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OPTIMAL CONTROL OF VARIATIONAL INEQUALITIES∗

ALAIN BENSOUSSAN† , KEERTHI CHANDRASEKARAN‡, AND JANOS TURI‡

Abstract. We consider control problems for the variational inequality describing a single degree

of freedom elasto-plastic oscillator. We are particularly interested in finding the ”critical excitation”,

i.e., the lowest energy input excitation that drives the system between the prescribed initial and

final states within a given time span. This is a control problem for a state evolution described by

a variational inequality. We obtain Pontryagin’s necessary condition of optimality. An essential

difficulty lies with the non continuity of adjoint variables.

1. Introduction. We showed in [4], [5], and [6] that the models used in the lit-

erature for non-linear elasto-plastic oscillators ( see e.g., [8], [11], [12], [15], [16], [17],

[18] and the references therein) are equivalent to stochastic variational inequalities.

The main objective of this paper is to develop a framework to study control problems

for these variational inequalities. We are particularly interested in finding the critical

excitation of the system, which can be defined as the input excitation with the lowest

energy that connects prescribed states of the system in a given time interval. The

study of critical excitation has an extensive literature (see e.g., [1], [2], [9], [10], [14],

[19]), and in case of nonlinear hysteretic systems, it has relevance in the understand-

ing of nonlinear response of structures under severe loads (like earthquakes).

In this paper, we present a complete solution to the optimal control problem for the

variational inequality describing the single degree of freedom elasto-plastic oscillator.

First, we derive Pontryagin’s necessary condition for optimality using a penalized

problem and limiting arguments. Then we formulate conditions on the non continu-

ity of adjoint variables at instances of phase changes and obtain a two point boundary

value problem with additional internal boundary conditions at the phase changes for

the state and adjoint variables. The solution of this problem gives an expression for

the optimal control.

2. Control of the Variational Inequality. Consider the variational inequality

describing a single degree of freedom (sdof) elasto-plastic oscillator

(2.1) ẏ + c0y + kz = v, (ż − y)(ζ − z) ≥ 0, |ζ| ≤ Y, |z(t)| ≤ Y,
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where, y = ẋ, z = x − x̃, x is the displacement of the oscillator, x̃(t) is the total

plastic deformation accumulated by time t by the oscillator, Y > 0 represents the size

of the elastic region, and v denotes the control input. We shall assume zero initial

conditions

(2.2) y(0) = 0, z(0) = 0.

With zero initial conditions we seek to minimize the control input energy which takes

the system to a prescribed state at time T > 0, i.e.,

Min J(v(·)) =
1

2

∫ T

0

v2dt subject to x(T ) = x̄, y(T ) = ȳ.

Introducing Lagrange multipliers λ, µ to satisfy the constraints and noting that

x(t) =

∫ t

0

yds

we have the optimal control problem

(2.3) Min J(v(·)) =
1

2

∫ T

0

v2dt + λ

∫ T

0

y(t)dt + µy(T ),

where y, z satisfy (2.1) - (2.2).

2.1. The Penalized Problem. Let ε > 0. The penalized problem correspond-

ing to (2.1) is

(2.4)

ẏ + c0y + kz = v,

ż = y −
1

ε
(z − Y )+ +

1

ε
(z + Y )−

y(0) = 0, z(0) = 0

where y = yε(v(·)) and z = zε(v(·)) and v(·) minimizes the functional

(2.5) Min Jε(v(·)) =
1

2

∫ T

0

v2dt + λ

∫ T

0

yε(v(·))(t)dt + µyε(v(·))(T ).

Note that the penalized problem has a solution uε(·) such that

Jε(uε(·)) ≤ Jε(v(·)).

Indeed Jε(v(·)) is continuous in L2(0, T ) and Jε(v(·)) → ∞ as ‖v‖L2(0,T ) → ∞.

2.2. Necessary Conditions for the Penalized Problem. When we replace

the variational inequality by the penalized system, we can apply standard techniques

of control theory to obtain the necessary conditions of optimality. We shall use the

notation u(·) = uε(·) for the optimal control of (2.4)-(2.5). Let y(t), z(t) and ξ(t), η(t)

be solutions of (2.4)-(2.5) with controls u(·) and u(·) + θv(·) , respectively. Then

ỹ =
1

θ
(ξ − y), and z̃ =

1

θ
(η − z)
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satisfy the equations

˙̃y + c0ỹ + kz̃ = v,

ż + θ ˙̃zθ = y + θỹθ −
1

ε
(z + θz̃θ − Y )+ +

1

ε
(z + θz̃θ + Y )−

with initial conditions

ỹ(0) = 0 and z̃(0) = 0.

