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Abstract

We study behaviour of T–periodic trajectories in time-perturbed discontinuous sys-

tems, that transversally cross the discontinuity boundary. Sufficient condition of Mel-

nikov-type is stated, under which the original piecewise C1–orbit persists. Applica-

tions of derived result are also given to discontinuous planar systems.
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1 Introduction

Discontinuous systems occur in many physical applications. They describe behaviour of

particles before and after collision with a rigid wall, motion of a body on oscillating belt
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(so-called dry-friction oscillator), switching in electric circuit because of the presence of

a diode or transistor. But they can be found also in biology, medicine and optimal con-

trol theory (for references see [3, 5, 11, 12]). These non-smooth differential equations are

characterized by existence of discontinuity boundary which divides phase space to two or

more parts. Recently in [1], homoclinic orbits were investigated via Melnikov method [7].

It was assumed that the system has a homoclinic solution to a hyperbolic equilibrium and

the sufficient condition was stated under which small perturbation of original system has a

solution close to the homoclinic one. Similar method is used in our paper for the periodic

bifurcation.

The plan of this paper is as follows. In Section 2, we introduce basic assumptions

and the setting of our problem. In Section 3, firstly we show the existence of Poincaré

mapping in a neighbourhood of the T –periodic trajectory of unperturbed system. Then

properties of the mapping are used to determine a sufficient condition for the existence

of T –periodic orbit of perturbed system close to original one. A geometric meaning of

a nondegeneracy assumption on the periodic trajectory is explained in Section 4. Finally,

in Section 5, applications to planar discontinuous systems are given. Firstly, we consider

a piecewise nonlinear equation, then we proceed to piecewise linear one. In both cases,

sufficient bifurcation conditions are derived for concrete values of parameters.

2 Preliminaries

Let Ω ⊂ Rn be a open set in Rn and h(x) be a Cr–function on Ω̄, with r ≥ 2. We set Ω± :=
{x∈Ω | ±h(x) > 0}, Ω0 := {x∈Ω | h(x)= 0}. Let f± ∈Cr(Ω̄) and g∈Cr(Ω̄×R×R×Rk),

i.e. the derivative of f± and g are continuous up to the r-th order, respectively. Furthermore,

we suppose that g is T –periodic in t ∈ R. Let ε ∈ R, α ∈ R, µ ∈ Rk,k ≥ 1 are parameters

and 〈·, ·〉 denote inner product in R
n.

We say that a function x(t) is a solution of the equation

ẋ = f±(x)+εg(x, t +α,ε,µ), x ∈ Ω̄±, (2.1)

if it is continuous, piecewise C1, satisfies equation (2.1) on Ω± and, moreover, the following

holds: if for some t0 we have x(t0) ∈ Ω0, then there exists r > 0 such that for any t ∈
(t0− r, t0) we have x(t) ∈ Ω+, and for any t ∈ (t0, t0 + r) we have x(t) ∈ Ω−.

We assume (see Figure 1)

H1) For ε = 0 equation (2.1) has a T –periodic solution γ(t) which has a starting point

x0 ∈ Ω+ and consists of three branches

γ(t) =





γ1(t) if t ∈ [0, t1]

γ2(t) if t ∈ [t1, t2]
γ3(t) if t ∈ [t2,T ]

(2.2)

where γ1(t)∈ Ω+ for t ∈ [0, t1), γ2(t)∈ Ω− for t ∈ (t1, t2) and γ3(t)∈Ω+ for t ∈ (t2,T ]

and

x1 := γ1(t1) = γ2(t1) ∈ Ω0,

x2 := γ2(t2) = γ3(t2) ∈ Ω0,

x0 := γ3(T ) = γ1(0) ∈ Ω+.

(2.3)
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Figure 1. Used notation

H2) Moreover, we also assume that

Dh(x1) f±(x1) < 0 and Dh(x2) f±(x2) > 0.

3 Existence of periodic orbits close to γ(t)

Let x+(τ,ξ)(t,ε,µ,α) denote a solution of initial value problem (3.1) which consists of

equation

ẋ = f+(x)+εg(x, t +α,ε,µ) (3.1)

and initial condition x+(τ,ξ)(τ,ε,µ,α)= ξ, and x−(τ,ξ)(t,ε,µ,α) denote a solution of sim-

ilar problem (3.2) consisting of equation

ẋ = f−(x)+εg(x, t +α,ε,µ) (3.2)

and condition x−(τ,ξ)(τ,ε,µ,α)= ξ.

For simplicity, we suppose that f± and g are extended Cr–smoothly on Rn and Rn ×
R×R×R

k , respectively, with uniformly bounded derivatives up to the r-th order.

Using Implicit Function Theorem [6] we show that there are some trajectories in the

neighbourhood of γ(t) and then we select periodic ones from these.

Lemma 3.1. Assume H1) and H2). Then there exist ε3, r3 > 0 and a Poincaré mapping

P(·,ε,µ,α) : U → Σ

for all fixed ε ∈ (−ε3,ε3), µ ∈ Rk, α ∈ R where Σ = {x ∈ Rn | 〈x− x0, f+(x0)〉 = 0}, U =

Σ∩B(x0, r3) and B(x, r) is the ball of radius r and center in x. Moreover, P is Cr–smooth in

all arguments.

Proof. We denote A(τ,ξ, t,ε,µ,α)= h(x+(τ,ξ)(t,ε,µ,α)). Since

A(0,x0, t1,0,µ,α) = 0

At(0,x0, t1,0,µ,α) = Dh(x1) f+(x1) < 0
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Implicit Function Theorem gives the existence of τ1, r1,δ1,ε1 > 0 and Cr–function

t1(·, ·, ·, ·, ·) : (−τ1,τ1)×B(x0, r1)× (−ε1,ε1)×R
k ×R → (t1−δ1, t1 +δ1)

such that A(τ,ξ, t,ε,µ,α)= 0 for τ ∈ (−τ1,τ1), ξ ∈ B(x0, r1) ⊂ Ω+, ε ∈ (−ε1,ε1), µ ∈ R
k,

α ∈ R and t ∈ (t1 −δ1, t1 +δ1) if and only if t = t1(τ,ξ,ε,µ,α).

Next we set

B(τ,ξ, t,ε,µ,α)= h(x−(t1(τ,ξ,ε,µ,α),x+(τ,ξ)(t1(τ,ξ,ε,µ,α),ε,µ,α))(t,ε,µ,α)).

