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EQUIDISTANT RANK METRIC CODES: CONSTRUCTION AND

PROPERTIES

R. S. SELVARAJ∗ AND JEJAW DEMAMU∗

Abstract. This paper introduces a new construction for q-ary equidistant code C with rank

metric where q is a power of 2. Investigations on structural properties of the proposed code are

carried out. The highlight of the paper is that the kernel of the code C happens to be an equidistant

constant-weight code of same size as C and is shown to be C+ C. The bounds on number of steps

that are required to construct the equidistant code are also given. Moreover, our construction is

independent of the choice of metric, though our investigation mainly focuses about rank metric.
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1. Introduction. Recently, codes in rank metric have attracted great attention

due to their relevance to wireless communications, cryptography, storage equipments,

network coding etc [5, 6, 7, 13, 14]. While a vast amount of knowledge exists for

non-linear binary codes with Hamming metric, a relatively little is known about non-

linear q-ary codes with rank metric. The majority of previous works on rank metric

codes were about rank distance properties, code construction, efficient decoding of

rank metric codes. The works in [5, 10, 11, 12, 13, 17], have made significant contri-

bution to these topics. Most of the studies regarding non-linear codes with Hamming

metric revolved around perfect codes, equidistant codes and constant-weight codes.

Binary equidistant codes have been studied by a number of authors, mainly as ex-

amples of designs and other combinatorial objects, for example see [8, 9]. There are

no perfect codes [2, 16] with respect to rank metric. Plenty of knowledge exists re-

garding equidistant codes on binary codes, but as to our knowledge, equidistant rank

metric codes have not been investigated. All these inspired us to think of a method

of constructing equidistant rank metric codes. Constructing such equidistant codes

discloses several properties of the nonlinear behavior of rank metric codes. Moreover,

such equidistant codes also led us finding the way to construct constant-weight rank

metric codes, applicable to communications, for instance, detecting error signals in

ARQ system [4].

Hence this paper is aimed to provide a new technique to construct an equidistant

rank metric code, from which we explore various properties possessed by it by inves-

tigating its kernel. The kernel of a code C, denoted by Ker(C), is the set of vectors

that leave C invariant under translation.

The remainder of this paper is arranged as follows. In section 2, we summarize
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definitions and known results that will make this paper a self-contained one. In

section 3, we introduce our method of constructing an equidistant rank metric code

and determine its cardinality. Section 4 investigates some of the properties of the

constructed code and discusses about its kernel. In section 5, we analyze the number of

steps our proposed construction method run for. The final section gives the conclusion

and suggest some open problems.

2. Preliminaries. Let F
n
qm denote the n-dimensional vector space over the finite

field Fqm (where m and n are positive integers and q being a power of a prime).

A Rank Distance (RD) code is a subset of F
n
qm wherein the weight of each vector

x = (x1, x2, . . . , xn) ∈ F
n
qm (denoted by wt(x)) is defined to be the maximum number

of its coordinates xi that are linearly independent over Fq. This weight is a norm on

the rank distance space F
n
qm called as rank norm and denoted as r(x) or simply as ‖x‖.

The rank norm induces a metric called rank metric (or rank distance) on F
n
qm and is

denoted by dR. Thus, the rank distance dR between two vectors x, y ∈ F
n
qm is the rank

of their difference: dR(x, y) = r(x − y). Hereafter, in this paper, we consider q = 2,

and without loss of generality, we write dR(x, y) = r(x+y), where “+” means addition

modulo 2. Thus, wt(x) = dR(0, x) = ‖x‖. The vector space F
n
2m over F2m equipped

with the rank metric dR is called as a rank distance space. For any rank distance code

C, the minimum distance dmin is defined by: dmin = min{dR(x, y) : x, y ∈ C, x 6= y}.

A code is said to be equidistant if the distance between any two distinct codewords is

the same (say d). A code is called a constant-weight code if each non-zero codeword is

of the same weight. A code is said to be an additive code if it is an additive subgroup

of the ambient space F
n
2m .

3. Construction of Equidistant Rank Metric Codes. Given any three vec-

tors of length n that are equidistant, we propose a method to construct an equidistant

code. To construct an equidistant code, it is reasonable to start with three codewords.

Hence our construction starts by picking any three codewords that are equidistant to

each other.