It follows that

θ ˙̃zθ = θỹθ +
1

ε
(z − Y )+ −

1

ε
(z + Y )− −

1

ε
(z + θz̃θ − Y )+ +

1

ε
(z + θz̃θ + Y )−.

Then we have

| ˙̃zθ − ỹθ| ≤
1

ε
|z̃θ|.

It is easy to check that ỹθ, z̃θ are bounded in H1(0, T ) as θ → 0 (ε is fixed here).

Let us extract a subsequence such that

(2.6) ỹθ → ỹ, z̃θ → z̃ in H1(0, T ) weakly and C0(0, T ) strongly.

We claim that

(2.7)
1

θ
(−

1

ε
(z(t) + θz̃θ(t) − Y )+ +

1

ε
(z(t) − Y )+)) → −

1

ε
1Iz(t)−Y >0z̃(t) in L2(0, T )

weakly, as θ → 0.

It is sufficient to prove the convergence a.e.t. But a.e.t z(t) > Y or z(t) < Y . Since

z(t) + θz̃θ(t) − Y → 0,

necessarily

z(t) + θz̃θ(t) − Y > 0 if z(t) − Y > 0 or z(t) + θz̃θ(t) − Y < 0 if z(t) − Y < 0

for θ sufficiently small, depending on t. Therefore the left hand side of (2.7) is equal

to

−
1

ε
1Iz(t)−Y >0z̃θ

for θ sufficiently small, depending on t. Since

z̃θ(t) → z̃(t) a.e.t,
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we obtain (2.7).

It then easily follows that the limit ỹ, z̃ is the solution of the system

(2.8)

˙̃y + c0ỹ + kz̃ = v,

˙̃z = ỹ −
1

ε
z̃1Iz(t)−Y >0 −

1

ε
z̃1Iz(t)+Y <0

ỹ(0) = z̃(0) = 0.

We next compute

Jε(u(·) + θv(·)) =
1

2
θ2

∫ T

0

v2(t)dt + θ

∫ T

0

v(t)u(t)dt +

∫ T

0

u2(t)dt

+λ

∫ T

0

y(t)dt + θλ

∫ T

0

ỹθ(t)dt + µy(T ) + θµỹθ(T )

= Jε(u(·)) + θ[

∫ T

0

v(t)u(t)dt + λ

∫ T

0

ỹθ(t)dt + µỹθ(T )] +
1

2
θ2

∫ T

0

v2(t)dt

and

1

θ
(Jε(u(·) + θv(·)) − Jε(u(·))) →

∫ T

0

v(t)u(t)dt + λ

∫ T

0

ỹ(t)dt + µỹ(T )

and from the optimality of u(·) we deduce

(2.9)

∫ T

0

v(t)u(t)dt + λ

∫ T

0

ỹ(t)dt + µỹ(T ) = 0.

2.3. Adjoint System. Introduce (p(t), q(t)) = (pε(t), qε(t)) solution of the cor-

responding adjoint system

(2.10)

−ṗ = −c0p + q + λ

−q̇ = −kp −
q

ε
(1Iz−Y >0 + 1Iz+Y <0)

with p(T ) = µ, q(T ) = 0.

Then straightforward calculations yield that

∫ T

0

(−ṗ(t) + c0p(t) − q(t))ỹ(t)dt + p(T )ỹ(T )

=

∫ T

0

[p(t)( ˙̃y(t) + c0ỹ(t)) − q(t)ỹ(t))dt

=

∫ T

0

(p(t)(v(t) − kz̃(t)) − q(t)ỹ(t))dt

=

∫ T

0

p(t)v(t)dt +

∫ T

0

(z̃(t)(−q̇(t)) − q(t)ỹ(t))dt
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=

∫ T

0

p(t)v(t)dt +

∫ T

0

q(t)( ˙̃z(t) − ỹ(t))dt

=

∫ T

0

p(t)v(t)dt.

Substituting into the Euler condition we get for all v,

∫ T

0

(u(t) + p(t))v(t)dt = 0.

It follows that

u(t) + p(t) = 0.

Hence we have obtained the following set of necessary conditions for the penalized

problem:

(2.11)

ẏε + c0yε + kzε + pε = 0,

żε = yε −
1

ε
(zε − Y )+ +

1

ε
(zε + Y )−,

−ṗε = −c0pε + qε + λ,

−q̇ε = −kpε −
qε

ε
(1Izε−Y >0 + 1Izε+Y <0),

with yε(0) = 0, zε(0) = 0, pε(T ) = µ, qε(T ) = 0.

3. Estimates and Convergence. To the control v(·) ≡ 0 correspond the tra-

jectories y(·) = z(·) ≡ 0 and therefore, for the optimal control u(·)ε of the penalized

problem we have

(3.1)
1

2

∫ T

0

(uε(t))
2dt + λ

∫ T

0

yε(t)dt + µyε(T ) ≤ 0.