Then
B(0,x0, t2,0,µ,α)= 0

Bt(0,x0, t2,0,µ,α)= Dh(x2) f−(x2) > 0

hence Implicit Function Theorem implies that there exist τ2, r2,δ2,ε2 > 0 and Cr–function

t2(·, ·, ·, ·, ·) : (−τ2,τ2)×B(x0, r2)× (−ε2,ε2)×R
k ×R → (t2−δ2, t2 +δ2)

such that B(τ,ξ, t,ε,µ,α)= 0 for τ ∈ (−τ2,τ2), ξ ∈ B(x0, r2) ⊂ Ω+,ε ∈ (−ε2,ε2), µ ∈ R
k,

α ∈ R and t ∈ (t2 −δ2, t2 +δ2) if and only if t = t2(τ,ξ,ε,µ,α).

Once more time we use Implicit Function Theorem on function C defined as follows

C (τ,ξ, t,ε,µ,α)=〈x+(t2(τ,ξ,ε,µ,α),x−(t1(τ,ξ,ε,µ,α),x+(τ,ξ)(t1(τ,ξ,ε,µ,α),ε,µ,α))

(t2(τ,ξ,ε,µ,α),ε,µ,α))(t,ε,µ,α)−x0, f+(x0)〉

Since
C (0,x0,T,0,µ,α)= 0

Ct(0,x0,T,0,µ,α)= ‖ f+(x0)‖2 > 0

then there exist τ3, r3,δ3,ε3 > 0 and Cr–function

t3(·, ·, ·, ·, ·) : (−τ3,τ3)×B(x0, r3)× (−ε3,ε3)×R
k ×R → (T −δ3,T +δ3)

such that C (τ,ξ, t,ε,µ,α)= 0 for τ ∈ (−τ3,τ3), ξ ∈ B(x0, r3) ⊂ Ω+,ε ∈ (−ε3,ε3), µ ∈ Rk,

α ∈ R and t ∈ (T −δ3,T +δ3) if and only if t = t3(τ,ξ,ε,µ,α).

Moreover t1(0,x0,0,µ,α) = t1, t2(0,x0,0,µ,α) = t2 and t3(0,x0,0,µ,α) = T .

Now we can define the Poincaré mapping from lemma’s statement

P(ξ,ε,µ,α) =x+(t2(0,ξ,ε,µ,α),x−(t1(0,ξ,ε,µ,α),x+(0,ξ)(t1(0,ξ,ε,µ,α),ε,µ,α))

(t2(0,ξ,ε,µ,α),ε,µ,α))(t3(0,ξ,ε,µ,α),ε,µ,α)

It is obvious that P maps U to Σ.

Our aim is to find T –periodic orbits, which is the reason for solving the following

system

P(ξ,ε,µ,α) = ξ

t3(0,ξ,ε) = T
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for ξ and ε sufficiently close to x0 and 0, respectively. This problem can be reduced to one

equation

ξ− P̃(ξ,ε,µ,α) = 0 (3.3)

where

P̃(ξ,ε,µ,α) =x+(t2(0,ξ,ε,µ,α),x−(t1(0,ξ,ε,µ,α),x+(0,ξ)(t1(0,ξ,ε,µ,α),ε,µ,α))

(t2(0,ξ,ε,µ,α),ε,µ,α))(T,ε,µ,α)
(3.4)

It is easy to see that (ξ,ε,µ,α) = (x0,0,µ,α) solves (3.3). However, Implicit Function

Theorem can not be used here, what is proved in the next lemma (see [9, 10]).

Lemma 3.2. P̃ξ(x0,0,µ,α) has eigenvalue 1 with corresponding eigenvector f (x0), i.e.

P̃ξ(x0,0,µ,α) f (x0) = f (x0).

Proof. Let V be a sufficiently small neighbourhood of 0. Then

x+(0,x+(0,x0)(t,0,µ,α))(t1(0,x+(0,x0)(t,0,µ,α),0,µ,α),0,µ,α)=

x+(0,x0)(t + t1(0,x+(0,x0)(t,0,µ,α),0,µ,α),0,µ,α)
(3.5)

for any t ∈V , where the left-hand side of (3.5) is from Ω0 and the right-hand side is a point

of γ(t). Thereafter the sum t +t1(0,x+(0,x0)(t,0,µ,α),0,µ,α)= t1, i.e. it is constant for all

t ∈V . Similarly

x−(t1(0,x+(0,x0)(t,0,µ,α),0,µ,α),x+(0,x+(0,x0)(t,0,µ,α))(t1(0,x+(0,x0)

(t,0,µ,α),0,µ,α),0,µ,α))(t2(0,x+(0,x0)(t,0,µ,α),0,µ,α),0,µ,α)

= x−(t1(0,x+(0,x0)(t,0,µ,α),0,µ,α),x+(0,x0)(t1,0,µ,α))

(t2(0,x+(0,x0)(t,0,µ,α),0,µ,α),0,µ,α)

= x−(t1− t,x+(0,x0)(t1,0,µ,α))(t2(0,x+(0,x0)(t,0,µ,α),0,µ,α),0,µ,α)

= x−(t1,x1)(t2(0,x+(0,x0)(t,0,µ,α),0,µ,α)+ t,0,µ,α)

and we obtain t + t2(0,x+(0,x0)(t,0,µ,α),0,µ,α)= t2 for all t ∈ V .

With these results we can derive

P̃(x+(0,x0)(t,0,µ,α),0,µ,α)

= x+(t2(0,x+(0,x0)(t,0,µ,α),0,µ,α),x−(t1(0,x+(0,x0)(t,0,µ,α),0,µ,α),

x+(0,x+(0,x0)(t,0,µ,α))(t1(0,x+(0,x0)(t,0,µ,α),0,µ,α),0,µ,α))

(t2(0,x+(0,x0)(t,0,µ,α),0,µ,α),0,µ,α))(T,0,µ,α)

= x+(t2(0,x+(0,x0)(t,0,µ,α),0,µ,α),x2)(T,0,µ,α)

= x+(t2 − t,x2)(T,0,µ,α)= x+(t2,x2)(T + t,0,µ,α)

and finally

P̃ξ(x0,0,µ,α) f (x0) =
d

dt

[
P̃(x+(0,x0)(t,0,µ,α),0,µ,α)

]
t=0

=
d

dt
[x+(t2,x2)(T + t,0,µ,α)]t=0

= f (x+(t2,x2)(T + t,0,µ,α))|t=0 = f (x0)
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In the next step we construct the linearization P̃ξ(x0,0,µ,α) that will be important in

further work.

