(t) =
Z

R
k(t− s)x(s)ds+ f (t), t ∈ R, (20)

under the following assumptions:

1. k ∈ L1(R,C ), with C the complex field.

2. The Fourier transform of k

k̂(s) =
Z

R
k(t)eitsdt, s ∈ R, (21)

satisfies the condition
k̂(s) 6= 1, s ∈ R. (22)

Then, there exists a unique solution to equation (20), for each f ∈ E, with E standing for
any of the spaces BC(R,C ), AP(R,C ), PAP(R,C ) or Aω(R,C ). By Aω(R,C ) one denotes
the space of continuous periodic functions, with period ω. Moreover, the solution of (20)
belongs to the same space as f .

Actually, for space E one could choose other function spaces, which are not subspaces
of BC(R,C ), but are invariant with respect to the integral operator

x(t)→
Z

R
k(t− s)x(s)ds.

In particular, such spaces are M(R,C ), S(R,C ) and Pω(R,C ). See [8] for the meaning
of these notations.

Of course, the considerations above, in Remark 7, can be extended to the case of n-
dimensional vector functions.

The discussion above offers a nontrivial example when assumption 2 of Theorem 5 is
verified. Let us notice that the solution can be expressed by means of the resolvent kernel.

Remark 8. Another case we want to discuss is regarding the functional equation

x(t) = px(λt)+ f (t), t ∈ R, (23)

where p ∈ C , λ ∈ R, |p| 6= 1, λ 6= 0, and the underlying space is the space BC(R,C ). We
shall be interested only in the case E = AP(R,C ), but other choices are possible.

This example is due to Mr. Peter Jossen, who was one of the participants in a short
course on almost periodic functions I have thought in September 2006 at the Central Euro-
pean University in Budapest.

The existence and uniqueness of the solution x(t)∈ AP(R,C ), for each f (t)∈ AP(R,C ),
is elementary application of the contraction mapping principle when |p|< 1.

In the case |p|> 1, one can reduce the discussion to the preceding case by writing (23)
in the equivalent form

x(λt) = p−1x(t)− p−1 f (t),
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and changing the variable t in τ = λt :

x(τ) = p−1x(λ−1
τ)− p−1 f (λ−1

τ). (24)

Equation (24) is of the form (23), and |p−1|< 1. Since f (λ−1τ) is almost periodic whenever
f (t) is, the discussion is complete.

The nonlinear associate to (23) will be the equation

x(t) = px(λt)+( f x)(t), t ∈ R, (25)

where f : AP(R,C )→ AP(R,C ) is a globally Lipschitz operator.
It is obvious that other possible choices for the underlying space, are BC(R,C ),

BUC(R,C ), PAP(R,C ). By changing the underlying space, one obtains other interesting
cases. For instance, if we substitute to BC(R,C ) the space M(R,C ) of locally integrable
functions bounded in the mean

M =
{

x : R → C , x ∈ Lloc, sup
t∈R

Z t+1

t
|x(s)|ds < ∞

}
,

one can deal with the Stepanov’s space of almost periodic functions S(R,C ) instead of
AP(R,C ).

5 The case of neutral functional equations

We shall consider in this section some neutral functional equations of the form

(V x)(t) = (Wx)(t), t ∈ R, (26)

where V,W : AP(R,Rn) → AP(R,Rn) are continuous operators, satisfying some extra con-
ditions which will assure the existence of solutions.

In the Appendix of our book [9], we dealt with equation (26), limiting our conside-
rations to the case of the space AP(R,Rn). Actually, the result established there, concer-
ning the existence of solutions, can be extended to other spaces E, with E = BC(R,Rn),
BUC(R,Rn), PAP(R,Rn), or E = any subspace of BC(R,Rn). Of course, instead of equations
on a space whose elements are taking values in a finite-dimensional space (Rn or C n), one
may consider the case of infinite-dimensional spaces. See, for instance, Ch. Zhang [20] or
T. Diagana [12], for problems in infinite dimension and the use of semigroups theory, with
the remark that only time-invariant operators lead to satisfactory treatment.