From the state equations we get

1

2

d

dt
|yε|

2 + c0(yε)
2 + kzεyε = uεyε,

1

2

d

dt
|zε|

2 = yεzε −
1

ε
zε(zε − Y )+ +

1

ε
zε(zε + Y )− ≤ yεzε,

hence we have the estimate

1

2
(yε(t))

2 +
1

2
k(zε(t))

2 + c0

∫ t

0

(yε(s))
2ds ≤

c0

2

∫ t

0

(yε(s))
2ds +

1

2c0

∫ t

0

(uε(s))
2ds.

Using (3.1) we obtain

1

2
(yε(t))

2 +
1

2
k(zε(t))

2 +
c0

2

∫ t

0

(yε(s))
2ds ≤ −

λ

c0

∫ T

0

yε(t)dt −
µ

c0
yε(T ).
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Applying this inequality with t = T yields

1

2
(yε(T ))2 +

µ

c0
yε(T ) +

1

2
k(zε(T ))2 +

c0

2

∫ T

0

(yε(s))
2ds +

λ

c0

∫ T

0

yε(t)dt ≤ 0

from which we get immediately for some constant C that

(3.2)

∫ T

0

(yε(t))
2dt ≤ C, (yε(T ))2 ≤ C, and (zε(T ))2 ≤ C.

Hence also,

(3.3) |

∫ T

0

yε(t)dt| ≤ C, and |yε(T )| ≤ C.

Going back to the previous inequality we also get that

(3.4) |yε(t)| ≤ C, |zε(t)| ≤ C, ∀t ∈ [0, T ], and

∫ T

0

(uε(t))
2dt| ≤ C.

Considering the state equations

(3.5)

ẏε + c0yε + kzε = uε,

żε = yε −
1

ε
(zε − Y )+ +

1

ε
(zε + Y )−

yε(0) = 0, zε(0) = 0,

we get easily

∫ T

0

(ẏε(t))
2dt ≤ C.

Using (3.5) we get

∫ t

0

(żε(t))
2dt =

∫ t

0

yεżε(t)dt −
1

2ε
((zε(t) − Y )+)2 −

1

2ε
((zε(t) + Y )−)2

and hence

(3.6)

∫ T

0

(żε(t))
2dt ≤ C,

1

ε
((zε(t) − Y )+)2 ≤ C , and

1

ε
((zε(t) + Y )−)2 ≤ C.

Note that for all ζ with |ζ| ≤ Y we have

(3.7) (żε(t)) − yε(t))(ζ − zε(t)) ≥ 0.

We extract a subsequence such that

(3.8)

uε → u in L2(0, T ) weakly,

yε → y in H1(0, T ) weakly and ∀t uniformly,

zε → z in H1(0, T ) weakly and ∀t uniformly.
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From (3.6) we get −Y ≤ z(t) ≤ Y , and we see easily that

(3.9)
ẏ + c0y + kz = u

(ż − y)(ζ − z) ≥ 0, ∀ζ with |ζ| ≤ Y.

Let us prove that u is an optimal control for the original problem.

Theorem 3.1. Let u(·), y(·) and z(·) obtained as in (3.8). Then u(·) is an

optimal control for (2.1)-(2.3).

Proof. Clearly,

J(u(·)) ≤ lim inf[
1

2

∫ T

0

(uε(t))
2dt + λ

∫ T

0

yε(t)dt + µyε(T )]

≤
1

2

∫ T

0

v2(t)dt + λ

∫ T

0

yε(t; v(·))dt + µyε(T ; v(·)),

where yε(t; v(·)) is the solution of

(3.10)

ẏε + c0yε + kzε = v,

żε = yε −
1

ε
(zε − Y )+ +

1

ε
(zε + Y )−,

with yε(0) = 0, zε(0) = 0.

As easily seen

(3.11)
yε(t; v(·)) → y(t; v(·)) in H1(0, T ) weakly and ∀t,

zε(t; v(·)) → z(t; v(·)) in H1(0, T ) weakly and ∀t,

which is the solution of the variational inequality corresponding to the control v(·).

Therefore, we have obtained

J(u(·)) ≤ J(v(·)) , ∀v(·)

which proves that u(·) is optimal. 2

Consider the adjoint equation

(3.12)

−ṗε = −c0pε + qε + λ,

−q̇ε = −kpε −
qε

ε
(1Izε−Y >0 + 1Izε+Y <0),

with pε(T ) = µ, qε(T ) = 0.

