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Abstract

In this paper we survey recent work on the existence of an adjoint for operators on
Banach spaces and applications. In [GBZS] it was shown that each bounded linear
operatorA, defined on a separable Banach spaceB, has a natural adjointA∗ defined
on the space. Here, we show that, for each closed linear operatorC defined onB,
there exists a pair of contractionsA, B such thatC = AB−1. We also show that, ifC is
densely defined, thenB = (I −A∗A)−1/2. This result allows us to extend the results of
[GBZS] (in a domain independent way) by showing that every closed densely defined
linear operator onB has a natural adjoint. As an application, we show that our theory
allows us to provide a natural definition for the Schatten class of operators in separable
Banach spaces. In the process, we extend an important theorem due to Professor Lax.
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1 Introduction

In a previous paper [GBZS], we used the fact that every separable Banach spaceB may be
continuously embedded in a separable Hilbert spaceH to show that each operatorA∈ L[B],
the algebra of bounded linear operators onB, has a natural adjoint operatorA∗ ∈ L[B]. This
means that, for example, every ideal is a star ideal inL[B], and such notions as unitary,
selfadjoint, normal, etc, may be defined in (almost) the same manner as for a Hilbert space.
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Here, we show that the bounded linear operatorsL[B] are continuously embedded inL[H ]
provided thatB ′ ⊂ H . (This extends a theorem of Professor Lax [LX].) Furthermore, if
B has the approximation property, then the embedding is dense. This allows us to prove
the existence of new classes of operators which naturally deserve to be called the Schatten
classes overB in the sense that they are the restrictions of the Schatten classes onH to B.
(The importance of these results is they imply that the structure of separable Banach spaces,
and the linear operators which act on them, are much closer to those of Hilbert spaces than
perviously thought possible.)

2 Preliminaries

As above,L[B],L[H ] denote the bounded linear operators onB,H respectively, andB is a
continuous dense embedding inH . The following is the major result in Gill et al [GBZS]. It
generalizes the well-known result of von Neumann [VN] for bounded operators on Hilbert
spaces.

Theorem 1. LetB be a separable Banach space and letA be a bounded linear operator on
B. ThenA has a well-defined adjointA∗ defined onB such that:

1. the operatorA∗A≥ 0 (maximal accretive),

2. (A∗A)∗ = A∗A, and

3. I +A∗A has a bounded inverse.

The proof depends on the fact that, givenB, there always exist Hilbert spacesH1 and
H2 such thatH1 ⊂ B ⊂ H2, as continuous dense embeddings, withH1 determined byH2

(see [GBZS]). IfA is any bounded linear operator onB, we defineA∗ by

A∗x = J−1
1 [(A1)′]J2|B(x), (1)

whereA1 is A restricted toH1, J2|B mapsB into H ′
2 andJ−1

1 mapsH ′
1 ontoH1.

Remark 2. Recall that, on any Hilbert spaceH , the adjoint of a linear operator is defined
asA∗x= J−1A

′
Jx for all Jx∈D(A

′
). Thus, we see that (1) is very close to the Hilbert space

definition.

Returning to Theorem 1, it is not clear thatA need have a bounded extension toH2. On
the other hand, the theorem by Lax [LX] states that:

Theorem 3. If A is a bounded linear operator onB such thatA is selfadjoint (i.e.,(Ax,y)2 =
(x,Ay)2 for all x,y,∈ B), thenA is bounded onH2 and‖A‖H2

≤ k‖A‖B with k constant.

SinceA∗A is selfadjoint onB, it is natural to expect that the same is true onH2. How-
ever, this need not be the case. To get a simple counterexample, recall that, in standard
notation, the simplest class of bounded linear operators onB is B⊗B ′, in the sense that:

B⊗B ′ : B → B, by Ax= (b⊗b′)x =
〈
x,b′

〉
b.

Thus, ifb′ is in B ′\H ′
2, thenJ2{J−1

1 [(A1)′]J2|B} is not inH ′
2, so thatA∗A is not selfadjoint

as an operator onH2. The next result is an extension of Theorem 1. (This also corrects an
error in Theorem 6 of [GBZS].)
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Theorem 4. LetA be a bounded linear operator onB. If B ′ ⊂H2, thenA has a bounded ex-
tension toL[H ], with ‖A‖H2

≤ k‖A‖B with k constant (i.e.,L[B] is continuously embedded
in L[H ] ).