Proceeding on the same scheme as in [9], one can obtain the following results.

Lemma 9. Consider the “first kind” functional equation

(V x)(t) = f (t), t ∈ R, (27)

on a space E, from the list above. Let us assume that V : E → E satisfies the monotonicity
condition

m‖x− y‖2 ≤ 〈V x−V y,x− y〉 , m > 0, (28)

for any x,y ∈ Rn. Also, let V be globally Lipschitz continuous on E:

‖V x−V y‖ ≤ M‖x− y‖, M > 0. (29)

Then, there exists a unique solution x ∈ E of equation (27), for any f ∈ E.
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The proof is detailed in [9]. We send the reader at this reference (in book form).
The neutral equation (26) suggests the following scheme, in view of obtaining existence

of its solution: for each u ∈ E, one considers the equation of the form (27), with f (t) =
(Wu)(t). As above, E stands for one of the spaces listed in this section. In other words, we
deal with the equation

(V x)(t) = (Wu)(t), t ∈ R. (30)

According to Lemma 9, there exists a unique x ∈ E, say x = Tu, satisfying (30), which
implies that T : E → E is defined on the whole space E.

Since we do not want to use here the global Lipschitz condition for W , and intend to
use Schauder’s fixed point theorem on E, we will make the following assumption on W :

(a) W : E → E is a compact operator, i.e., it is continuous and takes bounded sets into
compact sets of E.

We notice that (a) is a different assumption than Lipschitz continuity (neither one im-
plying the other). On the other hand, the compactness requirement may be difficult to be
established in any space E, or impracticable, because of its complexity. Nevertheless, we
know this condition in the case of AP(R,Rn).

Another condition of growth is necessary in view of the application of Schauder’s the-
orem:

(b) If w(r) = sup{‖Wx‖; x ∈ E, ‖x‖ ≤ r}, then

limsup
r→∞

w(r)
r

= λ, (31)

with λ > 0 sufficiently small (to be precised).

Finally, one more condition has to be imposed in order to carry out the proof of exis-
tence. Namely,

(c) V is a continuous linear operator.

On behalf of (c), condition (29) is automatically satisfied, while condition (28) implies
‖V x‖ ≥ m‖x‖, x ∈ E. This is because (28) leads to m‖x−y‖2 ≤ ‖V x−V y‖‖x−y‖, for any
x,y ∈ E. Hence, V−1 exists and is continuous on E : ‖V−1x‖ ≤ m−1‖x‖.

Since equation (30) can be rewritten as

x = T x, (32)

with T = V−1W, or T x = V−1(Wx), x ∈ E, there results that T is compact. Indeed, T
is continuous since both V−1 and W are continuous (on E), and their product is compact
because one factor is continuous and another is compact. We can proceed to applying the
Schauder theorem. All that remains to prove is that a ball Σr = {x; x ∈ E, ‖x‖ ≤ r, r > 0}
is taken into itself by T :

T Σr ⊂ Σr, (33)

for some r > 0. And we see that this is possible when λ < 1.
We shall now summarize the discussion about equation (26), carried above, in the fol-

lowing result.
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Theorem 10. Consider the neutral equation (26), under assumptions (a), (b) and (c). Then,
condition (31), with λ < 1, assures for some sufficiently large r, a(r)/r < 1, and T Σr ⊂ Σr.
This inclusion means, together with the conditions assumed, the existence of a fixed point
to the operator T , i.e., an x(t) ∈ Σr, such that (26) is satisfied.

Remark 11. The monotonicity of the operator V is used to prove the existence of the inverse
operator V−1 under Lipschitz continuity without the linearity assumption. Therefore, for
(V x)(t) = f (t) under monotonicity of V , one assures the existence of V−1, in general,
nonlinear.
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