We obtain by straightforward calculations

(3.13)
−

1

2

d

dt
(pε(t))

2 = −c0(pε)
2 + qεpε + λpε,

−
1

2

d

dt
(qε(t))

2 = −kpεqε −
(qε)

2

ε
(1Izε−Y >0 + 1Izε+Y <0),
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and then by integrating these equations over the interval (t, T ) we get

k

2
(pε(t))

2 −
k

2
µ2 + c0k

∫ T

t

(pε)
2ds +

1

2
(qε(t))

2

+
1

2

∫ T

t

(qε(s))
2(1Izε−Y >0 + 1Izε+Y <0)ds = λk

∫ T

t

pεds.

Therefore

(3.14) |pε(t)| ≤ C, |qε(t)| ≤ C and
1

ε

∫ T

0

(qε(t))
2(1Izε−Y ≥0 + 1Izε+Y ≤0)dt ≤ C,

where we have used the fact that 1Izε−Y =0 = 0, 1Izε+Y =0 = 0 a.e.t.

Next from the adjoint equations

(3.15)
|ṗε| ≤ C,

−
d

dt
|qε(t)| = −kpεsignqε(t) −

|qε(t)|

ε
(1Izε−Y ≥0 + 1Izε+Y ≤0),

hence

(3.16)
1

ε

∫ T

0

|qε(t)|(1Izε−Y ≥0 + 1Izε+Y ≤0)dt ≤ C.

Therefore

(3.17) q̇ε is bounded in L1.

We can extract a subsequence such that

(3.18)

pε → p in H1(0, T ) weakly and ∀t uniformly,

qε → q in L2(0, T ) weakly,

q̇ε → q̇ in the space of measures on (0, T ),

qε → q in BV (0, T ) weakly.

4. Study of the System Governed by (y, z, p, q). We derive relations for the

system governed by (y, z, p, q).

We have clearly

(4.1)

ẏ + c0y + kz + p = 0,

(ż − y)(ζ − z) ≥ 0, , ∀ζ, |ζ| ≤ Y, |z(t)| ≤ Y,

−ṗ = −c0p + q + λ.

The equation for q is the difficult part.

In the sequel it is convenient to extend u(t) = u(T ) and uε(t) = uε(T ), for t > T and

to consider y, z, yε, zε extended accordingly for t > T . We assume initial conditions
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y(0) = 0, z(0) = 0 and yε(0) = 0, zε(0) = 0 and define the sequences t0 = 0 < t1 ≤

t2 < t3 ≤ t4 < ... and tε0 < tε1 < tε2 < ... with

(4.2)

t1 = inf{t > 0 : |z(t)| = Y }, tε1 = inf{t > 0 : |zε| > Y }

t2 = inf{t > t1 : |z(t)| < Y }, tε2 = inf{t > tε1 : |zε(t)| < Y }

δ1 = signz(t1), if t1 < ∞, δε
1 = signzε(t

ε
1), if tε1 < ∞,

and more generally

(4.3)

t2j+1 = inf{t > t2j : |z(t)| = Y }, tε2j+1 = inf{t > tε2j : |zε(t)| > Y }

t2j+2 = inf{t > t2j+1 : |z(t)| < Y }, tε2j+2 = inf{t > tε2j+1 : |zε(t)| < Y }

δ2j+1 = signz(t2j+1), if t2j+1 < ∞ and δε
2j+1 = signzε(t

ε
2j+1), if tε2j+1 < ∞.

We also have

(4.4)

z(t2j+1) = z(t2j+2) = Y δ2j+1, zε(t
ε
2j+1) = zε(t

ε
2j+2) = Y δε

2j+1

signy(t2j+1) = δ2j+1, if y(t2j+1) 6= 0

signyε(t
ε
2j+1) = δε

2j+1 and signyε(t
ε
2j+2) = −δε

2j+1.

Next, for j ≥ 1, t2j−1 < t < t2j we have that

ż = 0, signy(t) = δ2j−1, and z(t2j−1) = z(t2j) = Y δ2j−1.

We necessarily have

(4.5) y(t2j) = 0, if t2j < T , j ≥ 1.

Indeed suppose that y(t2j) 6= 0, then signy(t2j) = δ2j−1, by the continuity of the

function y(t). Also, for sufficiently small ε > 0 we have signy(t) = δ2j−1 for t ∈

(t2j , t2j + ε). But for t ∈ (t2j , t2j + ε), y(t) = ż, which implies signż(t) = δ2j−1, which

is impossible.

The function ż is continuous at t2j . At t2j+1 it satisfies the relations

ż(t2j+1 + 0) = 0 and ż(t2j+1 − 0) = y(t2j+1).

Proposition 4.1. We have for all j ≥ 1 that

tε2j−1 → t2j−1 and tε2j → t2j .