Proof. : For any bounded linear operatorA defined onB, let T = A∗A. It is easy to see that
T extends to a closed linear operatorT̄ on H2. As B ′ ⊂H2, we see that̄T is selfadjoint on
B. By Lax’s theorem,T̄ is bounded onH2 and‖A∗A‖H2

= ‖A‖2
H2
≤ ‖A∗A‖B ≤C‖A‖2

B ,

whereC = in f{M| ‖A∗A‖B ≤M‖A‖2
B}.

Clearly, Theorem 4 is empty unless spaces with the above properties exist. The follow-
ing theorem is a by-product of the work in [GZ].

Theorem 5. Let B be a classical Banach space. Then there exists a Hilbert spaceH such
that B ′ ⊂H .

2.1 Closed Linear operators onB

In this section, we extend Theorem 1 to the class of closed densely defined linear operators
on B. For a single opeator, this is both direct and easy (see [GZ1]), but depends on the
domain ofA and hence, onH1. A result that is independent ofH1 requires additional effort.

Definition 6. If B is a bounded linear operator onB, we defineB−1 to be the inverse of the
restriction ofB to the closure ofB∗(B).

Theorem 7. Suppose thatS is a subset of(B, ‖·‖), and(S , ‖·‖′) is a Banach space with
‖ψ‖′ ≥ ‖ψ‖ for eachψ ∈ S . ThenS is the range of a nonnegative bounded linear operator
in B.

Proof. SinceS is a subset ofB, the inclusion mapT from (S , ‖·‖′) into (B, ‖·‖) is
bounded. It follows that the adjoint ofT, T∗, is bounded from(B, ‖·‖) to (S , ‖·‖′). If
T∗ = U [TT∗]1/2 is the polar decomposition ofT∗, thenU is a partial isometry mappingB
ontoS . SinceT is nonnegative, so isU .

Theorem 8. LetR(·) denote the range of an operator. IfA,B∈ L(B), then

R(A∗)+R(B∗) = R([A∗A+B∗B]1/2).

Proof. Let T∗ act onB ⊕B in the normal way and represent it asT∗ =
(

A∗ B∗

0 0

)
, so

thatT =
(

A 0
B 0

)
, andT∗T =

(
A∗A+B∗B 0

0 0

)
. It follows that:

[R(A∗)+R(B∗)]⊕{0}= R(T∗) = R([T∗T]1/2) = R

(
[A∗A+B∗B]1/2 0

0 0

)

= R([A∗A+B∗B]1/2)⊕{0} .
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Theorem 9. LetC be a closed linear operator onB. Then there exists a pair of bounded
linear contraction operatorsA,B∈ L[B] such thatC = AB−1, with B nonnegative. Further-
more,D(C) = R(B), R(C) = R(A) andP = A∗A+ B∗B is the orthogonal projectionB−1B
ontoR̄(B∗) = R(A∗)+R(B∗).

Proof. Let S = D(C) be the domain ofC and endow it with the graph norm, so that‖ϕ‖′ =
‖ψ‖+‖Cψ‖. SinceC is linear and closed,(S , ‖·‖′) is a Banach space and‖ψ‖′ ≥ ‖ψ‖.

We will have use of the fact that, sinceS is a Banach subspace ofB, it is embedded in
a Hilbert subspace(S ′,〈·, ·〉′) of H , where〈ϕ,ψ〉′ = 〈ϕ,ψ〉+ 〈Cϕ,Cψ〉.

By Theorem 7, there is a bounded nonnegative contractionB with B(B) = S and, for
ψ ∈ S , ‖ψ‖′ = ∥∥B−1ψ

∥∥. Now letA = CBso that, forψ ∈ B, we have:

‖Aψ‖= ‖CBψ‖6 ‖Bψ‖+‖CBψ‖
= ‖Bψ‖′ = ∥∥B−1Bψ

∥∥ = ‖Pψ‖6 ‖ψ‖ .

Hence,‖Aϕ‖ ≤ ‖ϕ‖ so thatA is a contraction andA = CB= (AB−1)B = A(B−1B) = AP.
Also, sinceA andB are bounded onB, they have extensions toH . With the same notation,
we also have onH :

〈ϕ, [A∗A+B∗B]ψ〉= 〈Bϕ,Bψ〉+ 〈CBϕ,CBψ〉
= 〈Bϕ,Bψ〉′ = 〈

B−1Bϕ,B−1Bψ
〉

= 〈Pϕ,Pψ〉= 〈ϕ,Pψ〉 .
Hence,A∗A+ B∗B = P and, sinceR(A∗)+ R(B∗) = R([A∗A+ B∗B]1/2), R(A∗)+ R(B∗) is
closed and equal to the closure ofR(B∗) onH , the same is true for the restriction toB (note
thatB is selfadjoint).