The following terminology is used most frequently in our subsequent proofs and

discussions. While constructing the code, we have used a sort of give and take tech-

nique i.e. if you pick a vector from the entire space, you will in turn be able to

produce more codewords. Those vectors you are picking, are termed as Initial code-

words and those that you will produce in turn, are termed as Derived codewords.

Derived codewords are basically obtained from Initial codewords by adding all

possible odd sums of the Initial codewords by fixing recently chosen or picked initial

codeword.

Procedure to Construct the Proposed Equidistant Rank Metric Code:

1. Choose any three distinct initial vectors c1, c2, c3 which are equidistant to
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each other and call these as initial codewords.

2. Compute the derived codeword cd
4 = c1 + c2 + c3.

3. Pick the fourth initial and call it c5 which is equidistant to all the previous

initials c1, c2, c3 and the derived codeword cd
4.

4. Compute the derived codewords by taking all possible sums of odd number

of initials, with the recent initial c5 being fixed and name them as indicated

below:

cd
6 = c5 + c1 + c2

cd
7 = c5 + c1 + c3

cd
8 = c5 + c2 + c3

5. Pick the fifth initial and call it c9, which is equidistant from the previous 8

codewords.

6. Compute the derived codewords by forming all possible sums of odd number

of initials with the recent initial c9 being fixed, as follows:

cd
10 = c9 + c1 + c2

cd
11 = c9 + c1 + c3

cd
12 = c9 + c1 + c5

cd
13 = c9 + c2 + c3

cd
14 = c9 + c2 + c5

cd
15 = c9 + c3 + c5

cd
16 = c9 + c1 + c2 + c3 + c5

7. Pick the next initial codeword and call it c17. Compute the next derived

codewords.

Continuing in this way, one can construct an equidistant code (Proposition 3.1 ). We

shall denote the code constructed by the above procedure as C throughout this paper.

Convention: During construction, each of the derived codewords is computed

by taking all possible sums of odd number of the initial codewords, in which the recent
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initial codeword is always fixed. For example, if c5 is the recent initial codeword, then

the subsequent derived codewords are computed from c1, c2, c3 and c5 by forming the

following odd sums:

c5 + c1 + c2

c5 + c1 + c3

c5 + c2 + c3

Each derived codeword is formed by forming a sum of 3 initial codewords, or 5 initial

codewords, or 7 initial codewords and so on, by keeping the recently picked initial

codeword fixed in each sum. So, from now on, in this paper:

•

soni
∑

k

ck means the Sum of Odd Number of Initial codewords.

•

seni
∑

k

ck means the Sum of Even Number of Initial codewords

PROPOSITION 3.1. The code C constructed in this way is an equidistant code.

Proof. Let x, y ∈ C, where C is the code constructed by the above method. Then

any element of C can be expressed as a sum of some odd number of initial codewords.

That is x and y can be expressed as x =

soni
∑

i

ci and y =

soni
∑

j

cj , where ci, cj are

initial codewords in C. Now dR(x, y) = dR





soni
∑

i

ci,

soni
∑

j

cj



 = r





soni
∑

i

ci +

soni
∑

j

cj



 =

r

(

seni
∑

k

ck

)

. Arranging ck’s in their order of suffixes, one of them will have the largest

suffix. If we call such initial codeword as cl, all the other initials have suffixes less

than l. As cl is chosen in such a way that it is equidistant to the initial codewords and

derived codewords with lower suffixes, we get the following: dR(x, y) = r

(

seni
∑

k

ck

)

=

dR

(

soni
∑

m

cm, cl

)

which is the constant distance d, where m < l. Thus C is equidistant.

�

REMARK 1. Since our construction is independent of the choice of metric, one

can construct an equidistant code for any metric using the above procedure.

REMARK 2. During construction if the all-zero codeword is included, then C be-

comes an additive code to the ambient space. Then the elements of C can be expressed

as a sum of odd or even number of initial codewords. Unless and otherwise stated, we

will assume that C does not contain the all-zero codeword.
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The above proposition assures, such a construction gives an equidistant rank

metric code. Now it should be the duty of this paper to provide how the size of

the code looks like. More beautifully, the size of the code constructed by the above

method is always a power of 2. The following proposition tells us this fact.

PROPOSITION 3.2. If t denotes the total number of initial codewords in C, then

the size of the code C will be 2t−1.