Differentiating (3.1) with respect to ξ at the point (τ,ξ,ε) = (0,x0,0) we have

ẋ+ξ(0,x0)(t,0,µ,α)= D f+(x+(0,x0)(t,0,µ,α))x+ξ(0,x0)(t,0,µ,α)

= D f+(γ(t))x+ξ(0,x0)(t,0,µ,α)

x+ξ(0,x0)(0,0,µ,α)= I

where I denotes n×n identity matrix. Denote by X1(t) the matrix solution satisfying this

linearized equation on [0, t1], i.e.

Ẋ1(t) = D f+(γ(t))X1(t)

X1(0) = I
(3.6)

So x+ξ(0,x0)(t,0,µ,α)= X1(t).

By differentiation (3.1) with respect to τ at the same point we get

ẋ+τ(0,x0)(t,0,µ,α)= D f+(x+(0,x0)(t,0,µ,α))x+τ(0,x0)(t,0,µ,α)

x+τ(0,x0)(0,0,µ,α)= − f+(x+(0,x0)(0,0,µ,α))

Hence

x+τ(0,x0)(t,0,µ,α)= −X1(t) f+(x0)

for t ∈ [0, t1]. Derivative of (3.1) with respect to ε at (0,x0,0) will be useful, too. We have

equation

ẋ+ε(0,x0)(t,0,µ,α)= D f+(x+(0,x0)(t,0,µ,α))x+ε(0,x0)(t,0,µ,α)

+g(x+(0,x0)(t,0,µ,α),t+α,0,µ)

x+ε(0,x0)(0,0,µ,α)= 0

which solved by variation of constants gives equality

x+ε(0,x0)(t,0,µ,α)=
Z t

0
X1(t)X−1

1 (s)g(γ(s), s+α,0,µ)ds

holding on [0, t1].

First intersection point on Ω0 fulfills

h(x+(τ,ξ)(t1(τ,ξ,ε,µ,α),ε,µ,α))= 0

for all (τ,ξ,ε) sufficiently close to (0,x0,0) and µ, α.

Dh(x1)(X1(t1)+ f+(x1)t1ξ(0,x0,0,µ,α)) = 0

t1ξ(0,x0,0,µ,α) = − Dh(x1)X1(t1)

Dh(x1) f+(x1)

Dh(x1)(−X1(t1) f+(x0)+ f+(x1)t1τ(0,x0,0,µ,α)) = 0

t1τ(0,x0,0,µ,α) =
Dh(x1)X1(t1) f+(x0)

Dh(x1) f+(x1)
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and

Dh(x1)

(
f+(x1)t1ε(0,x0,0,µ,α)+

Z t1

0
X1(t1)X−1

1 (s)g(γ(s),s+α,0,µ)ds

)
= 0

t1ε(0,x0,0,µ,α)= −Dh(x1)
R t1

0 X1(t1)X−1
1 (s)g(γ(s), s+α,0,µ)ds

Dh(x1) f+(x1)

Differentiating (3.2) with respect to ξ, τ and ε at the point (τ,ξ,ε) = (t1,x1,0), respec-

tively, we obtain

ẋ−ξ(t1,x1)(t,0,µ,α)= D f−(x−(t1,x1)(t,0,µ,α))x−ξ(t1,x1)(t,0,µ,α)

x−ξ(t1,x1)(t1,0,µ,α)= I

ẋ−τ(t1,x1)(t,0,µ,α)= D f−(x−(t1,x1)(t,0,µ,α))x−τ(t1,x1)(t,0,µ,α)

x−τ(t1,x1)(t1,0,µ,α)= − f−(x−(t1,x1)(t1,0,µ,α))

and

ẋ−ε(t1,x1)(t,0,µ,α)= D f−(x−(t1,x1)(t,0,µ,α))x−ε(t1,x1)(t,0,µ,α)

+g(x−(t1,x1)(t,0,µ,α),t +α,0,µ)

x−ε(t1,x1)(t1,0,µ,α)= 0

Using matrix solution X2(t) of the first equation satisfying

Ẋ2(t) = D f−(γ(t))X2(t)

X2(t1) = I
(3.7)

i.e. x−ξ(t1,x1)(t,0,µ,α)= X2(t), we can write the other two solutions as

x−τ(t1,x1)(t,0,µ,α)= −X2(t) f−(x1)

x−ε(t1,x1)(t,0,µ,α)=

Z t

t1

X2(t)X−1
2 (s)g(γ(s), s+α,0,µ)ds

for t ∈ [t1, t2].
Second intersection point is characterized by

h(x−(t1(τ,ξ,ε,µ,α),x+(τ,ξ)(t1(τ,ξ,ε,µ,α),ε,µ,α))(t2(τ,ξ,ε,µ,α),ε,µ,α))= 0

From that we derive

Dh(x2)(x−τ(t1,x1)(t2,0,µ,α)t1ξ(0,x0,0,µ,α)+x−ξ(t1,x1)(t2,0,µ,α)

× [x+ξ(0,x0)(t1,0,µ,α)+x+t(0,x0)(t1,0,µ,α)t1ξ(0,x0,0,µ,α)]

+x−t(t1,x1)(t2,0,µ,α)t2ξ(0,x0,0,µ,α))= 0

t2ξ(0,x0,0,µ,α)= −Dh(x2)X2(t2)S1X1(t1)

Dh(x2) f−(x2)
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Dh(x2)(x−τ(t1,x1)(t2,0,µ,α)t1τ(0,x0,0,µ,α)+x−ξ(t1,x1)(t2,0,µ,α)

× [x+τ(0,x0)(t1,0,µ,α)+x+t(0,x0)(t1,0,µ,α)t1τ(0,x0,0,µ,α)]

+x−t (t1,x1)(t2,0,µ,α)t2τ(0,x0,0,µ,α))= 0

t2τ(0,x0,0,µ,α) =
Dh(x2)X2(t2)S1X1(t1) f+(x0)

Dh(x2) f−(x2)

and

Dh(x2)(x−τ(t1,x1)(t2,0,µ,α)t1ε(0,x0,0,µ,α)+x−ξ(t1,x1)(t2,0,µ,α)

× [x+ε(0,x0)(t1,0,µ,α)+x+t(0,x0)(t1,0,µ,α)t1ε(0,x0,0,µ,α)]

+x−t (t1,x1)(t2,0,µ,α)t2ε(0,x0,0,µ,α)+x−ε(t1,x1)(t2,0,µ,α))= 0

t2ε(0,x0,0,µ,α) = − Dh(x2)

Dh(x2) f−(x2)

(
X2(t2)S1

Z t1

0
X1(t1)X−1

1 (s)g(γ(s),s+α,0,µ)ds

+
Z t2

t1

X2(t2)X−1
2 (s)g(γ(s),s+α,0,µ)ds

)

where

S1 = I+
( f−(x1)− f+(x1))Dh(x1)

Dh(x1) f+(x1)
(3.8)

is so-called saltation matrix [13].