Proof. Let us prove that

(4.6) tε1 → t1.

Assume t1 < ∞. Let δ > 0, then

sup
0≤t≤t1−δ

|z(t)| < Y.
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Since zε converges to z in C0([0, t1 − δ]), we can assert that for ε sufficiently small

sup
0≤t≤t1−δ

|zε(t)| < Y.

Therefore tε1 > t1 − δ for ε sufficiently small depending on δ. Hence lim infε→0 tε1 ≥

t1 − δ. Since δ is arbitrary we get lim infε→0 tε1 ≥ t1.

Suppose lim supε→0 tε1 = t∗1 > t1. Pick a sequence tε1 → t∗1. Let δ be sufficiently small

with t1 + δ < t∗1. For ε sufficiently small depending on δ we tε1 > t1 + δ. Therefore

żε = yε on (0, t1 + δ). Going to the limit we would have ż = y on (0, t1 + δ). This

contradicts the fact that ż = 0 on (t1, t1 + δ).

If t1 = +∞, then sup0≤t≤T |z(t)| < Y , ∀T > 0. Therefore sup0≤t≤T |zε(t)| < Y for

ε sufficiently small. Hence tε1 > T , and hence lim inf tε1 > T . Since T is arbitrary

tε1 → +∞.

Let us next prove that

(4.7) tε2 → t2.

The case t1 = t2 is trivial. Assume t2 < ∞ and consider the case t1 < t2 < ∞. For

δ sufficiently small |z(t2 + δ)| < Y . Therefore for ε sufficiently small depending on δ

we have |zε(t2 + δ)| < Y . Since tε1 → t1 < t2 + δ, we can assume that tε1 < t2 + δ.

Therefore t2 + δ > tε2. It follows that lim sup tε2 ≤ t2 + δ. Since δ is arbitrary, we get

(4.8) lim sup tε2 ≤ t2.

Let us check that

(4.9) t2 ≤ lim inf tε2.

Without loss of generality we can assume that δε
1 = 1, so zε(t

ε
1) = zε(t

ε
2) = Y .

Necessarily z(t1) = z(t2) = Y . Recall that y(t1) > 0 and y(t) > 0 for t1 ≤ t < t2

with y(t2) = 0. From the uniform convergence of yε(t) to y(t) on compact intervals,

we deduce that yε(t) > 0 for t ∈ [T1, t2 − δ], for ε sufficiently small depending on δ.

Since tε1 → t1, we can also assume that yε(t) > 0 for t ∈ [tε1, t2 − δ].

Now, on (tε1, t
ε
2) we have

żε = yε −
1

ε
(zε − Y )

hence

d

dt
[(zε − Y )e

t
ε ] = yεe

t
ε .

Therefore zε(t) − Y > 0 as long as yε(t) > 0, t > tε1. This implies that tε2 > t2 − δ.

Therefore lim inf tε2 > t2 − δ. Since δ is arbitrary, we have obtained (4.9).

If t2 = +∞, we have z(t) = Y , ∀t ≥ t1, and y(t) > 0 , ∀t ≥ t1. Also yε(t) > 0 for
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t ∈ [t1, t1 +T ] , ∀T , and ε sufficiently small. This implies tε2 > t1 +T , for ε sufficiently

small. Hence tε2 → +∞.

Suppose that the property is proven for tε2j−1, t
ε
2j . We want to prove it for tε2j+1, t

ε
2j+2.

Assume t2j+1, t2j+2 < ∞.

We begin with tε2j+1. The situation is different from that of tε1, (j=0), since z(t2j) =

Y δ2j (and not 0). To fix the ideas, suppose that δ2j = 1. We have y(t2j) = 0 and

y(t) > 0, for t ∈ [t2j−1, t2j). Moreover ẏ(t2j) < 0, since for t2j ≤ t < t2j+1

z(t) = z(t2j) +

∫ t

t2j

(t − s)ẏ(s)ds

and z(t) < z(t2j) = Y for t2j < t < t2j + δ, δ sufficiently small. Hence

∫ t

t2j

(t − s)ẏ(s)ds < 0 for t2j < t < t2j + δ.

Since ẏ(s) is a continuous function, necessarily ẏ(t2j) < 0. Since ẏε → ẏ in C0[0, T ],

we can assert that

ẏε(t) ≤ −Cδ for t2j − δ < t < t2j + δ

for ε sufficiently small depending on δ. Moreover since tε2j → t2j , we can also assert

that t2j − δ < tε2j < t2j + δ for ε sufficiently small depending on δ. Therefore

ẏε(t) ≤ −Cδ for t ∈ [tε2j , t2j + δ].