Proof. First, let us stay clear of the fact that a codeword y resulting in some

step i of the construction procedure is always distinct from codewords x constructed

in prior step. There are three possibilities.

(i) If both x and y are initial codewords then by the construction procedure, they

are distinct.

(ii) Suppose that both are derived codewords. Then x =

soni
∑

i

ci and y =

soni
∑

j

cj . If

x = y then

soni
∑

i

ci−

soni
∑

j

cj = 0 which implies

seni
∑

k

ck = 0, after doing necessary

simplification. Now, arranging ck’s in their order of suffixes, one of them, say,

cl will have the largest suffix. Thus, cl +

soni
∑

m

cm = 0, where m < l, which

means cl =

soni
∑

m

cm. This shows that cl is equal to a previously obtained

derived codeword
soni
∑

m

cm which is a contradiction, as the initial codewords

are chosen in such a way that they are distinct and equidistant from the

previously obtained codewords.

(iii) Suppose that x be an initial codeword, say, ci and y be a derived codeword found

in a later step. Then y =

soni
∑

j

cj . If y = x, then

soni
∑

j

cj = ci which means that

seni
∑

k

ck = 0. Now, as in the case (ii) above, this cannot happen.

Thus, all codewords that are produced in every step of the construction are dis-

tinct.

If t = 3, then there is only one derived codeword which will be computed in
(

2

2

)

ways. With the fourth initial, one can produce derived codewords in
(

3

2

)

ways. With the fifth initial, one can compute derived codewords in
(

4

2

)

+
(

4

4

)

ways. Thus with tth initial, one can produce derived codewords in
(

t − 1

2

)

+
(

t − 1

4

)

+ · · ·+
(

t − 1

t − 2

)

ways, if t is even, or
(

t − 1

2

)

+
(

t − 1

4

)

+ · · ·+
(

t − 1

t − 1

)

ways, if t

is odd. In general, depending on whether t is even or odd, the total size of the code is

the totality of all initial codewords and the total number of derived codewords. Note
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that the number of initial codewords is t which can be expressed as
(

t

0

)

+
(

t − 1

1

)

.

If t is odd then,

|C| = t +
[(

2

2

)

+
(

3

2

)]

+
[(

4

2

)

+
(

4

4

)]

+
[(

5

2

)

+
(

5

4

)]

+
[(

6

2

)

+
(

6

4

)

+
(

6

6

)]

+ · · · +
[(

t − 2

2

)

+
(

t − 2

4

)

+ · · · +
(

t − 2

t − 3

)]

+
[(

t − 1

2

)

+
(

t − 1

4

)

+ · · · +
(

t − 1

t − 1

)]

= (1 + 1)t−1 = 2t−1,

by simplifying and using the recurrence relation
(

n

k

)

=
(

n − 1

k

)

+
(

n − 1

k − 1

)

.

If t is even,

|C| = t +
[(

2

2

)

+
(

3

2

)]

+
[(

4

2

)

+
(

4

4

)]

+
[(

5

2

)

+
(

5

4

)]

+
[(

6

2

)

+
(

6

4

)

+
(

6

6

)]

+ · · · +
[(

t − 2

2

)

+
(

t − 2

4

)

+ · · · +
(

t − 2

t − 2

)]

+
[(

t − 1

2

)

+
(

t − 1

4

)

+ · · · +
(

t − 1

t − 2

)]

= (1 + 1)t−1 = 2t−1

�

4. Properties of the Equidistant Rank Metric Code. In what follows, we

show how an equidistant constant-weight code can be constructed from C. The results

are presented by the following propositions.

Note that C+C = {x = u+v ∈ F
n
2m : u, v ∈ C}. As C+C contains many identical

elements, clearly |C + C| < 2|C|.

PROPOSITION 4.1. If C is an equidistant code with a constant rank distance d,

then C + C is a constant-weight code of same weight d.

Proof. Let x ∈ C + C such that x 6= 0. Then x = ci + cj , for some ci 6= cj in C

and ‖x‖ = ‖ci + cj‖ = dR(ci, cj) = d. �

PROPOSITION 4.2. Every element of C + C is expressible as a sum of even number

of initial codewords of C.