Finally we count derivatives of (3.1) with respect to ξ, τ and ε at (τ,ξ,ε) = (t2,x2,0) to

obtain

ẋ+ξ(t2,x2)(t,0,µ,α)= D f+(x+(t2,x2)(t,0,µ,α))x+ξ(t2,x2)(t,0,µ,α)

x+ξ(t2,x2)(t2,0,µ,α)= I

ẋ+τ(t2,x2)(t,0,µ,α)= D f+(x+(t2,x2)(t,0,µ,α))x+τ(t2,x2)(t,0,µ,α)

x+τ(t2,x2)(t2,0,µ,α)= − f+(x+(t2,x2)(t2,0,µ,α))

and

ẋ+ε(t2,x2)(t,0,µ,α)= D f+(x+(t2,x2)(t,0,µ,α))x+ε(t2,x2)(t,0,µ,α)

+g(x+(t2,x2)(t,0,µ,α),t +α,0,µ)

x+ε(t2,x2)(t2,0,µ,α)= 0

Matrix solution X3(t) for first equation that for t ∈ [t2,T ] fulfills

Ẋ3(t) = D f+(γ(t))X3(t)

X3(t2) = I
(3.9)

i.e. x+ξ(t2,x2)(t,0,µ,α)= X3(t), simplifies expressions for the other two solutions

x+τ(t2,x2)(t,0,µ,α)= −X3(t) f+(x2)

x+ε(t2,x2)(t,0,µ,α)=

Z t

t2

X3(t)X−1
3 (s)g(γ(s), s+α,0,µ)ds

for t ∈ [t2,T ].
Now we can state the following lemma
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Lemma 3.3. Let P̃(ξ,ε,µ,α) be defined by (3.4). Then

P̃ξ(x0,0,µ,α) = X3(T)S2X2(t2)S1X1(t1) (3.10)

P̃ε(x0,0,µ,α) =

Z T

0
A(s)g(γ(s), s+α,0,µ)ds (3.11)

where X1(t), X2(t) and X3(t) are matrix solutions of corresponding linearized equations

(3.6), (3.7) and (3.9), respectively. S1 is the saltation matrix given by (3.8), S2 is a second

saltation matrix given by

S2 = I+
( f+(x2)− f−(x2))Dh(x2)

Dh(x2) f−(x2)
(3.12)

and

A(t) =





X3(T )S2X2(t2)S1X1(t1)X−1
1 (t) if t ∈ [0, t1)

X3(T )S2X2(t2)X−1
2 (t) if t ∈ [t1, t2)

X3(T )X−1
3 (t) if t ∈ [t2,T ]

(3.13)

Proof. Direct differentiation of (3.4) and the use of previous results give statement of the

lemma:

P̃ξ(x0,0,µ,α)= x+τ(t2,x2)(T,0,µ,α)t2ξ(0,x0,0,µ,α)+x+ξ(t2,x2)(T,0,µ,α)

× [x−τ(t1,x1)(t2,0,µ,α)t1ξ(0,x0,0,µ,α)+x−ξ(t1,x1)(t2,0,µ,α)

× [x+ξ(0,x0)(t1,0,µ,α)+x+t(0,x0)(t1,0,µ,α)t1ξ(0,x0,0,µ,α)]

+x−t(t1,x1)(t2,0,µ,α)t2ξ(0,x0,0,µ,α)]

= X3(T ) f+(x2)
Dh(x2)X2(t2)S1X1(t1)

Dh(x2) f−(x2)
+X3(T )

[
X2(t2) f−(x1)

Dh(x1)X1(t1)

Dh(x1) f+(x1)

+ X2(t2)

[
X1(t1)− f+(x1)

Dh(x1)X1(t1)

Dh(x1) f+(x1)

]
− f−(x2)

Dh(x2)X2(t2)S1X1(t1)

Dh(x2) f−(x2)

]

= X3(T )S2X2(t2)S1X1(t1)

(3.11) can be shown by the same way.

We recall the following well-known result (cf. [8])

Lemma 3.4. Let X(t) be a fundamental matrix solution of equation X ′ =UX. Then X(t)−1∗

is a fundamental matrix solution of adjoint equation

(
X(t)−1∗)′ = −U∗X(t)−1∗

We solve equation (3.3) via Lyapunov-Schmidt reduction.

As it was already shown in Lemma 3.2, dim N (I− P̃ξ(x0,0,µ,α))≥ 1. From now on we

suppose that

H3) dim N (I− P̃ξ(x0,0,µ,α))= 1
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and therefore codim R (I− P̃ξ(x0,0,µ,α))= 1. We denote

R1 = R (I− P̃ξ(x0,0,µ,α)), R2 =
[
R (I− P̃ξ(x0,0,µ,α))

]⊥

Then two linear projections are considered P : R
n → R2 and Q : R

n → R1 defined by

P y =
〈y,ψ〉
|ψ|2 ψ

Q y = (I−P )y = y− 〈y,ψ〉
|ψ|2 ψ

where ψ ∈ R2 is fixed. We assume that initial point ξ of perturbed periodic trajectory is an

element of Σ. Equation (3.3) is equivalent to a couple of equations

Q (ξ− P̃(ξ,ε,µ,α)) = 0 P (ξ− P̃(ξ,ε,µ,α)) = 0

The first equation can be solved via Implicit Function Theorem which gives the existence

of r0,ε0 > 0 and a Cr–function ξ : (−ε0,ε0)×R
k ×R → B(x0, r0)∩Σ such that Q (ξ −

P̃(ξ,ε,µ,α)) = 0 for ε ∈ (−ε0,ε0), µ ∈ Rk, α ∈ R and ξ ∈ B(x0, r0)∩Σ if and only if ξ =

ξ(ε,µ,α), moreover ξ(0,µ,α) = x0.