Also, yε(t
ε
2j) ≤ 0. This is because zε(t

ε
2j) = Y , zε(t) < Y for t > tε2j sufficiently close

to tε2j and

żε(t) = yε(t) for tε2j < t < tε2j+1.

Therefore

yε(t) ≤ −Cδ(t − tε2j) for tε2j ≤ t ≤ t2j + δ.

Hence also

(4.10) zε(t) ≤ Y −
Cδ

2
(t − tε2j)

2 for tε2j ≤ t ≤ t2j + δ

and ε sufficiently small depending on δ.

Next on t2j + δ ≤ t ≤ t2j+1 − δ we have |z(t)| < Y . Therefore for ε sufficiently small

depending on δ

|zε(t)| < Y for t2j + δ ≤ t ≤ t2j+1 − δ.

From (4.10) and this property we can assert that tε2j+1 > t2j+1 − δ. Therefore

lim inf tε2j+1 ≥ t2j+1. Suppose lim supε→0 tε2j+1 = t∗2j+1 > t2j+1. Pick a sequence
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tε2j+1 → t∗2j+1. We then proceed as in the case of j = 0 to obtain a contradiction.

Hence

lim sup
ε→0

tε2j+1 ≤ t2j+1

and then

(4.11) tε2j+1 → t2j+1.

We finally prove that

(4.12) tε2j+2 → t2j+2.

We assume t2j+2 < ∞. Just as we did for (4.8) we prove that lim sup tε2j+2 ≤ t2j+2.

We then prove that

t2j+2 ≤ lim sup tε2j+2.

We suppose to fix the ideas that δε
2j+1 = 1, then zε(t

ε
2j+1) = zε(t

ε
2j+2) = Y , and

z(t2j+1) = z(t2j+2) = Y . Also,

y(t2j+1) > 0, y(t) > 0 for t2j+1 ≤ t < t2j+2 and y(t2j+2) = 0.

We deduce that yε(t) > 0 for t ∈ [t2j+1, t2j+2 − δ] for ε sufficiently small depending

on δ. Since tε2j+1 → t2j+1, we can also assert that yε(t) > 0 for t ∈ [tε2j+1, t2j+2 − δ].

We have

żε = yε −
1

ε
(zε − Y ) for t ∈ (tε2j+1, t

ε
2j+2)

hence

d

dt
[(zε − Y )e

t
ε ] = yεe

t
ε .

Therefore zε(t) − Y > 0 as long as yε(t) > 0 , t > tε2j+1. This implies that tε2j+2 >

t2j+2 − δ, and we conclude as in the case j = 0.

The proposition is proven. 2

Let us prove that q(t) is zero for t ∈ (t2j+1, t2j+2)

Proposition 4.2. Assume that t2j+1 < t2j+2. Then we have

(4.13) q(t) = 0 on (t2j+1, t2j+2).

Proof. Assume without loss of generality that δ2j+1 = 1, and therefore y(t) >

0 on [t2j+1, t2j+2). By (4.5) y(t2j+2) = 0. So y(t) ≥ cδ > 0 on [t2j+1, t2j+2 − δ], for δ

sufficiently small. Since yε → y(t) on C0([0, T ]) we have

(4.14) yε(t) ≥ c̃δ > 0 on [t2j+1, t2j+2 − δ].
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Now since zε(t2j+1) → z(t2j+1) = Y there exists a point θε,2j+1 ∈ [t2j+1, t2j+2 − δ]

such that zε(θε,2j+1) ≥ Y .

If zε(t2j+1) ≥ Y , then obviously θε,2j+1 = t2j+1.

Suppose that zε(t2j+1) < Y and since we can assume that zε(t2j+1) > −Y , we have

żε(t) = yε(t) ≥ c̃δ

as long as zε(t) < Y . So we have

zε(t) ≥ zε(t2j+1) + (t − t2j+1)c̃δ.

Since

zε(t2j+1) + (t2j+2 − δ − t2j+1)c̃δ > Y,

for ε > 0 sufficiently small, the point θε,2j+1 exists for ε sufficiently small. Also

(4.15) θε,2j+1 → t2j+1 as ε → 0.

This is because

zε(t2j+1) + (θε,2j+1 − t2j+1)c̃δ = Y.

Consider the initial value problem

(4.16) żε = yε −
1

ε
(zε − Y ), zε(θε,2j+1) = Y , t > θε,2j+1, t is close to θε,2j+1.

This implies

d

dt
[(zε − Y )e

t
ε ] = yεe

t
ε ,

and thus zε − Y > 0 as long as yε > 0, which is true up to t = t2j+2 − δ.

Now using (3.16) we have

∫ t2j+2−δ

θε,2j+1

|qε(t)|dt ≤ Cε

and

∫ t2j+2−δ

t2j+1

|qε(t)|dt ≤ Cε +

∫ θε,2j+1

t2j+1

|qε(t)|dt

≤ Cε + C(θε,2j+1 − t2j+1) → 0, as ε → 0.