Let V(B) be the set of contractions andC(B) the set of closed densely defined linear
operators onB. The following improvement of Theorem 9 is possible when the operatorC
is also densely defined. This extends a theorem of Kaufman [KA] to Banach spaces.

Theorem 10. The equationK(A) = A(I −A∗A)−1/2 defines a bijection fromV(B) onto
C(B), with inverseK−1(C) = C(I +C∗C)−1/2.

Proof. Let A∈ V(B) and setB = (I −A∗A)1/2, which is easily seen to be positive and in
V(B). It follows that K(A) = AB−1 andA∗A+ B2 = I so that, by the proof of Theorem
9, we see thatK(A) is a closed linear operator onB. Since the domain ofK(A) is B(B),
which is dense inB, K(A) is in C(B). For the opposite direction, ifC ∈ C(B), using the
same notation, letC be the extension toH . Then, by Theorem 9 there exists a pair of
bounded linear contraction operatorsA,B∈ L[H ] such thatC = AB−1 with B positive with
rangeD(C) andA∗A+ B2 = I . Furthermore, for each nonzeroϕ ∈ H , ‖ϕ‖2

H −‖Aϕ‖2
H =

‖Bϕ‖2
H > 0. Thus,A ∈ V(H ) with K(A) = C, so that the restriction ofA ∈ V(B) and

K(A) = C on B.
Now, the graph ofC in H is the set of all{(Bϕ,Aϕ),ϕ ∈ H } , so that C* = {(φ,ψ) ∈

H ×H } such that(φ,Aϕ)H = (ψ,Bϕ)H , or (A∗φ,ϕ)H = (Bψ,ϕ)H for all ϕ ∈ H , so that
C∗ = B−1A∗. Thus, the same is true for the restriction ofC∗ to B. It is clear thatI +C∗C is
an invertible linear operator with bounded inverse and, for eachϕ ∈ B, we have that

ϕ = B2ϕ+B−1(I −B2)B−1B2ϕ

= (I +B−1A∗AB−1)B2ϕ = (I +C∗C)B2ϕ.
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It follows that(I +C∗C)−1 = B2 and therefore,A = CB= C(I +C∗C)−1/2 = K−1(C).

Corollary 11. Let B be a separable Banach space and letA be a closed densely defined
linear operator onB. ThenA has a well-defined adjointA∗ defined onB such that:

1. the operatorA∗A≥ 0 (maximal accretive),

2. (A∗A)∗ = A∗A, and

3. I +A∗A has a bounded inverse.

2.2 Semigroups of Operators

In this section we introduce some basic results from the theory of semigroups of operators.
Our purpose is to provide background material that will be required later. We use a fixed
separable Banach space overC, the complex numbers, and assume, when convenient, that
B = KS2[Rn] (see [GZ]). The basic references are Goldstein [GS] and Pazy [PZ], where
complete proofs can be found.

Definition 12. A family of linear operators{S(t),0≤ t < ∞} (not necessarily bounded),
defined onD ⊂ B, is a semigroup if

1. S(t +s)ϕ = S(t)S(s)ϕ for ϕ ∈D, the domain of the semigroup.

2. The semigroup is said to be strongly continuous iflim
τ→0

S(t + τ)ϕ = S(t)ϕ for all ϕ ∈
D, t > 0.

3. It is said to be aC0-semigroup if it is strongly continuous,S(0) = I , andlim
t→0

S(t)ϕ = ϕ
for all ϕ ∈ B.

4. S(t) is aC0-contraction semigroup if‖S(t)‖6 1.

Definition 13. The linear operatorA defined by

D(A) =
{

ϕ ∈ B
∣∣∣∣limt↓0

1
t [S(t)ϕ−ϕ] exists

}
and

Aϕ = lim
t↓0

1
t [S(t)ϕ−ϕ] =

d+S(t)ϕ
dt

∣∣∣∣
t=0

for ϕ ∈ D(A)

is the infinitesimal generator of the semigroupS(t) andD(A) is the domain ofA.

Definition 14. For eachλ > 0, we define the Yosida approximator by:Aλ = λAR(λ,A) =
λ2R(λ,A)−λI .