Then the second equation has the form

P (ξ(ε,µ,α)− P̃(ξ(ε,µ,α),ε,µ,α))= 0

〈ξ(ε,µ,α)− P̃(ξ(ε,µ,α),ε,µ,α),ψ〉= 0 (3.14)

Again ε = 0 solves this equation. Differentiation with respect to ε at 0 gives
〈

ξε(0,µ,α)− P̃ξ(x0,0,µ,α)ξε(0,µ,α)− P̃ε(x0,0,µ,α),ψ
〉

=
〈
(I− P̃ξ(x0,0,µ,α))ξε(0,µ,α)− P̃ε(x0,0,µ,α),ψ

〉

=
〈
(I− P̃ξ(x0,0,µ,α))ξε(0,µ,α),ψ

〉
−
〈

P̃ε(x0,0,µ,α),ψ
〉

= −
〈

Z T

0
A(s)g(γ(s),s+α,0,µ)ds,ψ

〉

= −
Z T

0
〈A(s)g(γ(s), s+α,0,µ),ψ〉ds

= −
Z T

0
〈g(γ(s), s+α,0,µ),A(s)∗ψ〉ds

where

A(t)∗ =





X−1∗
1 (t)X1(t1)

∗S∗1X2(t2)
∗S∗2X3(T )∗ if t ∈ [0, t1)

X−1∗
2 (t)X2(t2)

∗S∗2X3(T )∗ if t ∈ [t1, t2)

X−1∗
3 (t)X3(T )∗ if t ∈ [t2,T ]

(3.15)

Note that by Lemma 3.4, A(t)∗ solves adjoint equation

X ′ = − f ∗+(γ(t))X if 0 < t < t1
X ′ = − f ∗−(γ(t))X if t1 < t < t2
X ′ = − f ∗+(γ(t))X if t2 < t < T

(3.16)



Periodic orbits in discontinuous systems 97

Differentiation of (3.14) with respect to ε and α at ε = 0 gives

−
Z T

0
〈gt(γ(s), s+α,0,µ),A(s)∗ψ〉ds

All results together complete the next theorem.

Theorem 3.5. Let conditions H1), H2), H3) hold, γ(t) and A(t)∗ are defined by (2.2) and

(3.15), respectively, and ψ ∈ R2. If there is (µ0,α0) ∈ R
k ×R, k ≥ 1 such that

Z T

0
〈g(γ(t), t +α0,0,µ0),A(t)∗ψ〉dt = 0 (3.17)

Z T

0
〈gt(γ(t), t +α0,0,µ0),A(t)∗ψ〉dt 6= 0 (3.18)

then there exists a neighbourhood U of the point (0,µ0) in R×Rk and a Cr−1–function

α(ε,µ), with α(0,µ0) = α0, such that perturbed equation (2.1) possesses a unique T –

periodic piecewise C1–smooth solution for each (ε,µ) ∈U.

Proof. Let denote D(ε,µ,α) = d
dε〈ξ(ε,µ,α)− P̃(ξ(ε,µ,α),ε,µ,α),ψ〉. Then the assump-

tions (3.17) and (3.18) are fulfilled if and only if

D(0,µ0,α0) = 0 Dε(0,µ0,α0) 6= 0

Implicit Function Theorem gives the existence of the function α(ε,µ) from the statement of

the theorem. It is obvious that equation (3.3) has a unique solution

ξ(ε,µ,α(ε,µ))− P̃(ξ(ε,µ,α(ε,µ)),ε,µ,α(ε,µ))= 0

which completes the proof.

Remark 3.6. If g is discontinuous in x, i.e.

g(x, t,ε,µ) =

{
g+(x, t,ε,µ) if x ∈ Ω+

g−(x, t,ε,µ) if x ∈ Ω−

it is possible to show that Theorem 3.5 still holds. Of course, g has to be T –periodic in t.

4 Geometric interpretation of condition H3

Consider the linearization of unperturbed problem of (2.1) along γ(t), given by

ẋ = D f±(γ(t))x (4.1)

Then (4.1) splits into two unperturbed equations

ẋ = D f+(γ(t))x if t ∈ [0, t1]∪ [t2,T ]

ẋ = D f−(γ(t))x if t ∈ (t1, t2)
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with impulsive conditions [9, 10, 13]

x(t1+) = S1x(t1−) x(t2+) = S2x(t2−)

where x(t±) = lims→t± x(s). We already know (from (3.6), (3.7), (3.9)) that they have the

fundamental matrices X1(t) resp. X3(t) and X2(t) satisfying X1(0) = X2(t1) = X3(t2) = I.

Consequently, the fundamental matrix solution of discontinuous variational equation (4.1)

is given by

X(t) =





X1(t) if t ∈ [0, t1)
X2(t)S1X1(t1) if t ∈ [t1, t2)

X3(t)S2X2(t2)S1X1(t1) if t ∈ [t2,T ]

Then a T –periodic solution of (4.1) with an initial point ξ fulfills ξ = X(T)ξ or equivalently

(I−X(T ))ξ = 0.

Now one can easily conclde the following result

Proposition 4.1. Condition H3) is equivalent to say that discontinuousvariational equation

(4.1) has the unique T –periodic solution up to a scalar multiple.

5 Discontinuous planar systems

5.1 Piecewise nonlinear problems

In this section, we consider the following problem

ẋ = ω1(y−δ)+εg1(x,y, t +α,ε,µ)
ẏ = −ω1x+εg2(x,y, t +α,ε,µ)

for y > 0

ẋ = ηx+ω2(y+δ)

+
[
x2 +(y+δ)2

]
[−ax−b(y+δ)]+εg1(x,y, t +α,ε,µ)

ẏ = −ω2x+η(y+δ)

+
[
x2 +(y+δ)2

]
[bx−a(y+δ)]+εg2(x,y, t +α,ε,µ)

for y < 0

(5.1)

with assumptions

η,δ,ω1,ω2,ω,a > 0, b ∈ R, ω2 −
ηb

a
> 0,

η

a
> δ2 (5.2)

For ε = 0 the first part of (5.1) can be easily solved via exponential matrix. For starting

point (x0,y0) =
(

0,δ+
√

η
a

)
and t ∈ [0, t1] the solution is

γ1(t) =

(√
η

a
sinω1t,δ+

√
η

a
cosω1t

)
(5.3)

t1 and (x1,y1) are obtained from relations h(γ1(t1)) = 0 for h(x,y) = y and (x1,y1) = γ1(t1),

respectively:

t1 =
1

ω1

arccos

(
−
√

a

η
δ

)
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(x1,y1) =

(√
η

a
−δ2,0

)

After transformation x = r cosθ, y + δ = r sinθ in the second part of (5.1) with ε = 0, we

have

ṙ = ηr−ar3

θ̇ = −ω2 +br2

from which, one can see, that the second part of (5.1) with ε = 0 possesses a stable limit

cycle/circle with the center at (0,−δ) and radius

√
η
a

, which intersects boundary Ω0 =

{(x,y) ∈ R
2|y = 0}. Now it is obvious that (x1,y1) is a point of this cycle and direction of

rotation remains the same as in Ω+ = {(x,y) ∈ R
2|y > 0}. Therefore γ2(t) is a part of the

circle, given by

γ2(t) = (x1 cosω3(t − t1)+δsinω3(t− t1),

−δ−x1 sinω3(t− t1)+δcos ω3(t− t1))
(5.4)

for t ∈ [t1, t2], where ω3 = ω2 − ηb
a

. Equation h(γ2(t2)) = 0 and symmetry of γ2(t) give

couple of equations

x1 cosω3(t2 − t1)+δsin ω3(t2 − t1) = −x1

−δ−x1 sinω3(t2− t1)+δcos ω3(t2 − t1) = 0

From them we obtain

t2 =
1

ω3

(
π+arccot

−δ2 +x2
1

2δx1

)
+ t1

(x2,y2) is a second intersection point of the limit cycle and Ω0

(x2,y2) = γ2(t2) =

(
−
√

η

a
−δ2,0

)