Therefore

q(t) = 0 on (t2j+1, t2j+2 − δ)
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and since δ is arbitrarily small we have (4.13).

2

Let us next prove that q(t) satisfies the following differential equation on (t2j , t2j+1).

Proposition 4.3.

(4.17) q̇ = kp on (t2j , t2j+1).

Proof. Indeed, let ϕ(t) be a smooth function on (t2j , t2j+1) with compact support

on (t2j , t2j+1). We have

∫ t2j+1

t2j

q̇εϕdt =

∫ t2j+1

t2j

kpϕdt +

∫ t2j+1

t2j

ϕ
qε

ε
(1Izε−Y >0 + 1Izε+Y <0)dt.

On the domain of ϕ we have |z(t)| < Y , hence |zε(t)| < Y for ε sufficiently small,

therefore
∫ t2j+1

t2j

q̇εϕdt =

∫ t2j+1

t2j

kpϕdt

for ε sufficiently small. Since ϕ is arbitrary (4.17) follows. 2

The function q(t) is discontinuous. We will next argue the continuity of q(t) at t2j+1

if t2j+1 6= t2j+2.

Proposition 4.4. Consider the case t2j < t2j+1 < t2j+2 (we assume strict

inequality). Then

q(t2j+1 − 0) = 0 = q(t2j+1 + 0).

Proof. We have already established the weak convergence in L2. We also know

that tε2j → t2j , t
ε
2j+1 → t2j+1, and tε2j+2 → t2j+2. Assume, to fix the ideas, that

δ2j+1 = 1, and hence δε
2j+1 = 1 for ε sufficiently small. Therefore for δ sufficiently

small we have the relations

t2j , t
ε
2j < t2j+1 − δ < tε2j+1 < t2j+1 + δ.

For t ∈ [tε2j , t2j+1 + δ) we have

−q̇ε +
qε

ε
= −kpε

and then

−
d

dt
(qεe

− t
ε ) = −kpεe

− t
ε .

Hence

qε(t
ε
2j+1)e

−
tε
2j+1

ε − qε(t2j+1 + δ)e−
t2j+1+δ

ε = −k

∫ t2j+1+δ

tε
2j+1

pε(s)e
− s

ε ds
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It follows that

qε(t
ε
2j+1) = qε(t2j+1 + δ)e

tε
2j+1

−t2j+1+δ

ε − k

∫ t2j+1+δ

tε
2j+1

pε(s)e
−

s−tε
2j+1

ε ds.

Since |qε(s)|, |pε(s)| ≤ C we have

|qε(t
ε
2j+1| ≤ Ce

tε
2j+1

−t2j+1+δ

ε + C

∫ t2j+1+δ

tε
2j+1

pε(s)e
−

s−tε
2j+1

ε ds.

≤ Ce
tε
2j+1

−t2j+1+δ

ε + Cδ → 0, as ε → 0.

Therefore

qε(t
ε
2j+1) → 0.

But on (t2j+1 − δ, tε2j+1) we have

q̇ε = kpε

hence

qε(t
ε
2j+1) − qε(t2j+1 − δ) = k

∫ tε
2j+1

t2j+1−δ

pε(t)dt

from which it follows that

qε(t2j+1 − δ) → −k

∫ tε
2j+1

t2j+1−δ

p(t)dt.

But

qε(t2j+1 − δ) → q(t2j+1 − δ)

hence

q(t2j+1 − δ) = −k

∫ tε
2j+1

t2j+1−δ

p(t)dt

and letting δ → 0 we obtain

q(t2j+1 − 0) = 0.

2

We have established the following result on system y, z, p, q.

Theorem 4.5. Let yε, zε, pε, qε satisfy the necessary conditions given in (2.11)

and y, z, p, q be obtained through the limiting relations (3.8) and (3.18). The optimal

control, u(t), for the variational inequality (2.1)-(2.2) is given by u(t) = −p(t) (see



218 ALAIN BENSOUSSAN, KEERTHI CHANDRASEKARAN, AND JANOS TURI

Theorem 3.1). Then there exists a sequence t0 = 0 < t1 ≤ t2 < t3 ≤ t4 < ... of

switching times with t2J ≤ T < t2j+1 or t2J+1 < T ≤ t2J+2, where J ≥ 0, such that

y(·), z(·), p(·), q(·) satisfy

(4.18)

ẏ + c0y + kz + p = 0 for t ∈ (0, T )

ż = y if t2j < t < t2j+1

z = Y δ2j+1 if t2j+1 < t < t2j+2 void if t2j+1 = t2j+2

−ṗ = −c0p + q + λ for t ∈ (0, T )

q̇ = kp if t2j < t < t2j+1

q = 0 if t2j+1 < t < t2j+2 void if t2j+1 = t2j+2.