Proof. Let y ∈ C + C. Then y = u + v for some u, v ∈ C. We know that every

element of C is expressible as a sum of odd number of initials of C, i.e. u =
soni
∑

i

ci ,

v =
soni
∑

j

cj where ci and cj are initial codewords of C. Now y = u+v =
soni
∑

i

ci+
soni
∑

j

cj =

seni
∑

k

ck which implies y is expressible as a sum of even number of initial codewords of

C. Hence, the result follows. �
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REMARK 3. Note that the sum of any even number of initial codewords belongs to

C + C which makes C + C an additive subgroup of F
n
2m .

PROPOSITION 4.3. C + C is an equidistant code.

Proof. Let x, y ∈ C + C. Then x =

seni
∑

k

ck, y =

seni
∑

l

cl where ck’s and cl’s

are initial codewords. Now dR(x, y) = dR

(

seni
∑

k

ck,

seni
∑

l

cl

)

= r

(

seni
∑

k

ck +

seni
∑

l

cl

)

=

r

(

seni
∑

i

ci

)

= d. �

We record the following result which is immediate.

PROPOSITION 4.4. Any translate of C is an equidistant code.

The kernel of a code C, denoted by Ker(C), is the set of vectors that leave the

code invariant under translation. That is, Ker(C) = {x ∈ F
n
2m : x + C = C}. The

following two results establish that Ker(C) is also an equidistant code. In the sequel,

we establish some of the properties of the kernel.

PROPOSITION 4.5. For all y ∈ C + C, y + C = C.

Proof. Let x ∈ y+C. Then there exists c ∈ C such that x = y+c =

seni
∑

i

ci+

soni
∑

k

ck,

where y =

seni
∑

i

ci and c =

soni
∑

k

ck , ci and ck being initial codewords. So, x =

soni
∑

m

cm ∈

C, which implies y + C ⊆ C. Conversely, let z ∈ C. Then z =

soni
∑

i

ci, where ci’s are

initial codewords. Now z = y+z+y =

seni
∑

k

ck+

soni
∑

i

ci+

seni
∑

k

ck =

seni
∑

k

ck+

soni
∑

m

cm ∈ y+C.

Thus, C ⊆ y + C. Hence, the result follows. �

THEOREM 4.6. If Ker(C) denotes the kernel of the code C, then Ker(C) = C + C.

Proof. By Proposition 4.5, C + C ⊆ Ker(C). Conversely, let y ∈ Ker(C). This

means, y+C = C and so y+cj = cl for some cj , cl ∈ C. This implies y = cj +cl ∈ C+C.

Thus, Ker(C) ⊆ C + C. Hence, Ker(C) = C + C. �

Thus, the above Theorem 4.6 establishes that Ker(C) is an equidistant constant-

weight additive code.

PROPOSITION 4.7. For any c ∈ C, c + C = C + C.

Proof. Clearly, c + C ⊆ C + C for every c ∈ C. Conversely, let z ∈ C + C and let

c ∈ C. Now z ∈ Ker(C), which means, z + c ∈ C and thus, z ∈ c + C. This implies,

C + C ⊆ c + C. Hence, c + C = C + C for every c ∈ C. �
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PROPOSITION 4.8. For every c ∈ C, |c + C| = |C|.

Proof. Let x, y ∈ c + C. So that, x = c + cl and y = c + ck for some cl, ck ∈ C. If

x = y, then c + cl = c + ck which means ck = cl. Hence all the elements in c + C are

distinct, which results in |c + C| = |C|, as required. �

Now, the following result follows immediately.

PROPOSITION 4.9. |Ker(C)| = 2t−1.

We have shown that the code C and its kernel have the same cardinality 2t−1

where t is the total number of initial codewords in C. As the kernel of C is an additive

subgroup of F
n
2m , distinct cosets of the kernel partitions F

n
2m .

We illustrate the arrived results by the following example.