Then orbit γ(t) continues in Ω+ with

γ3(t) = (x2 cosω1(t − t2)−δsin ω1(t − t2),

δ−x2 sinω1(t − t2)−δcosω1(t − t2))
(5.5)

for t ∈ [t2,T ]. Period T is found from equation γ3(T ) = (x0,y0)

T =
1

ω1

arccos

(
−
√

a

η
δ

)
+ t2

The next theorem is due to Diliberto (cf. [4, 14]) and it is used to find fundamental

matrix solution of the variational equation
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Theorem 5.1. Let γ(t) is the solution of the differential equation ẋ = f (x), x ∈ R
2. If

γ(0) = p, f (p) 6= 0 then the variational equation along γ(t)

V̇ = D f (γ(t))V

has the fundamental matrix solution Φ(t) satisfying detΦ(0) = ‖ f (p)‖2, given by

Φ(t) = [ f (γ(t)),V(t)]

where [λ1,λ2] stands for a matrix with columns λ1 and λ2 and

V (t) = a(t) f (γ(t))+b(t) f⊥(γ(t))

a(t) =
Z t

0

[
2κ(γ(s))‖ f (γ(s))‖+div f⊥(γ(s))

]
b(s)ds

b(s) =
‖ f (p)‖2

‖ f (γ(t))‖2
e

R t
0 div f (γ(s))ds

div f (x) =
∂ f1(x)

∂x1

+
∂ f2(x)

∂x2

div f⊥(x) = −∂ f2(x)

∂x1

+
∂ f1(x)

∂x2

κ(γ(t)) =
1

‖ f (γ(t))‖3

[
f1(γ(t)) ḟ2(γ(t))− f2(γ(t)) ḟ1(γ(t))

]

Lemma 5.2. For unperturbed system

ẋ = ω1(y−δ)
ẏ = −ω1x

for y > 0

ẋ = ηx+ω2(y+δ)+
[
x2 +(y+δ)2

]
[−ax−b(y+δ)]

ẏ = −ω2x+η(y+δ)+
[
x2 +(y+δ)2

]
[bx−a(y+δ)]

for y < 0

(5.6)

we have, by fulfilled assumptions (5.2), corresponding fundamental matrices (see (3.6)–X1,

(3.7)–X2 and (3.9)–X3)

X1(t) =

(
cosω1t sinω1t

−sinω1t cosω1t

)

X2(t) =
a

η
[λ1,λ2] X3(t) = X1(t− t2)

λ1 =

(
U(−δx1 +δx1W +x2

1W̃)+V (δ2 +x2
1W −δx1W̃ )

U(−δ2 −x2
1W +δx1W̃ )+V(−δx1 +δx1W +x2

1W̃)

)

λ2 =

(
U(x2

1 +δ2W +δx1W̃)+V (−δx1 +δx1W −δ2W̃)

U(δx1 −δx1W +δ2W̃)+V (x2
1 +δ2W +δx1W̃)

)

U = sinω3(t− t1) V = cosω3(t− t1)

W = e−2η(t−t1) W̃ =
b

a
(1−W)

and saltation matrices (see (3.8)–S1 and (3.12)–S2)

S1 =

(
1 −δ(ω1+ω3)

ω1x1

0 ω3

ω1

)
S2 =

(
1 −δ(ω1+ω3)

ω3x1

0 ω1

ω3

)
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Proof. X1(t) and X3(t) are obtained easily because of the linearity of f+(x,y). Since

f+(x1,y1) =

(
−ω1δ

−ω1

√
η
a
−δ2

)
f−(x1,y1) =

(
ω3δ

−ω3

√
η
a
−δ2

)

f+(x2,y2) =

(
−ω1δ

ω1

√
η
a
−δ2

)
f−(x2,y2) =

(
ω3δ

ω3

√
η
a
−δ2

) (5.7)

so are the saltation matrices. Since (5.6) is 2–dimensional and one solution of the second

part is already known - limit cycle, we can use Theorem 5.1. Then we have a matrix

X̃2(t) = ω3

(
−x1U +δV U(δW +x1W̃)+V (x1W −δW̃ )

−δU −x1V U(−x1W +δW̃ )+V (δW +x1W̃)

)

X̃−1
2 (t1) =

a

ηω3

(
δ −x1

x1 δ

)

such that det X̃2(t1) = ‖ f−(x1,y1)‖2 = η
a

ω2
3. If X2(t) has to satisfy (3.7) then X2(t) =

X̃2(t)X̃−1
2 (t1).

Now the following result can be stated.

Proposition 5.3. Assuming (5.2) unperturbed system (5.6) has a T –periodic orbit to initial

point (x0,y0) =
(

0,δ+
√

η
a

)

γ(t) =





γ1(t) if t ∈ [0, t1]

γ2(t) if t ∈ [t1, t2]

γ3(t) if t ∈ [t2,T ]

where parts γ1(t), γ2(t) and γ3(t) are given by (5.3), (5.4) and (5.5), respectively. Moreover,

conditions H1), H2) and H3) are satisfied.

Proof. Condition H1) was already verified. Since ∇h(x,y) = (0,1) for all (x,y) ∈ R
2 and

(5.7) holds, condition H2) is also fulfilled.