Theorem 15. LetA be a closed linear operator withD(A) = B. If the resolvent setρ(A) of
A containsR+ and, for everyλ > 0, ‖R(λ,A)‖B 6 λ−1, then

1. lim
λ→∞

Aλϕ = Aϕ for ϕ ∈ D(A),
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2. Aλ is a bounded generator of a contraction semigroup and, for eachϕ ∈ B, λ, µ> 0,
we have: ∥∥etAλϕ−etAµϕ

∥∥
B 6 t

∥∥Aλϕ−Aµϕ
∥∥

B .

Definition 16. LetA be a linear operator onB. A is said to be dissipative if

Re
〈
Aϕ, f s

ϕ
〉

6 0 for all ϕ ∈ D(A).

Definition 17. LetA be a closed dissipative linear operator withD(A) dense inB. If there
is a λ0 such thatRan(λ0I −A) = B, thenA is said to be m-dissipative.

2.3 Generalized Yosida Approximator

If all we know is thatA is the generator of a strongly continuous semigroupT(t)= exp(tA), t >
0, onB, this is not enough to ensure thatA has a Yosida Approximator. Unfortunately, for
general strongly continuous semigroups,A may not have a bounded resolvent. The follow-
ing (artificial example) shows what can (and will) happen in some real cases.

Example 18. Let H = H0
0(Rn) be the Hilbert space(overR) of functions mappingRn to

itself, which vanish at infinity. Consider the Cauchy problem:

d
dt

u(x, t) = a|x|u(x, t), u(x,0) = f(x),

wherea = ∏n
i=1sign(xi). LetT(t)f(x) = eta|x| f(x), wherex = [x1, · · · ,xn]t . It is easy to see

that T(t) is a semigroup onH with generatorA such thatAf(x) = a|x| f(x). It follows that
u(x, t) = S(t)f(x) solves the above initial-value problem. If we compute the resolvent, we
get that:

R(λ,A)f(x) =
Z ∞

0
e−λt exp{−t |x|}f(x)dt =

1
λ−a|x| f(x).

It is clear that the spectrum ofA is the real line, so thatR(λ,A) is an unbounded operator
for all real λ. However, it can be checked that the bounded linear operator

Aλ = aλ|x|/[λ+ |x|]
converges strongly toA (onD(A)) asλ→ ∞, and

lim
λ→0

Tλ(t)f(x) = T(t)f(x).

We do not prove this since it is a special case of the next theorem.

As an application of our extension theory, we will show that the Yosida approach can be
generalized in such a way as to give a contractive approximator for all strongly continuous
semigroups of operators onB. For any closed densely defined linear operatorA on B, let
T =−[A∗A]1/2, T̄ =−[AA∗]1/2. Since−T(−T̄) is maximal accretive,T(T̄) is m-dissipative
and hence, generates a contraction semigroup. We can now writeA as A = UT, where
U is a partial isometry. DefineAλ by Aλ = λAR(λ,T). Note thatAλ = λUTR(λ,T) =
λ2UR(λ,T)−λU and, althoughA does not commute withR(λ,T), we haveλAR(λ,T) =
λR(λ, T̄)A.
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Theorem 19. For every closed densely defined linear operatorA on B, we have that

1. Aλ is a bounded linear operator andlimλ→∞ Aλϕ = Aϕ, for all ϕ ∈ D(A),

2. exp[tAλ] is a bounded contraction fort > 0, and

3. if A generates a strongly continuous semigroupT(t) = exp[tA] onD for t > 0, D(A)⊆
D, thenlimλ→∞ ‖exp[tAλ]ϕ−exp[tA]ϕ‖B = 0 for all ϕ ∈ D.

Proof. : To prove (1), letϕ ∈ D(A). Now use the fact thatlimλ→∞ λR(λ, T̄)ϕ = ϕ andAλϕ =
λR(λ, T̄)Aϕ. To prove (2), useAλ = λ2UR(λ,T)−λU , ‖λR(λ,T)‖B = 1, and‖U‖B = 1 to
get that‖exp[tλ2UR(λ,T)− tλU ]‖B ≤ exp[−tλ‖U‖B ]exp[tλ‖U‖B‖λR(λ,T)‖B ]≤ 1.

To prove (3), lett > 0 andϕ ∈ D(A). Then

‖exp[tA]ϕ−exp[tAλ]ϕ‖B = ‖
Z t

0

d
ds

[e(t−s)AλesA]ϕds‖B

≤
Z t

0
‖[e(t−s)Aλ(A−Aλ)esAϕ]‖B

≤
Z t

0
‖[(A−Aλ)esAϕ]‖Bds.