Moreover y(·), z(·), p(·) are continuous on [0, T ], q(·) is piecewise continuous on [0, T ]

with possible jumps at t2j+2, j = 0, 1, .., and satisfy the initial and boundary conditions

(4.19) y(0) = z(0) = 0, p(T ) = µ , q(T ) = 0.

In addition, y(t2j) = 0 and q(t2j+1 − 0) = q(t2j+1 + 0) = 0 if t2j+1 < t2j+2.

2

Remark 4.6. The function q(t) satisfies the following relations for j ≥ 1:

(4.20)
q(t2j − 0) = 0 6= q(t2j + 0) if t2j−1 < t2j, and

q(t2j − 0) 6= 0 and q(t2j − 0) 6= q(t2j + 0) if t2j−1 = t2j .

2

5. Computation of the Cost Function. We have

(5.1) J(u) =
1

2

∫ T

0

p2(t)dt + λ

∫ T

0

y(t)dt + µy(T ).

However from (4.18) we get easily

∫ T

0

p2(t)dt + µy(T ) + λ

∫ T

0

y(t)dt +

∫ T

0

(qy + kzp)dt = 0,

and hence

(5.2) J(u) =
1

2
λ

∫ T

0

y(t)dt +
1

2
µy(T ) −

1

2

∫ T

0

(qy + kzp)dt.

We have that

(5.3)

∫ T

0

(qy + kzp)dt =

J−1∑
j=0

[

∫ t2j+1

t2j

(qż + q̇z)dt + δ2j+1

∫ t2j+2

t2j+1

kY pdt]

+1It2J<T<t2J+1

∫ T

t2J

(qż + q̇z)dt

+1It2J+1<T<t2J+2
[

∫ t2J+1

t2J

(qż + q̇z)dt + δ2J+1

∫ T

t2J+1

kY pdt].
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Note that in (5.3) the integrals over [t2j+1, t2j+2] disappear if t2j+1 = t2j+2 and the

last term disappears if t2J+1 = t2J+2.

Easy calculations yield the following expressions:

(5.4)

∫ t1

0

(qż + q̇z)dt + δ1

∫ t2

t1

kY pdt = q(t2 − 0)Y δ11It1=t2 + δ1

∫ t2

t1

kY pdt,

∫ t2j+1

t2j

(qż + q̇z)dt + δ2j+1

∫ t2

t1

kY pdt = q(t2j+2 − 0)Y δ2j+11It2j+1=t2j+2

−q(t2j + 0)Y δ2j−1 + δ2j+1

∫ t2j+2

t2j+1

kY pdt, for j = 1, .., J − 1,

∫ T

t2J

(qż + q̇z)dt = −q(t2J + 0)Y δ2J−1, if t2J < T < t2J+1,∫ t2J+1

t2J

(qż + q̇z)dt + δ2J+1

∫ T

t2J+1

kY pdt = −q(t2J + 0)Y δ2J−1

+δ2J+1

∫ T

t2J+1
kY pdt.

Therefore

∫ T

0

(qy + kzp)dt =

J∑
j=1

Y δ2j−1(q(t2j − 0)1It2j−1=t2j
− q(t2j + 0))

+

J∑
j=0

δ2j+1

∫ (t2j+2)∧T

t2j+1

kY pdt.(5.5)

If J = 0, then

(5.6)

∫ T

0

(qy + kzp)dt = 0.

Hence

(5.7)

J(u(·)) =
1

2
λ

∫ T

0

y(t)dt +
1

2
µy(T )

+
Y

2

J−1∑
j=0

δ2j+1[q(t2j+2 + 0) − q(t2j+2 − 0)1It2j+1=t2j+2
− k

∫ t2j+2

t2j+1

p(t)dt]

−
Y

2
kδ2J+1

∫ (t2J+2)∧T

(t2J+1)∧T

pdt.

6. Conclusions. In Theorem 4.5 and Remark 4.6 we obtained a two point

boundary value problem with additional internal boundary conditions for the state

and adjoint variables, i.e., (4.18), with (4.19) and (4.20). For the solution of this prob-

lem an iterative process is needed because the phase changing instances tj , j = 1, 2, ...

are only defined implicitly. The computation proceeds segment by segment fashion,

where a segment is a pair of consecutive elastic and plastic phases including the pos-

sibility of a one point plastic excursion (i.e., when the oscillator just touches on the

plastic boundary). A detailed description of the corresponding algorithm is discussed

in [3] and [7].
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