Now suppose that dim N (I− P̃ξ(x0,0,µ,α)) > 1. We recall that f+(x0,y0) ∈ N (I−
P̃ξ(x0,0,µ,α)). Since N (I− P̃ξ(x0,0,µ,α)) is linear, there is a vector

v̄ ∈ N (I− P̃ξ(x0,0,µ,α))

such that 〈v̄, f+(x0,y0)〉 = 0. Then we can write v̄ = (0,v)∗. Using (3.10) we look for its

image by mapping P̃ξ(x0,0,µ,α)

S1X1(t1)v̄ =
v

ω1

√
a

η

(
ω1x1 +

δ2(ω1+ω3)
x1

−δω3

)

Next we have

X2(t2)S1X1(t1)v̄ =
v

ω1

√
a

η

(
δ2

x1
(ω1 +ω3)−x1ω1Z −δω1Z̃

δ(ω1 +ω3)+δω1Z −x1ω1Z̃

)
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where Z = e−2η(t2−t1) and Z̃ = b
a
(1−Z) are values of W and W̃ at t = t2, and

S2X2(t2)S1X1(t1)v̄ =
v

ω3

√
a

η

(
−δ2

x1
(ω1 +ω3)− ( δ2ω1

x1
+ ηω3

ax1
)Z +δω1Z̃

δ(ω1 +ω3)+δω1Z −x1ω1Z̃

)

Finally

X3(T)S2X2(t2)S1X1(t1)v̄ = v

(
δ
x1

ω1+ω3

ω3
+ δ

x1

ω1+ω3

ω3
Z − ω1

ω3
Z̃

Z

)

Since Z ≤ exp
{
−2η

ω3
π
}

< 1, it is obvious that v̄ = P̃ξ(x0,0,µ,α)v̄ if and only if v̄ = (0,0)∗.

The verification of condition H3) is finished.

Because, in general, the formula for A(t) is rather awkward, we move to examples with

concrete parameters.

Example 5.4. We take

a = b = δ = 1, η = 2, ω1 = 1, ω2 = 5

g(x,y, t,ε,µ)=

{
(sinωt,0)∗ if y > 0

(0,0)∗ if y < 0

(5.8)

Then we have ω3 = 3, T = 2π, initial point (x0,y0) = (0,1+
√

2), saltation matrices

S1 =

(
1 −4

0 3

)
S2 =

(
1 −4

3

0 1
3

)

and

P̃ξ(x0,y0,0,µ,α)=

(
1 1+ 5

3
e−2π

0 e−2π

)

Hence R1 = span
{(

1+ 5
3
e−2π,e−2π −1

)∗}
and ψ =

(
1−e−2π,1+ 5

3
e−2π

)
∈ R2. After

some algebra we obtain

M(α) =
1

3

e−2π

ω2 −1
[(ωA+B) sinωα+(ωC +D)cosωα]

where

A = 4
√

2sin

(
3

4
πω

)
+
(

3e2π
√

2+
√

2
)

sin

(
5

4
πω

)
+
(
3e2π −3

)
sin(2πω)

B = −5−3e2π −
(√

2+3
√

2e2π
)

cos

(
3

4
πω

)
+4

√
2cos

(
5

4
πω

)
+
(
5+3e2π

)
cos (2πω)

C = 3e2π −3−4
√

2cos

(
3

4
πω

)
−
(√

2+3
√

2e2π
)

cos

(
5

4
πω

)
+
(
3−3e2π

)
cos (2πω)

D = −
(√

2+3
√

2e2π
)

sin

(
3

4
πω

)
+4

√
2sin

(
5

4
πω

)
+
(
5+3e2π

)
sin(2πω)

(5.9)
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For ω > 0, ω 6= 1, M(α) has a simple root if and only if (ωA+B)2 +(ωC +D)2
> 0. Since

√
B2 +D2 ≤

((
5+3e2π +

√
2+3

√
2e2π +4

√
2+5+3e2π

)2

+
(

5+3e2π +
√

2 +3
√

2e2π +4
√

2
)2
) 1

2

=
√

3
(

1+
√

2
)√

9e4π +30e2π +25 ≤ 6739

that A and C are 8–periodic functions and according to Figure 2 we have

√
(ωA+B)2 +(ωC +D)2 ≥ ω

√
A2 +C2 −

√
B2 +D2 ≥ 420ω−6739

and one can see that for ω ≥ 16, T –periodic orbit in perturbed system (5.1) persists for

ε 6= 0 small. It can be proved numerically (see Figure 2) that

1

|ω2−1|

√
(ωA+B)2 +(ωC +D)2 > 0 (5.10)

for ω ∈ (0,16). We conclude

Corollary 5.5. Consider (5.1) with parameters (5.8). Then 2π–periodic orbit persists for

all ω > 0 and ε 6= 0 small.

Figure 2. Graphs of the functions
√

A2 +C2 and the left-hand side of (5.10)

Example 5.6. Now let

a = b = δ = 1, η = 2, ω1 = 1, ω2 = 5

g(x,y, t,ε,µ)=

{
µ1(sinωt,0)∗ if y > 0

µ2(x+y,0)∗ if y < 0

(5.11)
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Consequently, Melnikov function is

M(α) = µ1
1

3

e−2π

ω2 −1
[(ωA+B) sinωα+(ωC +D)cosωα]+µ2E

where A, B, C, D are given by (5.9) and

E =

√
2

975

(
739−223e−2π

)

M(α) possesses a simple root if and only if

|µ2| <
1

3

e−2π

|ω2 −1|

√
(ωA+B)2 +(ωC +D)2

E
|µ1| (5.12)

We have the next result

Corollary 5.7. Consider (5.1) with parameters (5.8). If µ1, µ2 and ω satisfy (5.12) then

2π–periodic orbit persists for ε 6= 0 small.

Remark 5.8. Inequality (5.12) means that if the periodic perturbation is sufficiently large

(with respect to non-periodic part of perturbation) then the T –periodic trajectory persists.

Note that the right-hand side of (5.12) can be estimated from above by

√
c1ω2 +c2ω+c3

|ω2 −1|

for appropriate constants c1, c2, c3, which tends to 0, if ω tends to +∞. Hence the bigger

frequency ω, the bigger |µ1| for µ2 6= 0 fixed, for persistence of the T –periodic orbit.

5.2 Piecewise linear problems

Here we consider the system

ẋ = b1 +εµ1 sinωt

ẏ = −2a1b1x+εµ2 cosωt
for y > 0

ẋ = −b2 +εµ1 sinωt

ẏ = −2a2b2x+εµ2 cosωt
for y < 0

(5.13)

where all constants ai, bi for i = 1,2 are assumed to be positive and (µ1,µ2) 6= (0,0), ω > 0.

The starting point can be chosen in the form (x0,y0) = (0,y0) with y0 > 0. Then with

h(x,y) = y we obtain results similar to those by the previous case.

Firstly, it is not difficult to find the trajectory starting from (0,y0) in Ω+ = {(x,y) ∈
R

2|y > 0} to Ω− = {(x,y) ∈ R
2|y < 0} and then back.