EXAMPLE 1. We shall construct an equidistant code with distance d = 3. Consider

the rank distance code of length n = 3 over the Galois field F23 . Let α be a primitive

element of the field F23 such that α3 = α + 1. Choose three vectors namely, c1 =

(α2, 0, 0), c2 = (1, α, α2), c3 = (0, 1, α). Their sum cd
4 = (1 + α2, 1 + α, α + α2)

is the derived codeword from the first three initial codewords. Then choose the new

initial codeword c5 = (α+α2, α+α2, 1) such that it is equidistant to all the first four

codewords. From this new initial and that of the previous three initial codewords,

three more derived codewords are computed: cd
6 = (1 + α, α2, 1 + α2), cd

7 = (α, 1 +

α+α2, 1+α), cd
8 = (1+α+α2, 1+α2, 1+α+α2) using our construction. Computer

search shows that no more initial codewords can be found for our choice of initial three

codewords. There are t = 4 initial codewords and thus the size of the code C is 8. Here,

Ker(C) = C+C = {(0, 0, 0), (1+α2, α, α2), (α2, 1, α), (1, 1+α, α+α2), (α, α+

α2, 1), (1+α+α2, α2, 1+α2), (α+α2, 1+α+α2, 1+α), (1+α, 1+α2, 1+α+α2)}.

It is easy to observe that the non-zero elements of the kernel of the code C form an

equidistant constant-weight code.

5. Bounds on t. This section analyzes how many steps our proposed construc-

tion method run for. That is, what would be the maximum number of initial code-

words one can find from a given ambient space F
n
2m for constructing an equidistant

code of distance d? Clearly, t cannot exceed mn, as that would mean |C| ≥ 2mn if

t > mn. For, even if t = mn + 1, |C| = 2mn = |Fn
2m | which cannot happen. Thus, we

need to find an upper bound for the number of initial codewords t. Now we recall a

result from [10] which states that if Sr denote the number of vectors of rank r in F
n
qm

then q(m+n−2)r−r2

≤ |Sr| ≤ q(m+n+1)r−r2

. Using this, we will give an upper bound

for t.

PROPOSITION 5.1. If C is the equidistant code of length n with constant distance

d and t is the number of initial codewords then t ≤ 1 + log2(1 + 2(m+n+1)d−d2

).

Proof. Now C + C is a constant-weight equidistant code with constant weight d.
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Thus, |C+C|− 1 ≤ number of vectors of rank norm d, which means 2t−1− 1 ≤ |Sd| ≤

2(m+n+1)d−d2

. Thus, t ≤ 1 + log2(1 + 2(m+n+1)d−d2

). �

Now, we will try to improve this bound. From the above proof, it is clear that,

t ≤ 1 + log2(1 + |Sd|). From [5] and [11], the number of vectors of rank r, that is,

|Sr| is given by
[

n

r

]

A(m, r) where A(m, r) is defined as follows: A(m, 0) = 1 and

A(m, r) =

r−1
∏

i=0

(qm − qi) for r ≥ 1. The
[

n

r

]

term is the Gaussian binomial, defined

as
[

n

r

]

=
A(n, r)

A(r, r)
. Note that

[

n

r

]

is the number of r-dimensional linear subspaces of

F
n
q .

From [11], we have the following results: For 0 ≤ r ≤ m, A(m, r) ≤ qmr and
[

m

r

]

< K−1
q qr(m−r), where Kq =

∞
∏

j=1

(1 − q−j). Now, |Sd| ≤ K−1
q qd(n−d)qmd =

K−1
q qd(m+n−d). From this follows our new upper bound for t:

PROPOSITION 5.2. If C is the equidistant code of length n with constant distance

d and t is the number of initial codewords then t ≤ 1 + log2(1 + K−1
2 2d(m+n−d)).

Now, the bound from Proposition 5.1 can be re-written as t ≤ 1 + log2(1 +

2d2d(m+n−d)). Comparing these two upper bounds for t, the upper bound in Propo-

sition 5.2 is tighter, as K−1
2 < 2.

6. Conclusion. A new method of constructing equidistant codes is introduced.

Certain structural properties of the proposed code are investigated. We have shown

that the size of the constructed code always turns out to be a power of 2. Our

investigation shows that the kernel of the constructed code is C + C and it is an

equidistant constant-weight code. Bounds on the number of initial codewords that can

be picked from the ambient space while construction are also discussed. The method

proposed is a greedy approach which generates derived codewords from the recently

chosen initial codeword. For every t initial codewords chosen, there are 2t−1 − t

codewords that are derived from it by just forming an odd linear combination of the

initial codewords. Thus, rather than picking all 2t−1 codewords that are equidistant,

the proposed method suggests to find just t initial codewords that are equidistant

to previously picked/derived codewords. Now, we keep the problem of picking the t

initial codewords that is more efficient than the existing approach as open. Finding

lowest upper bound for the number of initial codewords for given d and n, is another

open problem that is to be answered.
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