Now use‖[AλesAϕ]‖B = ‖[λR(λ, T̄)esAAϕ]‖B ≤ ‖[esAAϕ]‖B to get ‖[(A−Aλ)esAϕ]‖B ≤
2‖[esAAϕ]‖B . Now, since‖[esAAϕ]‖B is continuous, by the bounded convergence theorem
we havelimλ→∞ ‖exp[tA]ϕ−exp[tAλ]ϕ‖B ≤

R t
0 limλ→∞ ‖[(A−Aλ)esAϕ]‖Bds= 0.

Theorem 20. EveryC0-semigroup of contractions onL2[Rn], {S(t),0 6 t < ∞}, extends to
a C0-semigroup of contractions onKS2[Rn].

2.4 Schatten Classes

In this section, we show how our approach allows us to provide a natural definition for the
Schatten class of operators onB.

LetK(B) be the class of compact operators onB and letF(B) be the set of operators
of finite rank. Recall that, for separable Banach spaces,K(B) is an ideal that need not be
the maximal ideal inL[B]. If M(B) is the set of weakly compact operators andN(B) is the
set of operators that map weakly convergent sequences into strongly convergent sequences,
it is known that both are closed two-sided ideals in the operator norm, and, in general,
F(B) ⊂ K(B) ⊂M(B) andF(B) ⊂ K(B) ⊂ N(B) (see Dunford and Schwartz [DS], pg.
553). For reflexive Banach spacesK(B) = N(B) andM(B)=L[B]. For the space of con-
tinuous functionsC[Ω], on a compact Hausdorff spaceΩ, Grothendieck [GR] has shown
thatM(B)=N(B). On the other hand, it is shown in Dunford and Schwartz [DS] that, for a
positive measure space,(Ω,Σ,µ), onL1(Ω,Σ,µ) , M(B)⊂ N(B).

We assume thatB has the approximation property (i.e., every compact operator can be
approximated by operators of finite rank). Recall that, givenB, there always existH1 and
H2 such thatH1 ⊂ B ⊂ H2, as continuous dense embeddings, withH1 determined byH2

(see [GBZS]). LetA be a compact operator onB and letĀ be its extension toH2. For each
compact operator̄A on H2, there exists an orthonormal set of functions{ϕ̄n |n > 1} such
that

Ā = ∑∞
n=1µn(Ā)(· , ϕ̄n)2Ū ϕ̄n,
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where theµn are the eigenvalues of[Ā∗Ā]1/2 =
∣∣Ā∣∣, counted by multiplicity and in decreasing

order, andŪ is the partial isometry associated with the polar decomposition ofĀ = Ū
∣∣Ā∣∣.

Without loss, we can assume that the set of functions{ϕ̄n |n > 1} is contained inB and
{ϕn |n > 1} is the normalized version inB. If Sp[H2] is the Schatten Class of orderp in
L[H2], it is well-known that, ifĀ∈ Sp[H2], its norm can be represented as:

∥∥Ā
∥∥H2

p
= {Tr[Ā∗Ā]p/2}1/p =

{
∑∞

n=1

(
Ā∗Āϕ̄n, ϕ̄n

)p/2
H2

}1/p
=

{
∑∞

n=1

∣∣µn(Ā)
∣∣p}1/p

.

Definition 21. We define the Schatten Class of orderp in L[B] by:

Sp[B] = Sp[H2]∩L[B] |B
SinceĀ is the extension ofA∈ Sp[B], we can representA on B as

A = ∑∞
n=1µn(A)〈· , f s

n(ϕ)〉Uϕn,

where f s
n(ϕ) = J2(ϕn)

/
‖ϕn‖2

2 is the Steadman duality map associated withϕn. The corre-

sponding norm ofA onSp[B] is defined by:

‖A‖B
p

=
{
∑∞

n=1〈A∗Aϕn, f s
n(ϕ)〉p/2

}1/p
.

Theorem 22. LetA∈ Sp[B], then‖A‖B
p

=
∥∥Ā

∥∥H2

p
.

Proof. It is clear that{ϕn |n > 1} is a set of eigenfunctions forA∗A on B. Furthermore,
by our extension of Lax’s Theorem,A∗A is selfadjoint and the point spectrum ofA∗A is
unchanged by its extension toH2. It follows thatA∗Aϕn =

∣∣µn(Ā)
∣∣2 ϕn,

〈A∗Aϕn, f s
n(ϕ)〉=

1

‖ϕn‖2
2

(A∗Aϕn,ϕn)2 =
|µn|2
‖ϕn‖2

2

(ϕn,ϕn)2 = |µn|2 ,

and

‖A‖B
p

=
{
∑∞

n=1〈A∗Aϕn, f s
n(ϕ)〉p/2

}1/p
=

{
∑∞

n=1 |µn|p
}1/p =

∥∥Ā
∥∥H2

p
.