Lemma 5.9. For any y0 > 0, unperturbed system

ẋ = b1

ẏ = −2a1b1x
for y > 0

ẋ = −b2

ẏ = −2a2b2x
for y < 0 (5.14)
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possesses a unique periodic trajectory containing point (0,y0) given by

γ(t) =





γ1(t) =
(
b1t,−a1b2

1t2 +y0

)
if t ∈ [0, t1]

γ2(t) =
(
x1 −b2(t − t1),a2(x1 −b2(t − t1))

2 −a2x2
1

)
if t ∈ [t1, t2]

γ3(t) =
(
x2 +b1(t − t2),−a1(x2 +b1(t − t2))

2 +a1x2
2

)
if t ∈ [t2,T ]

where

t1 =
1

b1

√
y0

a1

(x1,y1) =

(√
y0

a1

,0

)
t2 =

2

b2

√
y0

a1

+ t1

(x2,y2) = (−x1,0) T =
1

b1

√
y0

a1

+ t2

Fundamental and saltation matrices are described in the next lemma

Lemma 5.10. Unperturbed system (5.14) has the corresponding fundamental matrices

X1(t) =

(
1 0

−2a1b1t 1

)
X2(t) =

(
1 0

−2a2b2(t − t1) 1

)

X3(t) =

(
1 0

−2a1b1(t− t2) 1

)

and saltation matrices

S1 =

(
1

√
a1(b1+b2)

2a1b1
√

y0

0 a2b2

a1b1

)
S2 =

(
1

√
a1(b1+b2)

2a2b2
√

y0

0 a1b1

a2b2

)

Proof. Because of the linearity of this case, fundamental matrices are obtained via equa-

tions

X1(t) = eAt X2(t) = eB(t−t1) X3(t) = eA(t−t2)

where

A =

(
0 0

−2a1b1 0

)
B =

(
0 0

−2a2b2 0

)

are Jacobi matrices of the functions f+(x,y) and f−(x,y), respectively. Saltation matrices

are given by their definitions in (3.8) and (3.12) where ∇h(x,y) = (0,1) in Ω and

f+(x1,y1) =

(
b1

−2a1b1

√
y0

a1

)
f−(x1,y1) =

(
−b2

−2a2b2

√
y0

a1

)

f+(x2,y2) =

(
b1

2a1b1

√
y0

a1

)
f−(x2,y2) =

(
−b2

2a2b2

√
y0

a1

) (5.15)

In this case, the corresponding matrices can be easily multiplied to derive the following

result
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Lemma 5.11. Function A(t) of (3.13) for the system (5.13) possesses the form

A(t) =





(
1− 2

√
a1b1t(b1+b2)

b2
√

y0
− b1+b2

b2
√

a1y0

2a1b1t 1

)
if t ∈ [0, t1)

(
−1− 2b1

b2
+

√
a1(t−t1)(b1+b2)√

y0

√
a1(b1+b2)

2a2b2
√

y0

2(
√

a1y0 −a1b2(t − t1)) −a1

a2

)
if t ∈ [t1, t2)

(
1 0

2(a1b1(t − t2)−
√

a1y0) 1

)
if t ∈ [t2,T ]

(5.16)

where all constants are assumed to be positive.

Proposition 5.12. Conditions H1), H2) and H3) are satisfied.

Proof. Since we already have the periodic orbit, ∇h(x,y) = (0,1) in Ω and (5.15), condi-

tions H1) and H2) are immediately satisfied.

Now let dim N (I− P̃ξ(x0,y0,0,µ,α)) > 1. Then there exists

v̄ ∈ N (I− P̃ξ(x0,y0,0,µ,α))

such that 〈v̄, f+(x0,y0)〉 = 0 and we can write v̄ = (0,v)∗. Since

P̃ξ(x0,y0,0,µ,α)v̄ = A(0)v̄ =

(
− v(b1+b2)

b2
√

a1y0

v

)

then v = 0, dim N (I− P̃ξ(x0,y0,0,µ,α)) = 1 and the condition H3) is verified.

Note that there is a lot of periodic trajectories in the neigbourhood of γ(t) but none

of them has the same period, because T = 2
√

y0

a1

(
1
b1

+ 1
b2

)
depends on the initial point

(x0,y0).

We have

R (I− P̃ξ(x0,y0,0,µ,α)) = R (I−A(0)) = R×{0}

Then ψ = (0,1)∗ and A(t)∗ψ =
(

a21(t)
a22(t)

)
. The assumptions of the Theorem 3.5 are equivalent

to say that

M(α) =

[
sinωα

(
µ1

Z T

0
a21(t)cosωtdt −µ2

Z T

0
a22(t) sinωtdt

)

+ cosωα

(
µ1

Z T

0
a21(t) sinωtdt +µ2

Z T

0
a22(t)cosωtdt

)]

has a simple root. It is easy to see, that this happens if and only if

Φ(ω) =

Z T

0
e−ıωt(µ1a21(t)− ıµ2a22(t))dt 6= 0 (5.17)

Similarly to [1], function Φ(ω) is analytic for ω > 0 and hence the following theorem

holds (see Theorem 4.2 in [1] and [15])
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Theorem 5.13. When Φ(ω) is not identically equal to zero, then there is at most a count-

able set {ω j} ⊂ (0,∞) with possible accumulating point at +∞ such that for any ω ∈
(0,∞)\{ω j}, the T –periodic orbit γ(t) persists for (5.13) under perturbations for ε 6= 0

small.

Because for general parameters, conditions on µ1 and µ2, so we could decide when

Φ(ω) is identically zero, or the set of roots is finite or countable, are too complicated, we

rather provide an example with concrete numerical values of parameters.

Example 5.14. We take

a1 = a2 = b1 = b2 = y0 = 1 (5.18)

Then from (5.17) we have

Φ(ω) = −4ı
e−2ıω

ω2
(2µ1 +ωµ2) sinω(cosω−1)

Thence for ω ∈ (0,∞) it holds: if ω = kπ for some k ∈ N or ω = −2µ1

µ2
for −µ1

µ2
> 0 then

Φ(ω) = 0.

We conclude

Corollary 5.15. Consider (5.13) with parameters (5.18). If ω > 0 is such that ω 6= kπ for

all k ∈N and ω 6= −2µ1

µ2
with µ2 6= 0 then T –periodic orbit γ(t) persists under perturbations

for ε 6= 0 small.

Finally, if Φ(ω) is identically zero then higher order Melnikov function must be derived

[2]. We omit those computations in our case, because they are very awkward.

Stability of persisting periodic trajectory will be investigated in our forthcoming paper.

Acknowledgments

First author was partially supported by Grants VEGA-MS 1/0098/08, VEGA-SAV 2/7140/27,

APVV-0414-07. The second one was supported by Grant VEGA-SAV 2/7140/27.

References
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[9] P. Kukučka, Jumps of the fundamental solution matrix in discontinuous systems and

applications. Nonlinear Analysis, Th. Meth. Appl. 66 (2007), pp 2529-2546.
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