Lemma 23. If B has the approximation property, the embedding ofL[B] in L[H2] is both
continuous and dense.

Proof. Recall that the embedding is continuous by Theorem 4. SinceB has the approxi-
mation property, the finite rank operatorsF(B) on B are dense in the finite rank operators
F(H2) on H2. It follows thatSp[B] is dense inSp[H2]. In particular,S1[B] is dense in
S1[H2] and, sinceS1[H2]∗ = L[H2], we see thatS1[B]∗ = L[B] must be dense inL[H2].

It is clear that much of the theory of operator ideals on Hilbert spaces extend to separable
Banach spaces in a straightforward way. We state a few of the more important results to
give a sense of the power provided by the existence of adjoints. The first result extends
theorems due to Weyl [WY], Horn [HO], Lalesco [LE] and Lidskii [LI]. (The methods of
proof for Hilbert spaces carry over without much difficulty.)
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Theorem 24. LetA ∈K(B), the set of compact operators onB, and let{λn} be the eigen-
values ofA counted up to algebraic multiplicity. IfΦ is a mapping on[0,∞] which is
nonnegative and monotone increasing, then we have:

1. (Weyl)

∑N
n=1 Φ(|λn(A)|) 6 ∑N

n=1 Φ(µn(A))

and

2. (Horn)

∑N
n=1 Φ(|λn(A1A2)|) 6 ∑N

n=1 Φ(µn(A1)µn(A2)).

In caseA ∈ S1(B), we have:

3. (Lalesco)

∑N
n=1

|λn(A)|6 ∑N
n=1µn(A)

and

4. (Lidskii)

∑N
n=1 λn(A) = Tr(A).

2.5 Discussion

In a Hilbert spaceH the Schatten classesSp(H ) are the only ideals inK(H ) andS1(H ) is
minimal. In a Banach space, this is far from true. For a fairly complete review up to 1975,
see Retherford [RE]. We limited this discussion to a few of the major topics in the history
of the subject. First, Grothendieck [GR] defined an important class of nuclear operators as
follows:

Definition 25. If A ∈ F(B) (the operators of finite rank), define the idealN1(B) by:

N1(B) = {A ∈ F(B) | N1(A) < ∞} ,

where

N1(A) = glb
{
∑m

n=1‖ fn‖‖φn‖
∣∣ fn ∈ B ′, φn ∈ B, A = ∑m

n=1 φn〈· , fn〉
}

and the greatest lower bound is over all possible representations forA.

Grothendieck has shown thatN1(B) is the completion of the finite rank operators.
N1(B) is a Banach space with normN1(·), and is a two-sided ideal inK(B). It is easy
to show that:

Corollary 26. M(B),N(B) andN1(B) are two-sided *ideals.

In order to compensate for the (apparent) lack of an adjoint for Banach spaces, Pietsch
[PI] defined a number of classes of operator ideals for a givenB. Of particular importance
for our discussion is the classCp(B), defined by

Cp(B) =
{

A ∈K(B)
∣∣Cp(A) = ∑∞

i=1 [si(A)]p < ∞
}

,
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where the singular numberssn(A) are defined by:

sn(A) = inf {‖A−K‖ |rank ofK 6 n} .

Pietsch has shown thatC1(B) ⊂ N1(B), while Johnson et al [JKMR] have shown that for
eachA ∈ C1(B), ∑∞

n=1 |λn(A)| < ∞. On the other hand, Grothendieck [GR] has provided
an example of an operatorA in N1(L∞[0,1]) with ∑∞

n=1 |λn(A)| = ∞ (see Simon [SI], pg.
118). Thus, it follows that, in general, the containment is strict. It is known that, ifC1(B) =
N1(B), thenB is isomorphic to a Hilbert space (see Johnson et al). It is clear from the above
discussion, that:

Corollary 27. Cp(B) is a two-sided *ideal inK(B), andS1(B)⊂ N1(B).

For a given separable Banach space, it is not clear how the spacesCp(B) of Pietsch
relate to our Schatten ClassesSp(B) (clearlySp(B) ⊆ Cp(B)). Thus, one question is that
of equality forSp(B) andCp(B). (There are many interesting research directions one can
pursue from here.)
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